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Chapter 1

Introduction

1.1 Complex Flows and Multi-Physics

The various phenomena of fluid flow have such presence in our daily life, that most human
beings are fascinated by their complexity from early childhood. ‘Experiments’ on surface
wave propagation (age 1), water channeling (age 5) or wind experiments with any kind of
flying objects (age 7) help us to develop a natural feeling andunderstanding of complex
flow phenomena before any scientific analysis.

Conversely, the impressive complexity and often seeminglyunpredictable behaviour of
fluids leads to many kinds of surprises in daily life, which are hard to explain without
deeper scientific understanding: the suddenly increasing amount of ketchup coming out of
the bottle (shear thinning fluids); the unexpected terriblenoise when opening the window
of a badly designed car (Helmholtz cavitation); the varioussounds air-flow can cause when
interacting with solid objects (vortex shedding and fluid-structure interaction at the onset of
transient or turbulent flow), finding its most artistic expression in a rich variety of musical
wind-instruments all over the world.

Nowadays, a deep insight into the dynamics of fluid flow is required for the efficient design
of many kinds of technical devices, from micrometer scale (reading heads of the hard-
disc) to hundreds of meters size (large ships or buildings).Beyond the design of technical
devices, research related to geological (e.g. ground waterflow) and biological (e.g. blood
flow) phenomena requires an understanding of the underlyingfluid behaviour.

Often, a solution of the flow problem alone is insufficient to explain certain complex phe-
nomena. It is the interaction of the flow with other physical,chemical or biological pro-
cesses which has to be considered within a coupled scheme, toachieve the understanding
required for modelling and simulation. If this is the case, we speak of ‘multi-physics’.

The aforementioned fluid-structure interaction within musical instruments is an example of
multi-physics flow, since coupling of the flow field to structure mechanics must be consid-
ered.1

1One might argue that for wind instruments (reed instrumentsexcluded, where the fluid-structure inter-
action is obvious) like flutes or trumpets only the geometry is relevant for a certain steady sound-wave to
establish in the corpus of the instrument. Alas, as the author can confirm from his own experience studying



2 Introduction

More complex multi-physics flow problems in daily life are the ‘aging’ of a catalytic con-
verter in a car,2 or the complex biophysical processes in the human body whichprevent
blood clotting inside the arteries and veins, but ensure rapid healing of open wounds.3

The prediction of flow phenomena, aside from the intuitive (and often misleading) un-
derstanding as described above, is obtained from the triangle of experiments, analytical
solutions of the underlying equations and numerical simulations.

Since analytical solutions of the governing equations are only possible for relatively simple
boundary conditions, with a few degrees of freedom in a framework of simplified, reduced
expressions, wind, water or oil-tunnel experiments have accompanied previous major de-
velopments. These experiments are usually extremely time-consuming and require large-
scale highly specific equipment and elaborated methods to acquire precise data. For this
reason, experimental fluid dynamics is very expensive and the production of results requires
significant experience, time and forward planning.4 Nevertheless, and against the explicit
announcements of some prestigious automotive companies, experimental investigations are
still the backbone of most developments in this field.

The increasing availability of relatively cheap computer power, together with an equivalent
development of efficient numerical methods during the past fifty or so years, allows for
the simulation of complex fluid flow systems with many milliondegrees of freedom. The
advantages of computational fluid dynamics (CFD) compared to experiments are obvious:
general-purpose hardware can be used for simulations with standard commercial CFD-
software and results can be obtained in a relatively short time allowing detailed insight into
flow phenomena, sometimes not accessible by experiments.

The difficulty of setting up and running large expensive experimental equipment is shifted
to the challenge of efficiently implementing numerical methods to solve the governing
equations, and in the case of complex multi-physics phenomena, to perform the appro-
priate modelling and mathematical description of the phenomena that are the subject of a
simulation.

the Shakuhachi [1], this is not the case. The interaction of the air pressure oscillations inside the instru-
ment with the surrounding material seem to play an importantrole for the formation of the sound, which the
musicians sometimes describe as ‘vibration’ of their instrument (some interesting remarks on this and other
aspects of Shakuhachi physics can be found in [2]). A Lattice-Boltzmann simulation of a flute (neglecting
the fluid-structure interaction) has been carried out by Kühnelt at the Institut für Wiener Klangstil [3, 4].

2This is related to catalytic chemical reactions in complex geometries (Chap. 5.1) and adsorp-
tion/resorption processes (Chap. 5.2).

3A first study on clotting processes will be presented in Chap.5.3.
4The author had the chance to make his own experiences with thecomplicated process of acquiring ex-

perimental wind-tunnel data with the help of LDA [5] and heat-wire devices [6], during his time as a research
scientist at LSTM, Erlangen.
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1.2 Computational Fluid Dynamics

1.2.1 CFD-I: Navier-Stokes

The most common approach in CFD is to discretise the Navier-Stokes equation, which
governs the flow properties of a ‘simple fluid’:5

~∇(ρ~v) = 0, (1.1)
∂~v
∂ t

+(~v~∇)~v = −1
ρ

~∇p+
µ
ρ

∆~v (1.2)

where~v is the velocity vector,ρ is the fluid density,µ is the dynamic viscosity andp is the
pressure.

Almost 50 years of experience with hundreds of thousands of person years of development
resulted in a rich diversity of highly sophisticated CFD codes, including many commer-
cially available packages. Nevertheless, carrying out a CFD simulation has remained an
expert’s task, often with unknown predictability of success or estimation of the quality of
the data.6

The major paradigm in the development of this ‘classical’ CFD approach was to invent
more and more sophisticated methods of implementing the same set of equations. Alas,
often in science progress is not made from repeatedly improving the same idea, but from
stepping back and solving the problem from a completely different point of view.

So, it was a lucky coincidence, that theoretical physicists, who were developing ‘toy-
models’ for a better understanding of non-equilibrium statistical mechanics, realised that
their approach could actually be used to solve real-world flow problems. That is, how the
Lattice-Gas and later Lattice-Boltzmann method emerged.7

1.2.2 CFD-II: Lattice-Boltzmann

Instead of solving the homogeneous (Navier-Stokes) equation on the macroscopic level,
in the microscopic (Lattice-Gas) or mesoscopic (Lattice-Boltzmann) approach a set of
equations derived from statistical physics is considered.Simply, the idea behind Lattice-
Boltzmann is not to look at the time and space-development ofthe fluid, but at the (average)
momentum and interaction of its particles. In contrast to the numerical simulation of the
Boltzmann equation itself, this is done for a simplified (time and space-discrete) scheme.

Within the framework of a simple Lattice-Boltzmann simulation, an equidistant orthogonal
lattice is chosen.8 On every lattice node, a set of real numbers, the particle density distribu-
tions, is stored. Updating of the lattice consists of two steps: a streaming process, where the

5For a ‘simple fluid’ we consider transport coefficients to be independent of the flow properties (Newto-
nian fluid) with no phase transition occurring.

6In not just a few cases the ‘C’ in ‘CFD’ is more obviously the abbreviation for ‘Coloured’ than anything
related to engineering or science.

7For a short history of these so called ‘cellular automata’ see Chap. 2.1.
8More advanced approaches allow local mesh refinement, first suggested by Filippova and Hänel [7] or
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particle densities are shifted in discrete time steps through the lattice along the connection
lines to their next neighbouring nodes, and a relaxation step, where locally, a new particle
distribution is computed by evaluating an equivalent to theBoltzmann collision integrals.

Every time step, the flow variables present in the Navier-Stokes equation (velocity, den-
sity) can be locally computed in terms of moments of this density distribution, while the
viscosity is a function of the relaxation constant (equivalent to the collision frequency of
the particles) and the pressure is derived via an equation ofstate from the density.9

Since the numerical solution of these equations simulates afluid governed by the Navier-
Stokes equation, it is sometimes argued that this is not a particularly exciting idea. The
true excitement the method caused came from providing a simpler set of equations, which
can generally be implemented in a more efficient way than the Navier-Stokes equation,
resulting in higher performance.10

1.3 Research Focus

By reviewing a variety of examples from the past ten years of the author’s research, under-
taken within various co-operations, the focus behind this thesis is two-fold: first, giving a
contribution to fluid mechanics and multi-physics research, for which Lattice-Boltzmann
was used as a powerful tool to perform the numerical simulations; and second, to demon-
strate the applicability of the Lattice-Boltzmann method as a competitive flow solver, in
terms of performance and applicability to real-world flow problems.

For problems where traditional CFD (Navier-Stokes) approaches have difficulties due to
the handling of complex or varying boundaries, or adding extension for the simulation of
complex multi-physics procedures, the advantages of the Lattice-Boltzmann method are
demonstrated.

The choice of the method and its particular implementation within this research was driven
by the application. Certain features and hardware-specificoptimisations were only imple-
mented if required to solve the problem, and not simply because they were possible.

1.3.1 Structure of the Thesis

In Chapter 2 the method is introduced together with a short historical review of the develop-
ment and, for didactic reason, a basic explanation of the Lattice-Gas approach. The step to
Lattice-Boltzmann and a derivation of the Lattice-Boltzmann equation from the Boltzmann
equation conclude this chapter. It is the intention of the second chapter to give the reader
from outsidethe CFD/Lattice-Boltzmann community an understanding of the method.

octree-based data structures as suggested by Krafczyk [8].Local mesh refinement is not considered in this
thesis.

9Details of the method will be explained in Chap. 2.2.2.
10By ‘performance’ we speak of the relation between theoretical peak performance of the hardware in

question and the performance a code achieves on this hardware. This is not always coming along with a
shorter turn-around time to solve the flow problem itself. Performance aspects are discussed in Chap. 3.1.
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A complete introduction and derivation of the governing equations can be found in a variety
of text-books [9, 10, 11, 12, 13].

Chapter 3 reviews basic concepts required for the efficient implementation of a Lattice-
Boltzmann solver. A detailed performance analysis, comparing a full-matrix and a sparse
Lattice-Boltzmann code, illustrate the necessity to applyadvanced algorithms and data
structures for achieving the required performance to address ‘real world’ applications. The
aspect of MPI-parallelisation is briefly discussed, and an introduction to a specific approach
for the visualisation of HPC simulations concludes this chapter.

Chapter 4 presents several detailed quantitative flow studies, investigating steady- and tran-
sient complex flows in a variety of geometries. After initialvalidations of the method in
comparison with analytical and other numerical results, the problem of pressure loss in
complex geometries is analysed. The detailed simulations of porous media flow, made
possible with the Lattice-Boltzmann method, demonstratedthe ‘tortuosity’ as being over-
estimated within the common ‘capillary theories’ and the deformation of fluid elements is
identified as a second dissipative source, which is usually neglected within these theories.
These numerical simulations confirmed experimental simulations carried out by Durst et
al. [14] in the mid eighties, which were at the time heavily criticised.

Aside from a contribution to fluid mechanics research, the intention of this chapter is to
highlight the Lattice-Boltzmann method as an efficient and competitive tool, when applied
to the simulation of transient or complex flows within complex geometries.

In Chapter 5, various extensions to the flow solver for modelling multi-physics phenom-
ena are presented. It is demonstrated how from relatively simple local rules (making use
of the cellular-automata-like structure behind Lattice-Boltzmann) a surprisingly complex
behaviour emerges on the macro-scale. By presenting qualitative and quantitative simu-
lations from various research fields, such as heterogeneouscatalytic reaction, adsorption
and milk/blood clotting, this chapter is dedicated to illustrating the strength of the Lattice-
Boltzmann method as a complex-flow multi-physics simulation tool.

The last Chapter 6 briefly reviews Lattice-Boltzmann software development and provides
some arguments for the industry and researchers to engage inaddressing ‘real world’ prob-
lems with Lattice-Boltzmann. A brief outline of the author’s current research within two
European projects in the area of medical physics concludes this thesis.

Due to the large variety of studies presented within this thesis, not everything could be
explained in full detail. The reader is referred to the author’s publications on which the
various chapters are based. Since the work of almost ten years is accumulated – ten years,
in which the Lattice-Boltzmann method rapidly developed – not all results presented in the
following have been carried out using today’s state-of-the-art implementations.11

Some of the older studies were, at the time of publication, the first of their kind within the
Lattice-Boltzmann community, and although achieved with what are now slightly out of
date implementations, nevertheless present valid results.

11See also Chap. 6.5.1 ‘If I did it today . . . ’.
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As explained in Chapter 3.1, more elaborate methods than a full matrix implementation are
available today, which have been applied to the most recent simulations in the area of med-
ical physics, presented in the Chapters 5.3, 6.3 and 6.4. These studies are ongoing research
and partially leading in their field even outside the small scope of Lattice-Boltzmann.12

The author strongly believes in the future of the Lattice-Boltzmann method, with which he
was concerned for the past ten years of academic and industrial research. An additional
target of this thesis is therefore to promote the Lattice-Boltzmann method (with various
extensions) as a very useful and highly efficient simulationtool for the academic and in-
dustrial study of complex-flow multi-physics problems.

12A few recently submitted collaborative papers on milk and blood clotting have not been included in this
thesis, since they are subject of the PhD thesis of S.E.Harrison at the University of Sheffield, in the supervision
of which the author was involved. For details, the reader is referred to Sarah’s very comprehensive thesis [15].



Chapter 2

The Method

This chapter starts with a short historical review of how theLattice-Boltzmann method
emerged from its cellular automata Lattice-Gas roots. A short description of Lattice-Gas
methods and a comparison with Lattice-Boltzmann is presented in the second section. The
final part of this chapter very briefly describes the derivation of the Lattice-Boltzmann
equation from the Boltzmann equation.

2.1 Cellular Automata: A Short History 1

The Lattice-Boltzmann method, as it is currently used in computational fluid dynamics, has
its roots in the concept of cellular automata, based on ideasdating back to the 1940s (for
details see e.g. [16, 17]).

Inspired by the idea of imitating the behaviour of the human brain and based on sugges-
tions by Ulam [18], the computer pioneer von Neumann developed the concept of a self-
reproducing machine to solve highly complex problems. The basic framework suggested
by von Neumann consists of a fully discrete universe made up of cells. These cells are
characterised by a discrete set of internal states, which are updated in discrete time steps.
While the initial and highly complex self-replicating cellular automata suggested by von
Neumann [19] is primarily of theoretical interest, a variety of simplified cellular automata
for modelling the behaviour of living species were developed in the framework of ‘artificial
life’.

A particularly popular model suggested in the 1970s is Conway’s ‘game of life’ [20], a two
state model residing on a square lattice with cells updatingaccording to the binary state
of their four next neighbours. Ten years later, Wolfram classified a family of simple one-
dimensional rules (the so called ‘Wolfram rules’ [21, 22]).He noticed that from a cellular
automata with a few simple local rules many features of a complex continuous system can
emerge. Thus, the concept of ‘complexity’ based on mathematical models could be studied
by exact computer simulations which (due to their Boolean nature) did not suffer from
numerical errors, as it is the case for the more traditional approaches.

1This section is based on the more detailed historical reviewgiven in Chap.1 of the book by Chopard and
Droz [10].
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Toffoli, Margolus and Fredkin in the mid-1980s recognised cellular automata as a possible
model framework for the simulation of physical systems and they developed dedicated
hardware (the CAM-6 and CAM-8 machine) for the highly performant simulation of many
different cellular automata applications [23].

The first cellular automata fluid flow simulator is based on theso called HPP lattice gas
models by Hardy, Pomeau and de Pazzis [24]. Originally developed in the 1970s as a
theoretical model for the study of interacting particles, its implementation in the framework
of cellular automata raised the question whether or not sucha model would be able to
simulate the behaviour of a real fluid or gas. Alas, this initial model soon turned out to be
insufficient for correctly simulating flow as governed by theNavier-Stokes equation.

With the FHP model published in 1986 by Frisch, Hasslacher and Pomeau [25] and almost
simultaneously by Wolfram [26], an accurate lattice gas model for the simulation of fluid
flow was available for the first time.

The hope of replacing classical numerical methods in CFD andeven wind-tunnels, as for
example expressed in an article on the front-page of the Washington Post on November
11, 1985, could not be fulfilled.2 Further theoretical developments of the method, mainly
driven by the group around d’Humières and Lallemand at the Ecole Normale Supérieure
in Paris lead to a variety of improvements, though the major drawback, a relatively high,
fixed viscosity and a lack of Galilean invariance of the scheme could not be cured.

By the end of the 1980s, McNamara and Zanetti [27], and Higuera, Jimenez and Succi [28]
presented the idea of replacing the Boolean dynamics by calculating the time evolution of
a probability density distribution of the particles. This model, commonly referred to as
‘Lattice-Boltzmann’, turned out to be more suitable for thesimulation of a broad variety of
real-world flow phenomena.

When the Lattice-Boltzmann method was derived from Lattice-Gas, overcoming the draw-
backs of a fixed very high viscosity and a lack of Galilean invariance, first attempts of
realistic engineering applications could be made.3 Implementing and running a large-scale
three-dimensional Lattice-Boltzmann code to simulate fluid flow inside an industrial de-
vice was quite a challenge at this time: the method was instable and not enough was known
about how to implement inlet, outlet and particularly wall boundaries. It was the time of
‘Legoland’-geometries, where a simple ‘marker and cell’ approach identified the solid frac-
tion of the flow domain on a regular equidistant lattice. Nevertheless, it was demonstrated
in a variety of publications (part of which contributed to this thesis), that the method can
be used to produce quantitatively accurate results, which were often difficult or impossible
to generate with the same effort using Navier-Stokes or other well established approaches.

A variety of further improvements, particularly the introduction of the BGK single-time
relaxation operator [29] and years later the multi-relaxation scheme [30, 31], improved wall
boundary conditions [32, 33, 34, 35], local mesh refinement and non-uniform grids [36,
7, 37] allowed the Lattice-Boltzmann method to grow into a mature tool in the area of
computational fluid dynamics.

2From today’s point of view, it can be said that the limits of the applicability of these early models was
not sufficiently understood at that time.

3It was around this time, that the author began his own research within an environment strongly focused
on engineering.
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However, even today a variety of publications by the community show reluctance to over-
come the hardships of applying the method to real world problems by producing quantita-
tively validated results for academic or engineering problems.

2.2 From Particles to Fluids4

For the reader familiar with Navier-Stokes CFD and not with the concept of the Lattice-
Boltzmann method, a short review of Lattice-Gas methods andthe connection to Lattice-
Boltzmann is given in the following.5

The underlying principle of Lattice-Gas cellular automataand later the Lattice-Boltzmann
method is the numerical simulation of simplified molecular dynamics of the fluid. This is
done by evaluating a time and space discrete Boltzmann equation, the so called Lattice-
Boltzmann equation [25]. Macroscopic values such as pressure and velocity can be ob-
tained from the fluid density distributions, which (under some assumptions) have a be-
haviour governed by the Navier-Stokes equation [28, 40].

Before describing the Lattice-Boltzmann method, we first briefly introduce the Lattice-Gas
approach in the form of the so called FHP-I automata.

2.2.1 Lattice-Gas (FHP-I)

The FHP automata was first proposed by Frisch, Hasslacher andPomeau in 1986 [25]. The
underlying principle of this approach is that binary ‘particles’ with unit mass are propagated
on a hexagonal Bravais lattice (see Fig. 2.1) in discrete time steps with unit velocity. It
should be noted that a triangular or quadrilateral lattice,as commonly used in connection
with finite volume or finite element techniques, would cause anisotropic flow.

The particle position and a (discrete) velocity vector are indicated by its lattice coordinates
and position at the node respectively. Every node splits into six cells as indicated in Fig. 2.2,
showing as an example, a lattice node with particles at cells1, 2 and 5. An exclusion
principle is imposed that prevents the location of more thanone particle per cell at the
same time. The six possible velocity vectors~c j are:

~c j = [cos(2 jπ/6),sin(2 jπ/6)], j = 1, ...,6 (2.1)

A flow diagram of the algorithm is indicated in Fig. 2.3.

The propagation step consists of moving all particles to thenext node in the direction of
their velocity vectors, with the restriction that propagation is only possible between the six
nearest neighbours along the lattice connection lines (seeFig. 2.4).

4The research work presented in this section was performed atLSTM Erlangen (Germany) under supervi-
sion of M.Schäfer and F.Durst. It was presented at the Journée Gas sur Réseau (Paris, France, 1994) and the
ICA Seminar on Modelling and Computation in Environmental Sciences (Stuttgart, Germany, 1995), pub-
lished in [38, 39]. Financial support by the Bayerische Forschungsstiftung in the Bavarian Consortium of
High-Performance Scientific Computing (FORTWIHR II) is gratefully acknowledged.

5All details of the theory can be found in a variety of text books, see e.g. [9, 10, 11, 12, 13].
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Figure 2.1: Hexagonal Bravais lattice (one lattice node is highlighted).

Figure 2.2: Lattice node with particles at cells 1, 2 and 5.

Propagation

⇓
Collision

⇓
Acceleration

⇓
Averaging

Figure 2.3: Flow diagram of the cellular automata algorithm.

Depending on the particular model employed (FHP-I, -II or -III), collision rules of varying
complexity may change the velocity vectors of those particles entering a collision state after
the propagation step. A minimum set of collision rules required to reproduce fluid flow are
the head-on and three particle collisions (see Fig. 2.5), which are used in the FHP-I model.
The particle mass and momentum is conserved during collisions.

To obtain directed flow (and a pressure gradient), the velocity vectors of a certain amount
of randomly chosen particles must be changed at every iteration. To produce flow in the
(positive)x direction, for example, particles from cell 3 are moved to cell 6 at the corre-
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Figure 2.4: Propagation: particles moving to new positions.

Figure 2.5: Head-on and three particle collisions (the local modification of the post-advection dis-
tribution is shown).

sponding nodes as illustrated in Fig. 2.6 (for the numberingof the cells see Fig. 2.2). The
resulting local disturbance is propagated through the lattice and, after a certain number of
iterations, an equilibrium between acceleration and viscous forces (imposed by collisions
and boundary effects, see below) evolves.

Figure 2.6: Acceleration: randomly chosen particles (leftimage, indicated by dashed circles) change
their velocity vector.

In order to obtain macroscopic values, such as pressure and velocity, from the particle dis-
tributions, appropriate time and space averaging procedures have to be done. By denoting
ni(~r∗, t∗) ∈ (0,1) as the binary particle density at celli ∈ (1,2, ...,6) of lattice node~r∗ at
time t∗, for example, the mean velocity can be obtained by:

< u >=
1
M

M

∑
t∗=1

∑i~ci ∑~r∗ ni(~r∗, t∗)

∑i ∑~r∗ ni(~r∗, t∗)
(2.2)

whereM is the number of iterations considered for averaging.
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2.2.2 Lattice-Boltzmann

Due to the discrete nature of the binary FHP automata, stochastic noise is present which
necessitates averaging over long time and large areas. Thiscan be avoided by using parti-
cle densities as ensemble averages of the Boolean values. The particle collision rules are
replaced by a relaxation operator (last term in Eqn. 2.3) which produces the new particle
distributions after the collisions. The Lattice-Boltzmann equation can be written as:6

fi(~r∗+~ci , t∗+1) = fi(~r∗, t)+Ω( f ) (2.3)

The densitiesfi are equivalent to the ensemble averages of the binary particle densities
ni , where the exact definition of the collision operatorΩ( f ) depends on the details of the
model employed.

Since no fluctuations are present, the advantage of this approach is that computations can
be performed on smaller grids with fewer iterations and the final values can be directly
obtained without any time and space averaging processes. This effect is illustrated by a
comparison of FHP-I and Lattice-Boltzmann simulations of plane Poiseuille flow, which is
shown in Fig. 2.7.7 In practical applications, this advantage compensates theless efficient
and slower operations (from the computational point of view) with real numbers (parti-
cle densities) required for the Lattice-Boltzmann method,compared to the more efficient
logical operations on binary particles with an FHP approach.

Figure 2.7: Mean flow rate (y axis) of plane Poiseuille flow vs. iteration number (x axis) for FHP
(left) and LBA (right). The dashed lines indicate the theoretical value.

6More details of the derivation are presented in section 2.2.5.
7The two figures are related to two different simulations withregards to viscosity and Mach-number and

one iteration represents a different time-step in each method. The figures are shown to illustrate the statistical
noise present in Lattice-Gas and absent in Lattice-Boltzmann.
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2.2.3 Fluid-Solid Boundary Conditions

The Lattice-Boltzmann equation 2.3 concerns the time-evolution of a single quantity, the
density distribution functionfi . It is therefore natural to treat boundary conditions not in
terms of the macroscopic flow variables, pressure and velocity, but through the distribution
function itself.

In the case of a fluid-solid boundary, the question is how to reconstruct the distributions
which are not updated during the propagation process, because their connecting links reside
on the solid surface. The first, and still very popular, approach is the so called standard
bounce-back procedure: particles or particle densities which would be moved to occupied
nodes are simply bounced back, that is, reflected towards their incomingdirection. This
is resulting in a zero mean velocity at the boundary, locatedhalf-way between a boundary
fluid node and its adjacent solid node (no slip boundary condition).

In both cases (Lattice-Gas and Lattice-Boltzmann) solid surface boundary conditions can
be implemented easily by marking lattice nodes of the solid phase as ‘occupied nodes’, and
applying the bounce-back rule.8

The same bounce-back principle is applied to fixed walls at the lattice boundaries.

This procedure allows for the simple implementation of arbitrary complex structures (see,
for example, the simulation of flow through a porous sedimentary layer, as presented in
Fig. 2.10) or even to change the solid structure during computation, as is necessary for
problems with time-varying geometry.9

When applying this so called marker-and-cell approach, onehas to ensure that the smallest
elements of the discretised structure are large enough to prevent a finite-size effect [43, 44,
45], which may lead to unphysical results if the number of non-occupied cells between the
obstacles is too small.

Of further consideration is a sufficient resolution of the geometry to capture all relevant
details. In case of porous media, certain characteristic quantities such as porosity or the
hydraulic radius must not be changed during the voxelisation.

The accuracy of these standard ‘bounce-back’ boundary conditions is discussed at length in
the literature. More complex approaches for reconstructing the missing distributions have
been suggested in the mid-1990s (see e.g. [32, 33, 34, 46, 47]). The drawback of all of
these ‘first-generation’ advanced boundary conditions is their suitability for only a reduced
set of geometries and a significant amount of additional computational effort required.10

Conversely, it has been demonstrated (see e.g. [48]) that under appropriate conditions (flow
viscosity not too high and large enough lattices), the bulk flow is of second order accuracy
in space and time. He et al. [49] showed by theoretical and numerical analyses that the
bounce-back scheme is of second order accuracy for plane channel flow. A detailed analysis

8Such a mesh, defining ‘free’ and ‘occupied’ nodes on an orthogonal regular grid is also termed a ‘voxel-
mesh’, and its generation from CAD or tomography data is sometimes called ‘voxelisation’ (see Chap. 2.2.4).

9An example in the framework of medical physics is given in Chap. 5.3 for the simulation of milk/blood
clotting. The simulation of coral growth by Kaandorp et al. [41, 42] is an excellent application of Lattice-
Boltzmann with flow dependent geometry in marine biology.

10In case of a sparse implementation as described in Chap. 3.1,the bounce-back condition can be integrated
in the preprocessing step, resulting in zero computationaloverhead.
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by Kandhai et al. [50] proves the standard bounce-back method to be of second order
accuracy, when the boundary position is assumed to be exactly between the last fluid and
the first solid node.11

A clearly unwanted feature of the standard bounce-back method in combination with the
BGK relaxation scheme (see Chap. 2.2.5) is a slight dependency of the wall position on the
relaxation parameterω. This error was found to be below 0.1% by Kandhai et al. [50] for a
wide range of relaxation parameters. Ferréol and Rothman described this slight relaxation
parameter dependency of the wall position already in 1995. They observed that, regardless
of its very small quantity, it might have a significant impacton the accuracy of porous
media flow simulations, if the mean pore size is very small [51].

A recent study by Pan [52] comparing a variety of advanced Lattice-Boltzmann (TRT or
MRT) schemes [30, 31], in combination with the relatively new interpolated boundary con-
ditions [53, 54] and multi-reflection schemes [55], concludes that only the combination of
either TRT or MRT with an advanced boundary condition leads to a viscosity independent
position of the wall.12

In the light of this controversial discussion, we are not convinced that the standard bounce-
back boundary condition in combination with a BGK relaxation scheme necessarily leads
to inaccurate results. However, special care has to be takento select the relaxation param-
eter accurately and keep it constant for specific parameter studies. The choice of a more
advanced scheme is usually accompanied by a reduced performance, so it might well be
that for carefully prepared simulations the standard bounce-back scheme will survive for
another decade.

Interpolation schemes appear to be promising candidates for ‘state of the art’ wall bound-
ary conditions, since they allow a fixed arbitrary position of the wall between two lattice
nodes. This leads to increased accuracy of the discretised surface boundary with relatively
small computational overhead. Within the preprocessing step, the additional information
of the distance between the last fluid node and the solid boundary (the ‘q-values’) have to
be provided (for details see [53]).

For all studies presented in this thesis, the standard bounce-back wall boundary condition
was applied. Special care was taken (where required) to ensure a fixed position of the
wall by keeping a constant relaxation parameter, or varyingit only in a relatively ‘safe’
low viscosity limit. A sufficiently fine discretisation of the geometry and absence of finite-
size effects was verified (where possible and required) by performing mesh convergence
studies.

2.2.4 Geometry Discretisation

Due to the relative simplicity of integrating arbitrary complex geometries without impact
on the performance, the Lattice-Boltzmann method at first became popular in the area of

11Defining the fluid-solid surface on the boundary nodes itselfleads to only first order accuracy.
12This statement is in contrast to the author’s recent observation on simulating porous media flow with a

TRT scheme using standard bounce-back wall boundary conditions. The position of the wall was found to be
constant over a wide range of relaxation parameters.
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complex geometry flow, where the standard Navier-Stokes based methods caused severe
complications for the mesh generation. It soon became obvious that the simple marker and
cell approach allows fast and semi-automatic mesh-generation from digital images, CAD-
data and other synthetic geometries. The major strategies for geometry discretisation as
applied in this thesis are briefly described in the following.

Application Strategy I: Digital Images

For research into porous media flow, the development of new devices in the area of chem-
ical engineering (e.g., heterogeneous catalytic reactions, see Chap. 5.1), or in the area of
medical physics concerning patient specific data (see Chap.6.3 and Chap. 6.4), a detailed
knowledge of flow properties inside highly complex geometries is required. It is often not
possible to perform mesh generation for such geometries with conventional methods. Us-
ing 3D computer tomography (CT), arbitrary complex structures can be digitized and the
CT data can be converted into Lattice-Boltzmann voxel data (see Fig. 2.8).13

Real Object

|| ←− 3D computer tomography
⇓ + data conversion

Voxel Data

|| ←− LB Simulation⇓

Results

Figure 2.8: Flow diagram illustrating the voxel-mesh generation from real objects.

To illustrate the capabilities of the method, the fluid flow through a digitised electron mi-
croscope picture of a sedimentary layer taken from the northGerman sea shore as shown
in Fig. 2.9 was simulated.14

The computation, originally performed in the year 1993 on a Convex C-210, was repeated
in 1994 on one processor of a Cray-YMP. 10,000 iterations were required for a 500∗500
lattice to reach the steady state. This corresponds to 1200 seconds of total CPU time,15

13Sometimes, as in the case of medical data, a more or less complex reconstruction procedure has to be
performed in order to identify the exact position of solid walls.

14This approach was developed by the author during his time as adiploma student at the Institute of
Biology and Chemistry of the Sea (ICBM) at the University Oldenburg (Germany) under the supervision of
Prof. Schellnhuber, without being aware of the work simultaneously carried out by Ferréol and Rothman on
Lattice-Boltzmann simulations of flow through Fontainebleau sandstone [51], the first publication on flow
through real digitised geometries with the Lattice-Boltzmann method.

15With a state of the art implementation it would take less than10 seconds to produce the same result on
one CPU of an NEC SX-8 vector computer.
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Figure 2.9: Digitised electron microscope picture of a sedimentary layer, from [56].

where 1.47∗106 lattice updates per second were accomplished with a performance of 190
million floating point operations per second (MFLOP/s) from330 MFLOP/s theoretical
peak performance.16 This indicates the possibility of a straightforward vectorisation of the
Lattice-Boltzmann approach, which constitutes a great advantage of this method.

Fig. 2.10 shows the computed velocity vectors for the sediment layer. Constant velocity
inlet and pressure outlet boundary conditions where applied, at the upper and lower boarder
of the domain periodicity was considered. This illustrate that, regardless of the complexity
of the pores, the flow features are well captured.

Application Strategy II: CAD-data

In modern car design, a complete model of the automobile is available as CAD data. Using
dedicated software, the geometry description for the Lattice-Boltzmann simulation in terms
of voxel-meshes can be generated almost automatically fromthe CAD data (see Fig. 2.11).

As an illustration, the turbulent flow simulation around twogeometries defined in terms of
CAD data are shown in Fig. 2.12.

Application Strategy III: Synthetic Geometries

Occasionally, neither a real geometry nor CAD data are available as a description of the
solid fraction. Particularly for academic flow studies, generic shapes consisting of regularly
or randomly positioned rectangles or boxes [44, 39], packedbeds of spheres or randomly

16Today’s figures for a performance optimised 3D code are 40 million lattice site updates per second with
a performance of 6 GFLOPS on an NEC SX-8 machine with a peak performance of 10 GFLOP/s. For further
performance considerations see Chap. 3.1.
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Figure 2.10: 2D Lattice-Boltzmann simulation of flow in a sedimentary layer (every tenth velocity
vector in both dimensions is plotted). Geometry courtesy ofJ. Kropp, University of Oldenburg,
Germany. Flow-solver: LB-FLOW, University of Oldenburg (1993), hardware: Convex C-210.

CAD Data

|| ←− Semi-automatic conversion⇓

Voxel Data

|| ←− LB simulation⇓

Results

Figure 2.11: Flow diagram illustrating the voxel-mesh generation from CAD data.

arranged spheres [57, 58, 52] can be considered. The procedure of generating the voxel
mesh for these synthetic geometries is described in the following flow-chart Fig. 2.13.

As an illustration of this approach, the flow through a complex synthetic geometry gener-
ated by a computer simulation of a spinodal decomposition process is shown in Fig. 2.14.
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Figure 2.12: Left: Streamlines around a motor engine. Right: Turbulent flow field around an
ASMO shape. Geometry data courtesy of INVENT Computing GmbH, Germany. Flow-solver
BEST, LSTM Erlangen (1998), hardware: Cray Y-MP.

Mathematical
Description

|| ←− Generic voxel mesh generation⇓

Voxel Data

|| ←− LB simulation⇓

Results

Figure 2.13: Flow diagram illustrating the voxel-mesh generation from synthetic geometries.

The above discretisation approaches become more demandingif more complex computa-
tional grids or boundary conditions are considered. For extrapolated boundary schemes
which take into account the exact position of the wall between two lattice nodes, the q-
values have to be computed (see Chap. 2.2.3).

As a minimum requirement for local mesh refinement [7, 59, 60,61], the option to de-
fine refined areas must exist. In the case of octree-based refinement (see e.g. [62, 63]),
significant effort is required in the preprocessing step to generate an adequate mesh.

Other more exotic approaches for Lattice-Boltzmann simulations on irregular meshes are
described in the literature (see e.g. [37, 64, 65, 36]). Alas, the additional computational
effort to extrapolate the distributions (a simple propagation step as in the case of regular
equidistant meshes is no longer possible) is too high to makeLattice-Boltzmann a compet-
itive tool for practical applications on these types of meshes.
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Figure 2.14: Flow through the solid phase created by spinodal decomposition. An isosurface of
the velocity is shaded by the pressure. Geometry data courtesy of Mitsui Chemicals, Japan. Flow-
solver: MUSUBI, CCRLE, NEC Europe Ltd. (2002), hardware: NEC SX-4.

Following this introduction to the method, the Lattice-Boltzmann theory will be briefly
reviewed in more detail in the following section.

2.2.5 From the Boltzmann Equation to Lattice-Boltzmann17

From a pragmatic point of view, it is sufficient to show that the Navier-Stokes equation
(which describe the mass and momentum conservation of the flow) can be derived from
the Lattice-Boltzmann equation. It is interesting to remark that this follows the histori-
cal development of the method from its Lattice-Gas origins,based on the observation that
a variety of different non-Physical ‘micro worlds’ can result in the same physically cor-
rect ‘macro world’. It is sufficient to ensure certain symmetries in the microscopic rules
(translation-invariance, rotation-invariance (isotropy), parity invariance and Galilean in-
variance), to achieve the correct number of conserved quantities of the macro system.

Eight years after the first publications on Lattice-Boltzmann, it was demonstrated how the
Lattice-Boltzmann equation can be derived from the Boltzmann equation itself [66, 67],
which is, from a theoretical point of view, a slightly more satisfying approach. Since it is
well established, how and under which conditions the Navier-Stokes equation follows from
the Boltzmann equation, for the theoretical justification of the Lattice-Boltzmann method
it is sufficient to derive the equations to be applied for a numerical simulation directly from
the Boltzmann equation.

17This section follows a description given by Krafczyk [8].
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In the following we will very briefly sketch this derivation (for details, the reader is referred
to the literature and textbooks [9, 10, 11, 12, 13]). For simplicity, we restrict ourselves to
the simple BGK-approximation of the collision term.

The probability distribution of the particles at the timet located at~x with velocity~ξ can be
described in the framework of Statistical Physics by the Boltzmann-equation (Eqn. 2.4).

∂ f
∂ t

+~ξ · ∂ f
∂~x

+~F
∂ f

∂~ξ
= Ω( f ) (2.4)

The time development of the distribution functionf is determined by the advective term
(second term of the left-hand side), an external force~F (third term on the left-hand side) and
the collision operator (right-hand side). The collision operatorΩ( f ) models the interaction
of particles involved in a collision.

From Statistical Physics it is known that a velocity distribution of a homogeneous gas in
equilibrium can be described by the Maxwell-distribution (Eqn. 2.5):

f eq =
ρ

(2π c2
s)

d/2
exp

(

−(~ξ −~u)2

2c2
s

)

(2.5)

where~u is the average velocity of the particles,cs the speed of sound, andd the dimension
of space. This distribution function is also referred to as ‘local equilibrium’.

Bhatnagar, Gross and Krook [68] suggested a simplification of the collision operator (right
term of Eqn. 2.4) by the assumption that collision results ina local relaxation towards the
Maxwellian equilibrium (Eqn. 2.5). Therefore, the distribution function f locally relaxes
towards its equilibrium distribution functionf eq.

Assuming an average relaxation timeτ, related to the average time between two particle-
collisions, the collision term of Eqn. 2.4 can be replaced bya one-step relaxation process:

Ω =−1
τ

( f − f eq) (2.6)

Using this relation, the Boltzmann-equation (Eqn. 2.4) canbe rewritten as:

∂ f
∂ t

+~ξ · ∂ f
∂~x

+~F
∂ f

∂~ξ
=−1

τ
( f − f eq) (2.7)

A solution of the Boltzmann-equation in this form is usuallynot practical. With the as-
sumption that the considered fluid is a dense gas and the deviation of f from its local
equilibrium is f eq is small, a discretisation of the velocity-space with just afew degrees of
freedom is possible. The continuous distributionf is now replaced by its velocity-discrete
equivalentfi , which propagates with the discrete velocity~ei .

The Boltzmann-equation (Eqn. 2.7) changes (neglecting external forces here) into the dis-
crete Boltzmann-equation (Eqn. 2.8) as follows:

∂ fi
∂ t

+eiα
∂ fi
∂xα

+−1
τ

( fi− f eq
i ) (2.8)
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wherei = 1, . . . ,N enumerate the discrete velocities (degrees of freedom)~ei with indicesα
describing the components of the Cartesian coordinates.

For the purpose of numerical simulation, the velocity-discrete Boltzmann-equation (Eqn.
2.8) is discretised in space and time by a finite-difference scheme. Withcs = 1/

√
3c and

applying a lattice described by its lattice-vectors~ei = 1
c~ei , Eqn. 2.8 modifies into:

fi(t +∆t,~x)− fi(t,~x)
∆t

+c
fi(t +∆t,~x+~ei∆x)− fi(t +∆t,~x)

∆x
=−1

τ
(

fi(t,~x)− f eq
i (t,~x)

)

(2.9)

With a space-discretisation∆x = c∆t and multiplication with∆t the Lattice-Boltzmann
equation can be derived:

fi(t +∆t,~x+~ei∆x) = fi(t,~x)−
∆t
τ
(

fi(t,~x)− f eq
i (t,~x)

)
(2.10)

With an appropriate choice of the lattice and equilibrium distribution f eq, this equation can
be used for the numerical simulation of the time-evolution of the distribution functionf .

For the three-dimensional case, lattices with sufficient symmetry are typically the so called
D3Q15 or D3Q19 models (see Fig. 2.15 for the more common D3Q19lattice).

Figure 2.15: Stencil of a D3Q19 lattice.

In the limit of small Mach numbers, a Taylor-expansion of theMaxwellian velocity distri-
bution (Eqn. 2.5) leads to the equilibrium distribution (Eqn. 2.11).

f eq
i = tpρ

{

1+
eiαuα

c2
s

+
uα uβ

2c2
s

(
eiα eiβ

c2
s
−δαβ

)}

(2.11)

with tp as a direction-dependent weighting factor which takes intoaccount the appropriate
contribution of the links (orthogonal:p = 1, diagonal:p = 2 and center:p = 0).



22 The Method

For the D3Q19 model, which was used throughout this work,t0 = 1/3, t1 = 1/18, t2 =
1/36. The quantitycs is the (also model-dependent) speed of sound (for D3Q19:cs =
1/
√

3).

Below it is briefly explained how the macroscopic quantitiespresent in the Navier-Stokes
equation (pressure and flow velocity) are computed from the density distributionf in the
Lattice-Boltzmann equation (Eqn. 2.10).

The fluid densityρ and the velocity componentsuα can be derived in terms of the zeroth
and first moment of the density distribution function:

ρ = ∑
i

fi = ∑
i

f eq
i (2.12)

ρ~u = ∑
i
~ei fi = ∑

i
~ei f eq

i (2.13)

The pressurep is given by an equation of state as

p = ρ c2
s =

1
3

ρ (2.14)

and the viscosity is related to the relaxation timeτ (the inverse of the particle collision
frequencyω) by

ν =

(
τ
3
− 1

6

)

(2.15)

and the stress-tensor is given by

Sαβ =−
(

1− 1
2τ

)

∑
i

eiα eiβ ( fi− f eq
i ) (2.16)

In the limit of small Mach and Knudsen numbers, these quantities are a solution of the
Navier-Stokes equation, which can be written as:

ρ
(

∂~u
∂ t

+~u∇u

)

=−∇p+∇S (2.17)

whereŜ= (S)αβ=1,2,3 is the strain tensor, defined as

Sαβ = µ
(

∂uα
∂xβ

+
∂uβ

∂xα

)

(2.18)

with the dynamic viscosityµ = νρ .

It is worth noting that, opposite to methods based on the discretisation of the Navier-Stokes
equation, the stress-tensor (Eqn. 2.16) is a local quantitywithin the Lattice-Boltzmann
framework. It is computed from the non-equilibrium part of the density distribution and
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does not require a (possibly more complicated) derivation from the velocity field. This fea-
ture is particularly used for the implementation of subgridturbulence models (see e.g. [69,
70, 71, 72, 73]) or non-Newtonian flow (see Chap. 6.3.3), where the viscosity is a shear
dependent local quantity.
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Chapter 3

Implementation Challenges

In this chapter, some aspects of a performance oriented implementation are presented. A
three-dimensional simulation involving several ten million fluid nodes on a PC-cluster or
vector-supercomputer can currently be considered as stateof the art. Depending on the
solid fraction, the bounding box might contain one order of magnitude more lattice nodes
(fluid plus solid) in total.

The Lattice-Boltzmann method is often said to be very efficient and easy to implement.
But, in most cases described in the literature, a simple fullmatrix implementation is used,
a method where not only the fluid nodes but also the solid fraction is allocated in the
computer’s memory.

The difference between a straight-forward coding of the basic equations and a sophisticated
(often hardware optimised) implementation can easily makea difference of one order in
memory consumption and up to two orders in CPU-time. Therefore, a non-optimised sim-
ple implementation, solving one million grid points can require ten days, whereas a ten
times larger optimised implementation will finish on the same machine within 24 hours.

Moreover, special hardware such as parallel computers or vector architectures require spe-
cific implementation techniques, otherwise the code would run extremely slowly, if at all.
Conversely, general purpose cache-based machines benefit from a hardware-optimised lay-
out of the data in the computer’s memory, considering the cache-size, number of cache
lines etc. [74].1

1These details are not presented here, since they will be subject of the PhD thesis of Thomas Zeiser, a
researcher working in close co-operation with the author.
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3.1 Performance Optimised Implementation2

The following section is focused on the performance optimised implementation primarily
on vector architectures. The sparse implementation approach described below has been
well established in linear algebra for several decades, buthas not been applied to the
Lattice-Boltzmann method until recently [79, 75].

In the following, the advantage of this method in comparisonto the still widely used full
matrix implementation is demonstrated.

3.1.1 Full Matrix versus Sparse Implementation

In the framework of a simple full matrix implementation, thedensity distribution array for
all nodes (solid and fluid) within the bounding box is allocated in the computer’s memory.
This results in(2∗)19∗ lx ∗ ly ∗ lz REAL numbers for the D3Q19 model for anlx ∗ ly ∗ lz
lattice.

Sparse implementation techniques were first applied to the Lattice-Boltzmann method by
Schulz et al. [79], suggesting storage of the density distribution only for the fluid nodes.
This requires keeping an adjacency list for the next neighbours’ addresses, but (depending
on the geometry) can save considerable memory. Only(2∗)N∗19 REAL numbers for the
density distribution (N=number of fluid cells) andN∗19 INTEGERs for the adjacency list
have to be stored in the case of a sparse Lattice-Boltzmann implementation.

The adjacency list is required for looking up the addresses of the next neighbouring lattice
nodes during the advection step. This address look-up is notnecessary in the full matrix
approach, since the neighbourhood can be determined by easyindex algebra, making use
of the fact that the geometric topology is mapped 1:1 onto thethree-dimensional arrays
storing the distributions.

In the case of a sparse implementation, the voxel mesh defining the solid fraction in terms
of Cartesian coordinates of the occupied lattice nodes has to be preprocessed: the fluid
fraction is then mapped onto a graph, giving a unique identifier for each node and defining
its connectivity (see Fig. 3.1).

Depending on the hardware considered for the simulation, one might prefer to either store
all distributions belonging to one node in a contiguous array (array-of-structures layout),
or first store all densities of direction 0, then all densities of direction 1 etc. (structure-of-
arrays layout).3

Another performance relevant rearrangement of the data-layout can be achieved by ‘block-
ing’ adjacent groups of lattice nodes in a suitable way that they fit into the computer’s cache

2The research work presented in this section was performed atthe C&C Research Laboratories, NEC Eu-
rope Ltd. (St.Augustin, Germany). It was presented at the Second International Conference for Mesoscopic
Methods in Engineering and Science - ICMMES 2005 (Hong Kong,China, 2005 - invited talk), the 4th Ter-
aflop Workshop (Stuttgart, Germany, 2006 - invited talk), the Third International Conference for Mesoscopic
Methods in Engineering and Science - ICMMES 2006 (Hampton, Virginia/USA, 2006 - invited talk) and
at the 15th Discrete Simulation of Fluid Dynamics conference - DSFD 2006 (Geneva, Switzerland, 2006),
published in [75, 76, 77] and submitted for publication in [78].

3Hardware dependent details in the performance of these two approaches are discussed in [74, 80].
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Figure 3.1: Mapping of fluid nodes onto a graph and construction of the adjacency list.

(see e.g. [80]). Thus, several iterations can be performed in the cache, making use of its
faster memory access.

It is notable that such flexibility of arranging an optimal data-layout is not possible within
the framework of a full matrix implementation. Alas, it willalso be difficult to control these
details when the implementation is carried out in modern object-oriented programming
languages. It remains to be shown that the trade-off of an elegant C++ implementation is
not the loss of at least one order of magnitude in performance.4

Although the above indicates some obvious advantages of thesparse method compared to
the full matrix implementation, it is necessary to see if therequired indirect address look-
up causes a computational overhead and delay in memory access, which maybe outweighs
all advantages. Therefore, a direct comparison of a lattice-BGK full matrix and sparse
implementation was undertaken.

3.1.2 Performance Measurement on a Vector Computer

When estimating the efficiency of a full matrix versus a sparse implementation, three fig-
ures are of interest:

• MFLOP/s(million floating point operations per second): in comparison to the theo-
retical peak performance, this figure indicates how efficient the implementation is for
the given hardware. A good MFLOP rate relates to an optimal use of the CPU with
few idle cycles while waiting to load or store data. This figure is usually not related
to the wall clock time for solving a given problem, since particularly a non-optimised
implementation of computationally demanding equations can lead to high MFLOP/s.

• MLUP/s (million lattice site updates per second): the MLUP/s givesthe update rate
of the code and thus the total speed of the implementation.5 A high MFLOP/s number
does not necessarily result in high MLUP/s, since a more efficient implementation of

4The author is extremely keen to see benchmark results produced with a high performance C++ Lattice-
Boltzmann implementation.

5For estimating the MLUP/s as a measure for the actual speed tosolve a given problem, only thefluid
nodeshave to be considered. Counting all (fluid and solid) latticenodes within the bounding box would
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the equations to be solved (requiring less floating point operations per cycle) could
reduce the MFLOP/s while actually increasing the MLUP/s. The MLUP rate directly
relates to the wall clock time for solving the problem.

• MBYTE: the total memory required to store the density distribution array (and the
adjacency list for the sparse code) shows which implementation strategy - sparse or
full matrix - is more efficient with regard to memory. Although we expect to re-
quire some additional memory for the adjacency list, we savememory from a certain
fraction of occupied lattice nodes, since only memory for the fluid nodes has to be
allocated.

Geometries

To estimate the performance with respect to the aforementioned quantities, a set of twelve
different geometries was considered; from an empty square channel over porous media to
medical geometries such as an aorta and a cerebral aneurysm (see Fig. 3.2).

With a great variety of porosity, specific surface and complexity, these geometries represent
the most typical problem configurations (for details see Tab. 3.1).

Sample Bounding Box Nodes Fluid Nodes Porosity

1 100 * 100 * 100 1,000,000 1,000,000 1.0
2 100 * 96 * 96 921,600 454,217 0.49
3 44 * 147 * 147 950,796 677,186 0.71
4 780 * 122 * 122 11,609,520 6,405,404 0.55
5 500 * 80 * 80 3,200,000 2,267,308 0.71
6 64 * 32 * 32 65,536 46,256 0.71
7 128 * 64 * 64 524,288 316,272 0.60
8 256 * 128 * 128 4,194,304 2,530,176 0.60
9 256 * 128 * 128 4,194,304 2,277,168 0.54

10 256 * 128 * 128 4,194,304 2,139,046 0,51
11 263 * 175 * 74 34,058,503 171,166 0,05
12 459 * 121 * 154 8,553,006 494,684 0,06

Table 3.1: Dimensions of the 12 benchmark cases.

Performance Results

All performance results were obtained on CCRLE’s NEC SX-6i vector-computer which
has a peak performance of 8 GFLOP/s. A summary of all results discussed in the following
can be found in Tab. 3.2 at the end of this section. The data in the three columns of the
table Tab. 3.2, ‘Performance’, ‘Speed’ and ‘Memory’ are also illustrated in the Figs. 3.3,
3.4 and 3.5 respectively.

naturally always result in a higher rate for the full matrix implementation, but represent a meaningless figure,
since the update of solid nodes does not contribute to the solution of the problem.
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Figure 3.2: Benchmark cases 2-12 (increasing numbers from upper left to lower right), case 1 is an
empty square channel (not displayed here).

MFLOP/s Fig. 3.3 illustrating the first column of Tab. 3.2 shows that for all 12 samples,
a performance of approximately 4 GFLOP/s (50 % of the peak performance) is achieved
with no strong preference for either method.6 This indicates that the full matrix and sparse
code can be implemented with equivalent performance on a vector computer for a variety
of different geometries. Moreover, it is worth noting that for the samples considered here
the performance is roughly independent of parameters such as mesh size or fluid/solid frac-
tion.7 This supports the statement of an efficient handling of arbitrarily complex geometries
with the Lattice-Boltzmann method.

MLUP/s A significant performance gap between the full matrix and sparse implemen-
tation is observed with regard to the fluid lattice site updates per second. Except for the
trivial case of an empty square box, all MLUP/s of the sparse implementation are far above
the full matrix case (see Fig. 3.4 illustrating the second column of Tab. 3.2). This effect is

6The MFLOP/s were measured using the performance analysis software ‘ftrace’.
7Although it can be assumed that these parameters are responsible for the small variations in the attained

performance, due to varying memory access giving preference to the one or other method from sample to
sample.
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Performance Speed MemorySample
(MFLOP/s) (MLUP/s) (MBYTE)

sparse full sparse full sparse full

1 4555 5444 27.48 31.73 432 268
2 4173 3946 25.17 11.31 224 352
3 4208 4324 25.19 17.57 304 368
4 4367 4188 26.56 13.90 2544 3840
5 4618 4742 28.08 19.83 912 1104
6 3980 3368 23.77 12.58 64 80
7 4171 3852 25.09 13.32 176 224
8 4284 3760 25.94 13.55 1024 1424
9 4329 4484 26.19 14.55 944 1424

10 4366 5050 26.40 15.40 880 1424
11 4253 5207 26.40 1.55 144 1184
12 4338 5404 26.50 1.88 366 2880

Table 3.2: Comparison of performance, speed and memory-consumption between full matrix and
sparse implementation for the geometries 1-12 (see Fig. 3.2). The values contained in the three
columns are illustrated in the Figs. 3.3, 3.4 and 3.5.

Figure 3.3: Illustration of column 1 of Tab. 3.2: Comparisonof full matrix and sparse Lattice-
Boltzmann performance (MFLOP/s) for the geometries 1-12 (see Fig. 3.2).

strongest for the medical geometries 11 and 12 (aorta and cerebral aneurysm) with com-
plex thin channels inside a large bounding box, where only a few percent of the domain
are fluid nodes. The performance of the full matrix implementation is below 2 MLUP/s,
whilst almost geometry-independent, the sparse implementation shows an update rate of
approximately 25 MLUP/s.

The reason for the strong variation in the fluid MLUP/s for thefull matrix code has its
origin in the the specific treatment ofif-statements by a vector computer. Although the
computational expensive relaxation subroutine is assumedto be executed only on the fluid
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nodes (excluding the solid nodes by anif-statement), typically, vector machines compute
the relaxation for all nodes and later discards the results for the fraction ofif cases which
were not fulfilled (so called ‘masking’). While the total (solid and fluid) MLUP/s is more
or less a constant also for the full matrix code, the strong variations of the fluid MLUP/s
reflect the amount of the solid fraction contained in the bounding box.

The little additional cost of the indirect address look-up can be seen in case 1, the square
channel. The speed of the full matrix implementation using simple index algebra to find
the next neighbour cells for the advection step is only≈ 10% above the sparse code.

Figure 3.4: Illustration of column 2 of Tab. 3.2: Comparisonof full matrix and sparse Lattice-
Boltzmann speed (MLUP/s) for the geometries 1-12 (see Fig. 3.2).

MBYTE The computer memory required for both methods (shown in the third column
of Tab. 3.2 and Fig.3.5) is obviously dependent on the problem size, hence large variations
can be observed amongst the 12 samples in Fig. 3.5.

Except for the free channel (case 1), the memory consumptionof the sparse implemen-
tation is below that of the full matrix code. The memory reduction, resulting from only
allocating fluid nodes, outweighs the cost of storing the adjacency list for all relevant cases.
Particularly relevant is the memory reduction to almost 10%for the two medical cases 11
and 12. Opposite to the observation made for the speed measured in MLUP/s, the memory
reduction is not an effect specific for vector computers.

3.1.3 Detailed Analysis: The Medical Case

A more detailed analysis for a medical geometry was undertaken for the case 11 (Fig. 3.6).

The size of the bounding box is 263∗175∗74= 3,405,850 nodes, of which only 171,166
nodes (5 %) are fluid. The figures for both the full matrix and sparse code are listed in
Tab. 3.3.
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Figure 3.5: Illustration of column 3 of Tab. 3.2: Comparisonof full matrix and sparse Lattice-
Boltzmann memory consumption (MBYTE) for the geometries 1-12 (see Fig. 3.2).

Figure 3.6: Geometry case 11: medical image showing an abdominal aorta (left trunk) with an
aneurysm in the iliac region.

As in the above example, medical geometry data often consistof complex tortuous flow
channels, resulting in a very small portion of fluid nodes inside a large bounding box.
Compared to a full matrix code, the memory consumption for the sparse implementation is
almost an order of magnitude less (12.2 % for case 11, 12.7 % for case 12).

Although the performance of the sparse implementation is below that of a full matrix code
(4253 MFLOP/s (sparse) compared to 5207 MFLOP/s (full matrix)), the speed (measured
in MLUP/s for the fluid nodes), and such the total time to solvethe problem, is more than
one order of magnitude better for the sparse code: 26.4 MLUP/s (sparse) require 6.6s for
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Full matrix Sparse Comparison (%)

Nodes 3,405,850 171,166 5.0
Memory (MBYTE) 1184 144 12,2
MLUP/s 1.55 26.40 1703
CPU seconds 110 6.6 6.0
MFLOP/s 5207 4253 81.2

Table 3.3: Comparison of sparse and full matrix performancefor a medical geometry (case 11).

1000 iterations, while the very low 1.55 MLUP/s (full matrix) need 110s to accomplish the
same task.

The enormous gain in performance and reduction of memory forthis type of geometries
when using a sparse implementation is obvious, the same casecan be computed with 5-
10 % of the resources required to run a full matrix implementation.

These measurements and considerations were the basis on which the decisions for the
data layout of the new Lattice-Boltzmann flow solver developed within theInternational
Lattice-Boltzmann Software Development Consortiumwere made.8

3.2 MPI-Parallelisation9

The concept of parallelisation is distributing the computational effort onto several CPUs,
with each CPU working simultaneously on solving a fraction of the problem. Often, this
is done by splitting the computational domain into pieces (‘partitioning’) to be solved in-
dividually by each CPU. Usually, this approach requires exchange (‘communication’) of a
fraction of the data (residing in the disjoint address spaceof each CPU) across each parti-
tion’s boundary at defined time-steps.10

This implies, that optimising the partitioning of the computational domain requires consid-
eration of three associated features: which portion of dataand which computational tasks

8The current version, which was used for the studies in Chap. 5.3 and Chap. 6.3, is amongst the fastest
Lattice-Boltzmann flow solvers worldwide.

9The research work presented in this section was performed atthe C&C Research Laboratories, NEC
Europe Ltd. (St.Augustin, Germany) in co-operation with members of theInternational Lattice-Boltzmann
Software Development Consortium. An extension of the approach described here was presented as an in-
vited talk at the Second International Conference for Mesoscopic Methods in Engineering and Science -
ICMMES 2005 (Hong Kong, China, 2005), the 4th Teraflop Workshop (Stuttgart, Germany, 2006), the Third
International Conference for Mesoscopic Methods in Engineering and Science - ICMMES 2006 (Hampton,
Virginia/USA, 2006) and as a contributed talk at the 15th Discrete Simulation of Fluid Dynamics conference
- DSFD 2006 (Geneva, Switzerland, 2006), published in [75, 76, 77] and submitted for publication in [78].
Since it will also be part of the PhD thesis of L.Axner at the University of Amsterdam (UVA) [81], only a
short introduction to the underlying concept is given, as far as it was worked out by the author of this the-
sis. Financial support of the European projects @neurIST (contract no. IST-027703) and COAST (contract
no. 033664) is gratefully acknowledged.

10For shared-memory systems, the explicit coding of the communication is not required, since all CPUs
share the same address space. The distribution of the computational work to the CPUs is handled via ex-
tensions of the operating system, using specific compiler directives (such as OpenMP), e.g. to carry out a
loop-based parallelisation. This approach is generally easier to implement than an MPI parallelisation.
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(these are not necessarily the same) to distribute on which node, and identifying the data
involved in communication.

The optimisation is performed under the paradigms of good ‘load balancing’ and minimal
‘communication overhead’:

• Memory load balancing: an equal amount of memory should be allocated for each
partition.

• CPU load balancing: each partition should require the same amount of CPU-time
between the communication.

• Reducing the communication overhead: the amount of data exchange between the
nodes must be minimised.

In this chapter, some aspects of a specific approach parallelising a Lattice-Boltzmann im-
plementation are discussed. For motivating the METIS-based partitioning [82] of the pre-
viously described sparse implementation, the disadvantages of a simple regular partitioning
(which is still frequently applied) are pointed out.

3.2.1 Partitioning

In the literature, it is often stated that Lattice-Boltzmann is an inherently parallel scheme
which can be easily parallelised [83, 79, 84] using communication libraries (e.g. imple-
mentations of the MPI standard [85]).

Since only next neighbour interactions are considered for the streaming operator within
one time-step, this statement is partially true. The absence of complicated or long-range
interactions makes it easy to identify the data involved in the communication process: they
are simply the outgoing and incoming density distributionsat the domain boundaries.

As will become clear in the following section, a regular partitioning scheme can not si-
multaneously fulfill the three conditions of a successful parallelisation, memory-balance,
CPU-load-balance and minimising the communication overhead, as defined above.

Starting with a complex geometry, e.g. a porous media or medical geometry, enclosed by
a bounding-box of sizelx∗ ly∗ lz, simple partitioning is achieved by dividing one or more
axis regularly into n (nx,ny andnz) pieces.

Each partition contains a subsetnx∗ny∗nz of the original domain, and communication with
the neighbouring partitions has to be done via the surfaces at x = 1, x = nx, . . ., which is
straightforward and easy to implement.

The drawback of this simple approach is obvious, when the geometry considered is not
homogeneous: for example when a longer inlet and outlet region (containing no solid frac-
tion) is present, or the solid fraction is irregularly distributed, so some partitions contain a
larger amount of fluid nodes than others.

The CPU-time required for completing one iteration in each partition is a function of the
number of fluid nodes and not of the size of the bounding box. Soit is obvious, that for
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inhomogeneous distributions of the the solid fraction regular partitioning causes a CPU
load-imbalance.

An improvement can be achieved by dividing the computational domain into boxes of var-
ious size, each containing the same number of fluid nodes. Obviously, this approach only
makes sense for a sparse implementation where only fluid nodes are allocated, otherwise
the different sizes of the bounding boxes will cause a memoryimbalance.

These considerations confirm that an equal partitioning with regard to memory and CPU
consumption can only be achieved in the framework of a sparseimplementation. The
statement of an ‘easy and straightforward parallelisation’ appears to be highly questionable.

Even an irregular decomposition of a sparse Lattice-Boltzmann code into different sized
domains does not yet take into account our third criterion: minimising and balancing the
communication overhead. It is obvious that by a restrictionto squared boxes, the number
of links connecting to a neighbouring partition can be quitehigh and differ from partition
to partition, depending on the number of fluid nodes contained within the cutting plane
separating two adjacent partitions.

Giving up the restriction of square shapes for the partitions allows for minimisation of the
number of links involved in the communication process whilst the number of fluid nodes
per partition are balanced.

In the context of a sparse implementation the fluid domain is mapped on a graph with a
known number of nodes and edges, therefore an optimised decomposition can be consid-
ered after weights to the nodes and edges are defined.11 A collection of ‘graph-partitioning’
algorithms making use of multilevel recursive-bisection and multilevel k-way schemes
based on Kernighan-Lin and modified Fiduccia-Mattheyses partitioning algorithms is (for
example) provided by the METIS library [82].

The preprocessing step, in which a graph is built up from a certain voxel mesh, is fol-
lowed by a partitioning step, which distributes the fluid nodes amongst a given number of
partitions. The resulting partition can have complex shapes (see Fig. 3.7).12

In the framework of a sparse Lattice-Boltzmann implementation, lists of the nodes involved
in the communication process (exposed nodes) must be identified within each partition. It
has to be known exactly which outgoing link is sending to- andwhich incoming link is
receiving from which neighbouring partition (see Fig. 3.8).

The parallel Lattice-Boltzmann algorithm has an additional communication step following
relaxation and propagation. After propagation, the send-buffer (ghost cells, see Fig. 3.9) are
filled up by the outgoing densities of the exposed nodes. These outgoing densities are then
sent to the neighbouring partitions, where they are stored in the receive-buffer. From the
receiver-buffer, the missing incoming links are copied to the exposed cells (see Fig. 3.10).

The computational sub domain of each partition is thereforedivided into different types of
nodes (see Fig. 3.11):

11The weights are equally distributed if no local mesh refinement or other inhomogeneous processes are
used.

12The implementation of the partitioner was done by L.Axner (UVA) in close collaboration with G.Berti
(CCRLE) and the author.
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Figure 3.7: Partitioning of two complex geometries for a sparse Lattice-Boltzmann code by METIS:
aorta (left) and catalyst (right). Images created by Lilit Axner (UvA) and taken from [86, 78].

Figure 3.8: Three partitions of a computational domain mapped on a graph. The outgoing and
incoming links from neighbouring partitions are identified.

Figure 3.9: Three partitions of a computational domain mapped on a graph. The outgoing links are
copied into a ghost-layer during the propagation step.

• Inner Nodes:these nodes are not involved in any communication process.

• Exposed Nodes:these nodes are sending to and receiving from neighbouring parti-
tions.
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Figure 3.10: Three partitions of a computational domain mapped on a graph. The incoming links
are copied from the receive buffer.

• Ghost Cells:the outgoing densities are shifted to these links from the exposed nodes
during the propagation step. They build up the send-buffer.

• Receive-buffer:incoming links of the exposed nodes receiving densities from neigh-
bouring partitions.

Figure 3.11: Three partitions of a computational domain mapped on a graph. Inner nodes, exposed
nodes and the receive-buffer are identified.

In principle, it is possible to perform the relaxation-advection step of the inner nodes si-
multaneously to the communication step of the exposed nodes, thus completely hiding the
communication overhead (see Fig. 3.12).13

13This ‘latency-hiding’ is not yet implemented into the code considered within this chapter. Preliminary
results from a more detailed study [78] indicate that the most significant performance loss is due to load
imbalance, and not caused by communication.
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Figure 3.12: Flow-chart of an MPI-parallelised Lattice-Boltzmann algorithm with overlapping com-
putation at inner nodes and communication at the boundaries.

3.2.2 MPI Performance Results14

The sparse Lattice-Boltzmann software developed in the framework of theInternational
Lattice-Boltzmann Software Development Consortiumhas been parallelised as described
above, and a performance analysis on a METIS-based partitioning was obtained for the two
sample geometries shown in Fig. 3.7 and a free square channelfor up to 128 CPUs. The
first example consists of a medical geometry (aorta) which was discretised with 5,775,552
fluid voxel; the second example from chemical engineering isa pipe filled with randomly
positioned spherical obstacles, discretised with 5,210,124 fluid nodes. The square channel
containing no solid fraction is made up of 5,248,000 fluid nodes.

A limitation of the preprocessor concerning the maximum size of the bounding-box made
it impossible to provide larger domains, so the average number of fluid nodes per partition
for the 128 CPU case was below 50,000 fluid nodes.

As can be seen from the performance results (see Fig. 3.13), the relatively small domain size
for the NEC SX-8 caused a performance degeneration beyond 64CPUs, since the number
of fluid nodes per partition becomes too small for an efficientexecution.15 Up to 64 CPU
the speedup appears to be almost linear for all three samples. The peak performance for
128 CPUs was measured to be beyond 3000 MLUP/s for all three cases (3705 MLUP/s for
the largest case, the aorta).

On the INTEL Xeon cluster, the above mentioned vector architecture typical performance
loss for small sample sizes is not present, and an almost linear speedup can be seen up to
128 CPUs (see Fig. 3.14).

14The performance measurements were done by L.Axner (UvA) in close collaboration with Peter Lammers
(HLRS), Thomas Zeiser (RRZE) and the author using the NEC SX-8 at HLRS Stuttgart and the INTEL Xeon
cluster ‘Lisa’ at UvA.

15Very recent investigations [78] indicate an optimal performance on the NEC SX-8 from above several
105 fluid nodes per CPU.
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Figure 3.13: Performance of an MPI-parallelised Lattice-Boltzmann algorithm for three different
geometries on the NEC SX-8 (performance measurements by L.Axner).

Figure 3.14: Performance of an MPI-parallelised Lattice-Boltzmann algorithm for three different
geometries on the INTEL Xeon cluster (performance measurements by L.Axner).

These performance figures proof the possibility of a very good parallelisation for a sparse
Lattice-Boltzmann code. For very large domains making optimal use of a 128 CPU NEC
SX-8 machine, pre-processing and partitioning are the mostsevere challenge, since several
100 million fluid nodes have to be considered.
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3.3 Effort-Efficiency Considerations

As described in the previous sections, it is possible to implement the Lattice-Boltzmann
method on state-of-the-art vector and vector-parallel high performance computers with a
very good efficiency. So the question arises, if this approach should always be considered
when developing a Lattice-Boltzmann code.

To answer this question, several considerations play a role:

• For what purpose is the software designed: proof-of-concept, experimental, research
or production?

• How much time and skilled manpower can be invested to developthe code ?

• How easy should it be to modify the code (for professionals, software experts, stu-
dents, ...)?

• Which platform is available?

A vast majority of papers published in the Lattice-Boltzmann community are, if they con-
tain simulation results at all, produced with relatively simple and straight forward imple-
mentations on a single-CPU scalar computer.16 Limitations with regard to memory or
compute power play no role, since the purpose of these publications and the underlying
research is to prove the applicability of a certain method, often with a simplified 2D model.
If the focus is on developing a theoretical method and to givea proof-of-concept, indeed it
makes no sense to invest too much time in the implementation.An easy to understand and
easy to modify code serves best for such a purpose.17

Alas, more often than not, these very simple codes might sooner or later be used to do ‘the
real thing’: larger three dimensional simulations to answer certain research questions.18

Quickly it turns out that the single-CPU desktop machine is either running out of memory,
the required CPU-time is beyond acceptable limits, or both.

In the case of academic research, usually a compute-center is available, which offers access
to a selection of high-performance computers virtually forfree. In a worst case scenario,
what was meant to be a pure test-code is now put on an expensivehigh-performance ma-
chine, without carrying out any algorithmic improvements.And it could happen that the
CPU-power and memory of the several 100,000 Euro machine is indeed sufficient to solve
the research question addressed. Although this might be a fully satisfying solution for the
individual scientist interested in dealing with his research, and not with details of a per-
formance optimised implementation, such an approach couldbe considered a misuse of
typically public financed resources.

16Although a certain trend towards more and more technically advanced and performance optimised im-
plementations could be observed during the past years.

17Before a selection of textbooks on Lattice-Boltzmann was available, the author implemented and put on-
line a simple straight forward FORTRAN teaching code called‘anb’ [87]. This was meant to help beginners
to understand the simplest way of transforming the equations into software and the underlying algorithmic
concept.

18The author got much feed-back from students ‘abusing’ the ‘anb’-software for such purpose - against an
explicit warning in the header of the code.
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At this point, efficient implementation aspects come into play. Before doing the big step of
re-implementing the whole code as a vector- or vector-parallel algorithm (which is indeed
a major effort), more basic algorithmic and implementationimprovements can be done.
Simplifying algebraic expressions, taking into account loop orders and a cache-coherent
memory access are easy to do but powerful measures to improvethe performance even for
the desktop computer.

If even these improvements can not sufficiently speed-up thecode and reduce memory
consumption, the implementation of a real high-performance code must be considered.
Usually, it takes less time to create a well designed HPC Lattice-Boltzmann implementation
with an optimised data-structure from scratch, than repeatedly manipulating the original
sources.

Once this decision is taken, the design-phase is a very important step, since wrong direc-
tions here have a long-term after-effect for all researchers later involved in the develop-
ment of the code. As can be seen in the previous chapters, implementing a well performing
vector-parallel Lattice-Boltzmann flow-solver is feasible. If sufficient skilled and moti-
vated manpower is available, it makes sense to consider a multi-platform implementation
with hardware specific extensions which can be switched on- and off on demand.

On the other hand, it is necessary to consider that extensions to the code should still be
possible, even when carried out by not so experienced students. A too highly performance
optimised code often appears as a scary maze to the beginner,which does not much en-
courage (or simply takes too much time) to add certain extensions. A two-step solution is
here usually best: provide and easy-to use interface, and once the model is working, the
performance optimisation can be done by the experts.19

Concluding these remarks, a simple three-step rule for developing and porting a Lattice-
Boltzmann code can be given:

1. Optimise for the desktop-PC.

2. Port- and optimise for the HPC machine.

3. Re-implement a performance optimised (vector-)parallel code.

3.3.1 Choosing the Hardware and Programming Language

Which platform is the best for Lattice-Boltzmann? From the author’s experience,20 it is a
vector-computer. As can be seen by comparing the performance of the NEC SX-8 vector
computer and the INTEL Xeon cluster (Fig. 3.13 and Fig. 3.14), 128 CPUs of the PC-
cluster provide less MLUP/s than 8 CPUs of the vector computer. Taking into account the
shared-memory access within one node (8 CPUs) of an NEC SX-8,reaching the perfor-
mance of a modern medium sized PC-cluster with a vector-computer does not even require
the MPI-parallelisation of the code.

19It seems to be a certain trend that research groups hire professional software engineers to help the PhD
students doing the basic design and final optimisation of there codes, so they have more time to focus on their
research.

20On vector machines as the Convex C210, Cray Y-MP, Fujitsu VPPand NEC SX-4-8.
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What if the ‘ideal machine’ is not available? When the problem is not easily solved by
filling in the user account request to get access to a vector computer, the question of the
‘best computer’ is not so easy to answer. In case the hardwarehas to be purchased, the usu-
ally better cost/performance ratio of PC-clusters when compared with vector computers, at
least for medium-sized problems where the number of CPUs canbe kept within reasonable
limits, plays an important role.21

What is saved in initial investment and gained in peak performance often has to be paid
off by the researcher in additional hardware-specific programming work and a higher effort
for system administration. The author experienced more than one case where an institutes
small PC-cluster (if up and running at all) was not used for MPI-software, but as a rack of
single-CPU machines.

Considering the power consumption is also of increasing importance. Although figures in
Watt per MLUP/s are not yet available, it might be worth doingthis analysis, at least when
large sustained simulations are to be expected on the new machine.22

Another question is that of the best programming language. Let aside the historical de-
velopment which is responsible for the still strong bias towards FORTRAN at least for
the HPC research codes, modern object-oriented languages have definite advantages for a
distributed team of developers working at certain modules of the code.

It is always a challenge to find a proper balance between the easiness of implementing
and maintaining a code, and the resulting performance. Whenan easy to maintain highly
modular C++ code requires a medium-sized PC-cluster to produce a performance output
equivalent to a single-CPU FORTRAN code,23 this balance is possibly not given any more.
On the other hand side a high performant and complex FORTRAN 90 code makes it pos-
sibly very difficult to carry out any extensions or modifications without understanding and
modifying the whole kernel.

The discussions in the performance-aware circles of the community reveal a trend that in
the future possibly a hybrid implementation would be the best: object oriented for data-
structures, I/O and user interfaces, FORTRAN or C for the performance critical routines.

3.3.2 Latest Trends

A very recent and exciting development challenging the traditional domain of HPC is
the promising attempt of porting Lattice-Boltzmann kernels on a graphics processing unit
(GPU) [89, 90, 91, 92].24 The required graphics hardware is relatively cheap, but appears

21This calculation does not take into account the much higher maintenance costs of a PC cluster, which has
notorious hardware failures, and also not the waiting time of the scientist, until the busy system administrator
has time to fix it. A vector computer’s usual state, to the author’s best experience, is ‘up and running’.

22The power consumption of a PC-cluster including cooling within the first 3 years is nowadays roughly
the equivalent of its procurement cost [88].

23The author has encountered more than one example of this kind.
24There have been other attempts to port Lattice-Gas or Lattice-Boltzmann codes on specialised hardware

or develop specific hardware for this purpose: Norman Margolus’ CAM-6 [93] and CAM-8 [94], the approach
of Exa Corporation to develop a specialised co-processor for the SGI workstation “which directly implements
the particle collision logic” [95] or to use the VIS instruction set of the Sun Ultra SPARK CPU for this
purpose [96]. All these are history, since usually the next generation general purpose CPU allowed the
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to be highly suitable for Lattice-Boltzmann. An implementation by the group of IRMB
(Braunschweig, Germany) [97] for a 2D simulation using the D2Q19 BGK model on a sin-
gle nvidia GeForce 8800 Ultra card resulted in the impressive performance of 650 MLUP/s,
and 1300 MLUP/s were achieved on a coupled system with two cards applying pthread par-
allelisation. For 3D simulations the D3Q13 MRT scheme attained a performance of 470
MLUP/s.25

3.4 Visualisation26

Using the Lattice-Boltzmann method, detailed simulationsof time and space dependent,
highly complex processes can be performed for hundreds of thousands of time-steps in a
computational domain extending over several ten to hundredmillion grid points. Writing
to disc the whole data set for each time-step of such a transient simulation is beyond the
capacity of any storage system. To reduce the amount of data to be stored on the hard disc,
significant results to answer the research question must be extracted during the simulation.

One might argue that occasional visualisation of transientflow or complex multi-physics
processes is helpful to improve an understanding. Therefore an efficient approach is re-
quired for visualising the enormous amount of data producedeach time step. Problems
occur when visualisation of a large-scale simulation is attempted with conventional post-
processing tools. First, an enormous amount of numerical data has to be transferred over
the network. Moreover, huge disk space is necessary to storethe data both on the comput-
ing server and the user’s terminal and a large amount of memory is required to manipulate
the data. One solution to these problems is server-side visualisation, where the entire image
rendering process is conducted (in parallel, if required),utilising the computing server’s re-
sources. Thus, the storage and transfer of data can be significantly reduced, since only the
(small) image data have to be transferred over the network.

If the visualisation chain is adequately efficient,27 the opportunity of interacting with the
running simulation presents. Belleman [103] defines interactive simulation environments
as “dynamic systems that combine simulation, data presentation and interaction capabili-
ties that together allow users to explore the results of computer simulation processes and
influence the course of these simulations at run-time.” Whensetting up this kind of interac-
tive environment, the goals are “to shorten experimental cycles, decrease the cost of system

production of results with a higher performance than these specific solutions.
25This is not yeta real competitor for traditional high-performance computing, because the memory of

these cards iscurrentlybelow 1 GB and there are certain restrictions concerning possible stencils, the domain
size and other algorithmic restrictions. Once these problems are overcome and advanced Lattice-Boltzmann
models with local mesh refinement and improved wall boundaryconditions can be implemented on these
cards, it might well be possible to build a CFD simulator for engineering applications below 10,000 Euro.
Another possible application of Lattice-Boltzmann on GPUsin the area of real time processing for computer
games and other related fields, see the beginning remarks of Chap. 6.

26The research work presented in this section was performed atthe C&C Research Laboratories, NEC Eu-
rope Ltd., (St.Augustin, Germany) in cooperation with engineers of the HPC Marketing Promotion Division,
NEC Corporation, Japan. It was presented at the First International Symposium on Advanced Fluid Infor-
mation - AFI-2001 (Sendai, Japan, 2001) and the Parallel Computational Fluid Dynamics - ParCFD 2002
(Kansai Science City, Japan, 2002), published in [98, 99, 100, 101].

27Efficiency aspects of a real-time visualisation are addressed in [102].
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resources and enhance the researcher’s abilities for the exploration of data sets or problem
spaces” [102].

One successful example of coupling a Lattice-Boltzmann flowsolver with a visualisation
and steering environment is the interactive air flow simulation within a virtual reality envi-
ronment, developed at the ‘Lehrstuhl für Bauinformatik’ in Munich [104] and the IRMB in
Braunschweig [105]. In the area of medical physics, Belleman describes an approach for
the interactive simulated vascular reconstruction in a virtual operating theater [102].

3.4.1 Concurrent Visualisation System RVSLIB

The visualisation system RVSLIB,28 designed for the NEC SX-series vector computers,
was used within a variety of studies presented in this thesis. Although lacking advanced
features such as stereoscopic visualisation in a cave, its particular performance-optimised
implementation of server-sided image rendering capabilities made it a good candidate for
generating movies without significant loss of performance or implementation overhead.

System Configuration

RVSLIB is a server-client type system: RVSLIB/Server, the server module of RVSLIB,
runs on the computing server and is invoked by subroutine calls linked to the Lattice-
Boltzmann flow solver. The transient simulation results stored in the computer’s memory
are directly referenced, so it is possible to run visualisation processes at a high speed and
reduce the amount of necessary memory. Since the rendered image can be stored, the output
of the computational results to a file can be avoided within the process of movie generation.
RVSLIB/Server performs various kinds of visualisation processes and generates visualised
images. These images are assembled to generate animations.

RVSLIB/Client, the client module of RVSLIB, runs on the user’s desktop machine and
displays a GUI for operating the system. It runs on PCs as a JAVA application or a JAVA
applet.

In the interactive mode, the server compresses visualised images and sends them to the
client, where they are restored and displayed on the GUI withthe client module. Input
visualisation parameters are sent from the client to the server and used in the visualisation
processes at the next time step. Because some of the parameters are delivered to the simu-
lation program through the server module, they can be used for controlling the simulation
itself. The user can arbitrarily set such parameters by manipulating the corresponding GUI
menu that will automatically appear at run time. The communication between the server
and the client can be established or disconnected at any timeeven during the simulation.
This function is particularly effective for large-scale simulations that generally take a long
time. In addition to the specific communication protocol, based on sockets, the HTTP
protocol can be chosen for sending data particularly through firewalls.

In the batch-processing environment, the Lattice-Boltzmann code and RVSLIB/Server run

28RVSLIB is a registered trademark of NEC Corporation, Japan.The acronym is standing for Real-Time
Visual Simulaton Library.
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on the computing server without any communication with the terminal. In this case, when
a process of changing parameter values is previously written to file as a scenario, RVSLIB
automatically performs visualisation according to the scenario and outputs a series of an-
imation data on the computing server. The scenario can easily be written in a key-frame
format. If more than one scenario is prepared, animations are created independently for
each scenario.

RVSLIB/Server is provided as a library format. RVSINIT and RVSTERM are for initiali-
sation and termination, respectively. RVSBFC obtains the memory addresses of the arrays
are used in the simulation for storing the grid data and computational results. Adjustable
arrays are supported to mitigate limitations to available data formats. RVSMAIN commu-
nicates with RVSLIB/Client and performs various visualisation processes. RVSBFC is for
a simulation using a BFC (boundary fitted coordinates) grid.

Figure 3.15: RVSLIB GUI and a snapshot from a time dependent visualisation of the chemical
reactionA+ B ⇋ C (volume rendered image of the product concentration[C]) simulated with the
Lattice-Boltzmann code (for details of this simulation seeChap. 5.1).

Process Distribution

Here it is briefly described how a series of processes can be distributed between a com-
puting server and a user’s terminal for the concurrent visualisation of numerical simulation
results. The main processes are the simulation, the mappingprocess, the rendering pro-
cess, and the user interface. The mapping process generates3D graphical objects such as
polygons and poly-lines from the simulation results definedat grid points. The rendering
process generates the 2D image data of the 3D graphical objects. When the simulation runs
on the computing server and the user interface runs on the user’s terminal, there are various
possible approaches to the distribution of mapping and rendering processes [106].
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RVSLIB adopts a server-side visualisation approach, in which both mapping and rendering
processes are conducted on the computing server. This approach is highly tailored to large-
scale simulations due to the reduced amount of data transferred over the network, thus
realising practical visualisation even with low network bandwidth. If the number of grid
points isO(n) in one spatial direction, the amount of visualised data is independent of n
in the server-side visualisation, whereas it is fromO(n2) to O(n3) in other approaches.
This characteristic of the server-side visualisation is favourable for large-scale simulations.
Moreover, with this approach a user’s terminal with rather low-performance specifications
can be used as a visualisation terminal. The server-side visualisation consumes CPU time
on the compute server which has to be considered when runninglarge scale simulations
with concurrent visualisation.

Coupling with the Lattice-Boltzmann Code

RVSLIB visualisation routines can be integrated into a Lattice-Boltzmann code by adding
only a few subroutine calls.

A snapshot of concurrent visualisation of a time dependent catalytic reaction-diffusion pro-
cess in a porous media is shown in Fig. 3.15 (for details of this simulation see Chap. 5.1).

The additional CPU-time needed for image generation and data compression during the
simulation is, depending on what has to be visualised, only afew percent of the total CPU-
time. With the Lattice-Boltzmann algorithm, all local quantities (velocity, pressure, and
concentration of chemical species) are calculated from thedensity distributions during the
simulation procedure once per iteration. For visualisation, additional arrays need to be
defined to store, and later provide, these quantities for theRVSLIB routine calls at the end
of the main loop.

The memory for holding these variables29 scales linearly with the size of the bounding box
(not the fluid nodes) and the number of variables to be displayed. A minimum of three times
the size of the bounding box for storing the mesh in terms of three Cartesian coordinates as
INTEGER is required. Each flow variable (usually stored asREAL type) needs an additional
array of the size of the bounding box.

This additional memory-overhead has to be considered in addition to the required extra
CPU-time. In spite of these extra costs, generating movies from large scale transient simu-
lations by this post-processing approach is feasible within a reasonable effort.

29It is worth reminding that within the Lattice-Boltzmann algorithm the macroscopic primitive flow vari-
ables, the pressure and the three components of the velocityvector, are not permanently stored. They are
typically computed only during the relaxation subroutine from the density distributions and stored in local
variables, which are no longer needed after leaving the relaxation subroutine.
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Complex-Flow Studies

In this chapter, a variety of complex-flow studies are presented together with detailed val-
idation, by comparing the results to analytical or other simulation results, and in the last
section, to experimental results. The aim of this chapter isto highlight some typical appli-
cations where the Lattice–Boltzmann method is not only ableto produce accurate results,
but possibly advantageous compared with other CFD methods.

4.1 Channel Flow in Increasingly Complex Geometries1

This chapter is based on an early journal publication of the author and contains one of
the first quantitative comparisons between Lattice-Boltzmann and Navier-Stokes methods.
A modified version of the geometry of this initial benchmark was later used as a test-
case in the framework of the Deutsche Forschungsgemeinschaft (DFG) ‘Lattice-Boltzmann
Arbeitsgruppe’, comparing the efficiency of a high-end Lattice-Boltzmann implementation
with a Navier-Stokes flow solver [107].2

As a first simple test case for the comparison of the Lattice-Boltzmann method with the
Finite-Volume approach we consider two dimensional flow in achannel of heightH and
lengthL = 4H, with different numbers of square obstacles regularly placed in the second
quarter of the channel (see Figs. 4.1 and 4.2). The sizes of the obstacles are chosen such
that the occupied space is the same for all cases and the distance between the wall and the
obstacles nearest to the wall is always half the distance between the obstacles. Thus, when
increasing the number of obstacles, this test case represents a flow problem of systemati-
cally increasing geometrical complexity. The increasing complexity of the flow pattern is
illustrated in Fig. 4.3 which shows the profiles of the velocity magnitude in a cross section
closely behind the obstacle area for the different obstaclenumbers.

1The research work presented in this section was accomplished at the LSTM Erlangen (Germany) un-
der supervision of M.Schäfer and F.Durst. It was publishedin [39]. Financial support by the Bayerische
Forschungsstiftung in the Bavarian Consortium of High–Performance Scientific Computing (FORTWIHR II)
is gratefully acknowledged.

2Further comparison between Lattice-Boltzmann and Finite-Volume methods can be found in [108].
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Figure 4.1: Channel dimensions and locations p1 and p2 for evaluating the pressure difference.

Figure 4.2: Obstacle structure with increasing complexity.

Concerning the boundary conditions at the inlet and outlet of the channel, for the Finite-
Volume code a parabolic inflow profile corresponding to a Reynolds number ofRe= 0.1
(based on the channel height) and a zero gradient outflow condition is chosen, whereas the
Lattice-Boltzmann boundary conditions are periodic in theflow direction. A change in the
density distribution of the first lattice row at the inlet (decrease in cells 2, 3 and 4, increase
in cells 1, 5 and 6) leads to a directed flow for the Lattice–Boltzmann case.3 The flow

3These very simple boundary conditions are a direct extension of the re-distribution of particles in the
framework of Lattice-Gas simulations (see Fig. 2.6 in Chap.2.2.1). Much more sophistic boundary conditions
are meanwhile available (see e.g. [32, 33, 34, 46, 47]). Nevertheless, the described implementation has no
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Figure 4.3: Profile of velocity magnitude in a cross section closely behind the obstacle area for
different obstacle numbers.

profile appeared to be parabolic at just a few lattice rows away from this first ‘acceleration’
row. The region downstream of the obstacle area, for the considered Reynolds number, is
long enough to avoid any influence of the outlet to the flow profile.

The convergence criterion for the iteration process in the finite volume method is that the
absolute sum of the residuals for mass and momentum (weighted with the corresponding
inlet values) is less than 10−4. For the Lattice-Boltzmann method the program stops when
the maximum deviations of the mean flow rate in the last quarter section of the channel
differs by less than 10−4 over the last 50 iterations.

As reference quantities for evaluating the accuracy of the computations, the pressure dif-
ference between the cross-sections atx = L/8 andx = 7L/8 of the channel (see Fig. 4.1)
and the maximum absolute value of the velocity were computed.

In Fig. 4.4 the reference quantities are indicated for the 2∗2 obstacle case for both methods,
using lattice/grid sizes of increasing refinement ranging from 64∗16 cells (grid 1) to 1024∗
256 cells (grid 5). For the Finite-Volume method an equidistant Cartesian grid is employed.

The results show very good agreement in the high resolution limit for both pressure drop
and maximum velocity. In fact, the pressure drop on the coarser grids is closer to the
fine grid value for the Lattice-Boltzmann, whereas the Finite-Volume method gives closer
values for the velocity on the coarsest lattice. For the other obstacle configurations very
similar results concerning the dependence of the accuracy of the reference quantities on the
grid fineness were found.

In Fig. 4.5 the error in the reference quantities for a fixed grid size (256∗64 cells) is plotted
against the number of obstacles for both methods indicatingthe dependence of the accuracy
of the methods on the complexity of the geometry. It can be observed that, concerning the

influence on the accuracy of the results, although it is less then optimal with regards to efficiency.
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Figure 4.4: Pressure drop (left) and maximum velocity (right) versus grid size (indicated as lat-
tice/grid) using Lattice-Boltzmann (LB) and Finite-Volume (FVM) methods.

pressure, the Lattice-Boltzmann results are slightly moreaccurate, whereas for the velocity
error the Finite-Volume program is closer to the final values.4

Figure 4.5: Error in pressure drop (left) and maximum velocity (right) versus number of obstacles
using Lattice-Boltzmann (LB) and Finite-Volume (FVM).

This interesting observation was also made (for a differentflow case) by Kandhai et
al. [108]. The most likely cause for this behaviour is the ‘natural’ derivation of the pres-
sure from an equation of state in the case of Lattice-Boltzmann, as opposed to applying
a pressure correction scheme as it is usually done within Navier-Stokes solvers. Another
possible contribution comes from the higher symmetry of theLattice-Boltzmann stencil,
providing exchange also with the diagonal nodes.

4The big gap between the Navier-Stokes and the Lattice-Boltzmann error for the last set (right hand side
of the lower Fig. 4.5), referring to the largest number of 256obstacles in the channel, is possibly caused by
a finite-size effect due to an insufficient resolution of the geometry (see Chap. 2.2.3). In the given case the
number of obstacles was increased up to 16∗16, while the lattice size oflx∗ ly = 256∗64 was kept constant.
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4.1.1 Conclusion

This initial test case demonstrates that it is possible to produce converging results for low-
Reynolds complex geometry flow with both, the Lattice-Boltzmann and Finite-Volume
method. Due to its nature, the Lattice-Boltzmann method shows a slightly better mesh
convergence concerning the pressure, while the Finite-Volume method has a slight advan-
tage in computing the velocity.

4.2 Decay of Turbulence5

After investigating complex geometry steady-flow case in the previous example, a complex
transient-flow study in simple geometries is presented in the following section.

The decay of an initial turbulent shear layer has previouslybeen investigated by Mar-
tinez [111] and the decay of an isotropic turbulent flow field and a Taylor-Green vortex
by Chen [112]. The present validation test cases were chosenin order to assess the in-
fluence of the numerical dissipation compared with the physical viscosity. This can be
examined by comparing the time evolution of an initial flow field to analytical or empirical
data where available.

As a simple test case for shear driven dissipation in viscousflow, the temporal evolution
of a vortex described by Eqns. 4.1 and 4.2 was simulated and compared with analytical
solutions. The decay of a synthetic turbulent velocity fieldwas chosen in order to demon-
strate the capability of the method for more realistic viscous fluid flow phenomena, such as
turbulence.

4.2.1 Time Evolution of a Vortex

The velocity componentsu0 and v0 of an initial vortex described by the potentialψ
(Eqn. 4.1) are given by Eqn. 4.2.

ψ(x,y, t = 0) = ψ0e−
((x−x0)2+(y−y0)2)

a2 (4.1)

u0 =−2(y−y0)

a2 ψ , v0 =
2(x−x0)

a2 ψ (4.2)

For this velocity field, an analytical solution (Eqns. 4.4 and 4.5) can be found in terms of
acoustic Reynolds numberReac, defined in Eqn. 4.3 with speed of soundcs, characteristic
lengthl and kinematic viscosityν (for details of the derivation see [113]):

5The research work presented in this section was performed atLSTM Erlangen (Germany) under su-
pervision of G.Brenner and F.Durst. It was presented at the 7th International Conference on the Discrete
Simulation of Fluids (Oxford, UK, 1998) and published in [109]. Financial support by the Bayerische
Forschungsstiftung in the Bavarian Consortium of High-Performance Scientific Computing (FORTWIHR
II) is gratefully acknowledged. A recent publication by Yu et al. [110] repeated the set of test-cases in a more
detailed analysis.
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with definition of the quantitiesα,βx,βy,γx andγy as:
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4t
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a2 (4.9)
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2

a2 (4.10)

The computations were performed on a 100∗100 lattice with periodic boundaries, which
was initialised with equilibrium density distributionf eq

i computed for equilibrium pressure
and velocities given by Eqns. 4.1 and 4.2 for an acoustic Reynolds numberReac = 1000.
This initial field (see Fig. 4.6)6 was iterated a few times to get the correct non-equilibrium
part of the distribution function.7

The square velocity and vorticity of the computed flow field were measured along the
horizontal centreline of the flow field at (x = 1. . .100,y = 50) at t = 0,5000,10000 and
20000 iterations and compared with the analytical solutions (Eqns. 4.4 and 4.5).

As can be seen from Fig. 4.7, the computed values fit the theoretical values for the measured
times. Only for the first few 100 iterations was a slight deviation from theory observed,
which is obviously due to the initialisation of the densities with equilibrium distribution
f eq
i . This initial disturbance disappears after a short time andhas no influence on the

results obtained at higher iteration numbers.

6Since periodic boundary conditions were used, the flow field is disturbed at the domain boundaries,
particularly visible in the corners. A test with a smaller lattice indicated that this effect can be neglected for
the results shown in Fig. 4.7.

7This is a possible but not the best way to initiate a flow field, see also Chap. 6.5.1 ‘If I did it today . . . ’.
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Figure 4.6: Square velocity (grey) and velocity vectors of avortex (centre section shown here).

Figure 4.7: Time evolution of vorticity and square velocityof a vortex. Numerical results are marked
by symbols, analytical results as dashed lines.

4.2.2 Decaying Turbulence Field

As a further test case, results for a temporally decaying turbulent velocity field will be
presented. For that, the analysis of the properties of homogeneous and isotropic turbulence
provides an analytical reference solution.
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In order to provide initial conditions for the computationsof a turbulent flow, an approach
outlined in [113] and [114] is used, prescribing a random velocity field with the following
properties: for a scalar energy spectrum according to von Karman and Pao [115], the ve-
locity components are obtained in Fourier space assuming a homogeneous, isotropic and
divergence-free vector field and a random phase angle. A fastFourier transform is used to
pass to the physical space. The parameters entering into theprocedure are the Reynolds
number, the initial turbulent kinetic energyk0 and the dissipation rateε0.

The computations were performed on a lattice with 513∗513 lattice nodes with an acoustic
Reynolds number of the initial flow field ofReac = 2000. Similar to the previous case of a
vortex, the flow field was initialised with equilibrium density distribution f eq

i and iterated
a few times to get the correct non-equilibrium part of the distribution function.

The vorticity of the initial flow field after 0.5, 2 and 4 eddy turn-over times can be seen
in Fig. 4.8. One can observe the fast decay of all small scalesand the evolution of large
clustered structures which fill the computational domain.

Figure 4.8: Time evolution of the vorticity of a homogeneousisotropic turbulent field for 0, 0.5, 2
and 4 eddy turn-over times.
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It is known from the theory of turbulent flow that the dissipation ε and the turbulent kinetic
energyk suffer a decay which can be described by

k
k0

=

[

1+
ε0

k0
(C−1) t

] 1
1−C

(4.11)

ε
ε0

=

[

1+
ε0

k0
(C−1) t

] C
1−C

(4.12)

with a semi-empirical constant C = 2.5 for two-dimensional flows [113]. These averaged
quantities were measured during computation and compared with the theoretical values.
As can be seen from Fig. 4.9, the values obtained from the Lattice-Boltzmann simulation
fit the theoretical curves very well.

Figure 4.9: Time evolution of dissipationε and turbulent kinetic energyk for a homogeneous
isotropic turbulent flow field. Numerical results are markedby symbols, analytical results as lines.

4.2.3 Conclusion

The results for the above test cases clearly show the possibility of performing accurate nu-
merical simulations for viscous incompressible transientflows with the Lattice-Boltzmann
method. Especially, as is known from Lattice-Boltzmann theory, no problems with numer-
ical dissipation exist, which allows for inclusion of this quantity in a suitable definition of
viscosity.
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4.3 Plain Channel Flow around a Square Cylinder8

As a next step, in this section the combination of both, geometry in the flow field and tran-
sient flow, have been investigated by applying the Lattice-Boltzmann method to a classical
benchmark case. This very detailed study clearly shows somelimitations of an implemen-
tation using simple bounce-back wall boundary conditions without local mesh refinement.9

Nevertheless, the very good agreement with the majority of simulation results produced
by a Finite-Volume code demonstrate the high accuracy of even simple Lattice-Boltzmann
implementations.

The confined flow around a cylinder with square cross-sectionmounted inside a plane chan-
nel (blockage ratioB = 1/8) was investigated in detail by two entirely different numerical
techniques, namely a Lattice-Boltzmann implementation and a Finite-Volume method. In
order to restrict the approach to two-dimensional computations, the largest Reynolds num-
ber chosen wasRe= 300 based on the maximum inflow velocity and the chord length
of the square cylinder. The Lattice-Boltzmann code was built upon a lattice-BGK D2Q9
model. The Finite-Volume code was based on an incompressible Navier-Stokes solver for
arbitrary, non-orthogonal, body-fitted grids. Both numerical methods are of second-order
accuracy in space and time. Accurate computations were executed on grids with different
resolutions. The results of both methods were evaluated andcompared in detail. Velocity
profiles and integral parameters such as drag coefficient, recirculation length and Strouhal
number10 were investigated.

4.3.1 The Flow Problem

The flow past bluff bodies, especially cylinders, has been anattraction in all kinds of fluid
mechanical investigations for a long time. Most of these studies were concerned with the
circular cylinder case under free flow conditions. Excellent reviews on this topic were
written by Williamson [118] and Zdravkovich [119]. In contrast to the overwhelming num-
ber of publications on the flow past circular cylinders, the square counterpart has not been
investigated to the same extent, although it plays a dominant role in many technical appli-
cations such as building aerodynamics; for details, see, e.g., [120, 121, 122, 123, 124, 125,
126, 127]. Owing to fixed separation points for sharp-edged bodies, it is generally accepted
that aerodynamic coefficients are less dependent on the Reynolds number than for circular
structures.

Depending on the Reynolds number, different flow regimes canbe distinguished for a
square cylinder [128]. At very small Reynolds numbers (Re< 1), viscous forces dom-
inate the flow. For this ‘creeping flow’, no separation takes place at the surface of the

8The research work presented in this section was performed together with T.Zeiser (in the framework of
his ‘Studienarbeit’ [116] which was co-supervised by the author) at LSTM Erlangen (Germany) under su-
pervision of M.Breuer and F.Durst. The following section isbased on the publication [117]. All simulations
with the LESOCC-code were accomplished by M.Breuer. Financial support by the Bayerische Forschungss-
tiftung in the Bavarian Consortium of High-Performance Scientific Computing (FORTWIHR II) is gratefully
acknowledged.

9See also Chap. 6.5.1 ‘If I did it today . . . ’.
10For a definition of these quantities see Chap. 4.3.4.
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cylinder. With increasingRe, the flow separates first at the trailing edges of the cylinder
and a closed steady recirculation region consisting of two symmetric vortices is observed
behind the body. The size of the recirculation region increases with increase inRe. When a
critical Reynolds numberRecrit is exceeded, the well known von Kármán vortex street with
periodic vortex shedding from the cylinder can be detected in the wake. Different values
of Recrit exist in the literature. Based on experimental investigations, Okajima [124] found
periodic vortex motion atRe≈ 70 leading to an upper limit ofRecrit ≤ 70. A smaller value
(Recrit = 54) was determined by Kelkar and Patankar [121] based on a stability analysis of
the flow. When the Reynolds number is further increased, the flow separates at the leading
edges of the cylinder. The onset of this phenomenon is not clearly defined in the literature;
only a wide range ofRe= 100−150 is given [124, 128]. In this Reynolds number range,
the flow past square cylinders can still be considered as two-dimensional. In contrast to
the circular cylinder flow for which Williamson [118] provides a Reynolds number limit
of Re≈ 180 for the onset of three-dimensional structures in the wake, no such clear state-
ment can be found for the square counterpart. A rough hint is given by Franke [128] with
Re≤ 300. Therefore, this Reynolds number was chosen as the upperlimit of the present
two-dimensional laminar simulations. Beyond this limit three-dimensional structures have
to be expected and subsequent transition to turbulence takes place in the free shear layers.

Only a few studies have dealt with the influence of confining walls on the flow phenomena
around square cylinders (see, e.g., [122, 129]). In comparison with the free flow case, two
new parameters have to be taken into account, the inflow profile and the blockage ratio. As
shown by Davis et al. [123], the vortex shedding frequency depends strongly on the inflow
profile. In the experimental investigations by Shair et al. [130] and Davis et al. [123], non
negligible deviations between the velocity profiles far upstream of the cylinder and the
parabolic distribution expected for fully developed laminar channel flow were observed.
Therefore, this aspect has to be kept in mind for comparison between experimental and
numerical investigations which typically apply the theoretical velocity profile as inflow
conditions. The second parameter which plays a dominant role in confined cylinder flow
is the blockage ratio of the channel, defined asB = D/H, whereD is the diameter of the
cylinder andH is the channel height. It is generally accepted that for a fixed Reynolds
number, an increasing blockage ratio leads to an increase inthe Strouhal number. This
holds true for both circular and square cylinders, althoughthe movement of the separation
points cannot be responsible for this phenomenon for a sharp-edged body as assumed for a
round geometry.

Davis et al. [123] investigated confined flow past square cylinders for a wide range ofRe
and two different blockage ratios (B = 1/6 and 1/4), experimentally and numerically. De-
pending on the blockage ratio, a maximum Strouhal number wasobserved atRe= Remax=
200− 35011. For higherRe the Strouhal number decreases again and reaches an almost
constant level. As mentioned above, non-parabolic velocity profiles were measured up-
stream of the cylinder. Because most numerical predictionswere based on these measured
inflow profiles, a direct comparison with the present study ispossible only for the addi-
tional cases in which a parabolic profile was assumed. These computations were based on
a Finite-Volume code and non-equidistant coarse grids of 76∗42 and 76∗52 grid points.

11The Reynolds numberRe= Remax is based on the maximum velocity of the inflow profile.
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Two-dimensional numerical simulations were also carried out by Mukhopadhyay et al. [126]
for theRerange 90−1200, two blockage ratios (B = 1/8 and 1/4) and a parabolic inflow
profile. With respect to the Reynolds number of the corresponding channel flow, the upper
limit of Rein this investigation seems to be highly questionable because turbulent flow in
the channel has to be expected under these conditions. For the simulations, two different
equidistant grids with 200∗34 and 396∗66 grid points were used. Because no clustering
of grid points in the vicinity of the cylinder was applied, each surface was resolved by only
4 or 8 control volumes, respectively. As will be shown below,this resolution is definitely
far too coarse to provide reliable results.

Suzuki et al. [127] performed simulations (56.3≤ Re≤ 225,B = 1/20−1/5) on a non-
equidistant grid with 207∗ 54 grid points, claiming to have achieved grid independence.
However, based on the present study, it is questionable thatthis is possible with the resolu-
tion used, especially for the higher Reynolds number cases in which separation starts at the
leading edge of the cylinder. For a blockage ratioB = 1/5, Suzuki et al. [127] computed
Strouhal numbers over a wideRerange and found a maximum atRe= Remax= 150.

A comparison of the different data mentioned above already shows a large scatter of the
results for integral parameters such as the Strouhal number(see, e.g., Fig. 4.18). There is
evidently a lack of reliable experimental and numerical data for this flow case. The objec-
tive of the study presented in this section was to provide a contribution to close this gap.
In order to ensure trustworthy results, two different numerical methods (Lattice-Boltzmann
and Finite-Volume method) were applied and special attention was paid to the analysis of
the accuracy of the solutions in terms of grid independence.For a fixed blockage ratio
B = 1/8, laminar 2D flow was computed in the Reynolds number range 0.5≤ Re≤ 300.
The results were evaluated in detail based on velocity fieldsand integral parameters and
compared with previous numerical and experimental studies.

It should be stated clearly that the objective of this work was not to make a comparison
of both numerical algorithms with respect to computationalefficiency in terms of CPU
time and memory requirements. Therefore, besides the physics of the flow past a square
cylinder this section focuses on the comparison of the accuracy of both methods. Similar
investigations have been reported by Eggels and Somers [131] for a non-isothermal free
convective flow in a square cavity and by Eggels [132] for the direct numerical simulation
of fully developed turbulent channel flow with heat transfer.

4.3.2 Finite-Volume Method

In the following sections only a brief introduction to the Finite-Volume method is given.
For a more detailed description, we refer to the cited literature.

The applied code LESOCC is based on a 3D Finite-Volume methodfor arbitrary non-
orthogonal and non-staggered grids. It was originally developed for simulating incom-
pressible turbulent flows of practical relevance by the large eddy simulation (LES) tech-
nique [133, 134, 135, 136, 137, 138, 139, 140]. Owing to the high demands of LES with
respect to spatial and temporal accuracy, the method is alsowell suited for the accurate
computation of time-dependent laminar flows. Five different options are implemented in
LESOCC for the approximation of convective fluxes. However,based on experience in
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previous investigations [139], only central differences of second-order accuracy are ap-
plied for both the convective and the viscous fluxes. Time advancement is performed by
a predictor-corrector scheme. A low-storage multi-stage Runge-Kutta method (three sub-
steps, second-order accurate in time) is applied for integrating the momentum equations in
the predictor step. Within the corrector step, the Poisson equation for the pressure correc-
tion (SIMPLE) is solved implicitly by an incomplete LU decomposition method. Explicit
time marching works well for LES with small time steps necessary to resolve turbulence
motion in time. For time accurate predictions of laminar flows, explicit time marching is
the appropriate choice.

On non-staggered grids, as used in the present investigation, a special interpolation tech-
nique for the cell face velocities is necessary to prevent the decoupling of pressure and
velocity components leading to non-physical oscillations. These cell face velocities are
required for determining the mass fluxes at the cell faces. The momentum interpolation of
Rhie and Chow [141] provides a proper coupling procedure. The influence of this approach
on the solution was investigated in detail by Miller and Schmidt [142] and by Kobayashi
and Pereira [143]. They found that momentum interpolation on non-staggered grids is
nearly equivalent to the SIMPLE algorithm on staggered grids concerning formal error
analysis and the attained accuracy of the calculations.

Of course, all models necessary to approximate the non-resolvable sub-grid scales in LES
are turned off for the laminar simulations. Recently, LESOCC was extended by a multi-
block structure, strongly improving the possibility of resolving complex geometries. Fur-
thermore, the multi-block implementation was also the basis for parallelisation by domain
decomposition and message passing (MPI). LESOCC is highly vectorised (vectorisation
rate> 99.8%), allowing one to perform efficient computations on vector-parallel machines.
Typical sustained performances are∼ 4.0 GFLOPS on four processors of a NEC SX-4 ma-
chine and∼ 3.7 GFLOPS on a Fujitsu VPP 300/700.

4.3.3 Details of the Test Case

Geometry of the Computational Domain and Grids

The 2D laminar flow around a square cylinder with diameterD centred inside a plane
channel (heightH) was investigated (see Fig. 4.10). The blockage ratio was fixed atB =
1/8. In order to reduce the influence of inflow and outflow boundary conditions, the length
of the channel was set toL/D = 50. For the Finite-Volume computations an inflow length
of l = L/4 was chosen. For the Lattice-Boltzmann simulations, the inflow length was
varied betweenl = L/4 andL/3 to investigate the influence of different inflow and outflow
lengths. However, only negligible deviations in the results were found.

The geometry for the Lattice-Boltzmann method was created with the marker-and-cell ap-
proach: single lattice nodes are either occupied by an elementary obstacle or they are free.
The Finite-Volume code is written for general body-fitted curvilinear coordinates. Owing
to the specific geometry in the present study, only Cartesiangrids are applied. However,
in contrast to Lattice-Boltzmann, Finite-Volume allows the application of non-equidistant
stretched grids. This has the advantage that grid points canbe clustered in regions of large
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Figure 4.10: Definition of the geometry and integration domain.

gradients (e.g. in the vicinity of the cylinder) and coarsergrids can be used in regions of
minor interest. Consequently, fewer grid points are necessary for the Finite-Volume simu-
lation to achieve the same accuracy as the Lattice-Boltzmann method. Table 4.1 gives an
overview of all grids used in the present study. Four different equidistant grids with up
to 640,000 lattice nodes were generated for the Lattice-Boltzmannsimulations. The num-
ber of lattice nodes on each side of the square cylinder varies between 10 and 40, leading
to smallest distances between lattice nodes of 0.1D−0.025D. Three different grids were
used for the Finite-Volume simulation. The first is equal to the coarsest grid for Lattice-
Boltzmann. The second and third are stretched grids (geometrical series) where the grid
points are highly clustered in the vicinity of the cylinder.On the finest grid each face of the
cylinder is discretised by 100 control volumes (CV) and the smallest CV has a chord length
of 0.01D, which is 2.5 times smaller than on the finest grid used for Lattice Boltzmann.

Method Total no. Grid No. of CV Smallest CV Max. stretching
of CV type on cylinder at cylinder/D factor

LB 500∗80 equid. 10 0.1 1
LB 1000∗160 equid. 20 0.05 1
LB 1500∗240 equid. 30 0.033 1
LB 2000∗320 equid. 40 0.025 1

FV 500∗80 equid. 10 0.1 1
FV 400∗240 non-equid. 80 0.01 1.03
FV 560∗340 non-equid. 100 0.01 1.02

Table 4.1: Overview of all grids used.
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Boundary Conditions

Wall Boundary Conditions There is a long ongoing discussion on the proper use of
wall boundary conditions within the framework of Lattice-Boltzmann (see Chap. 2.2.3). It
is often argued that the so-called ‘bounce-back’ wall boundary conditions, which are also
used in the present implementation of the Lattice-Boltzmann scheme, are of first-order ac-
curacy, whereas the Lattice-Boltzmann equation is of second-order. However, as explained
in Chap. 2.2.3, more detailed investigations showed that the error produced by the bounce-
back boundary condition is sufficiently small if the relaxation parameterω is sufficiently
close to 2, allowing precise knowledge of the wall position with zero flow velocity. There-
fore, we believe that the bounce-back conditions can be usedwithout any influence on the
order of the Lattice-Boltzmann scheme for the square geometries considered here, ifω is
chosen within a suitable range.

In the framework of Finite-Volume simulations of laminar flows, solid walls can be easily
modelled by Stokes’ no-slip wall boundary condition assuming~v= 0 at the wall. In contrast
to the bounce-back condition for Lattice-Boltzmann, thereis no question about the no-slip
condition for incompressible flows.

Inflow Boundary Conditions In order to simulate fully developed laminar channel flow
upstream of the square cylinder, a parabolic velocity profile with maximum velocityumax

was prescribed at the channel inlet. This velocity was chosen to be lower than 10 % of the
speed of sound for the Lattice-Boltzmann simulations to avoid significant compressibility
effects, which are known to increase with the square of the Mach number [144]. In the
Lattice-Boltzmann implementation for this study, the pressure at the inlet was extrapolated
upstream, and the equilibrium density distribution was computed from this pressure and the
given velocity and imposed at the first lattice column. The inlet region was chosen to be
long enough to ensure that a slight error which occurs from neglecting the non-equilibrium
part in the density distribution has no influence on the results presented thereafter. The
Finite-Volume code does not require any boundary conditionfor the pressure.

Outflow Boundary Conditions At the outflow boundary slightly different boundary con-
ditions are used for Lattice-Boltzmann and Finite-Volume methods. However, owing to the
extremely large integration domain behind the cylinder, noinfluence is expected for the so-
lution in the vicinity of the cylinder. For Lattice-Boltzmann, a fixed pressure is imposed in
terms of the equilibrium distribution function at the outlet. For this task, the velocity com-
ponents are extrapolated downstream. For the Finite-Volume code a convective boundary
condition given by

∂ui

∂ t
+ uconv

∂ui

∂x
= 0 (4.13)

is used at the outflow boundary, whereuconv was set equal to the maximum velocityumax

of the inflow profile. This condition ensures that vortices can approach and pass the out-
flow boundary without significant disturbances or reflections into the inner domain. In all
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previous computations of different test cases [133, 134, 135, 136, 139, 140], the convective
boundary condition was found to work very well. Likewise, nodifficulties were observed
in the case of the square cylinder flow.

4.3.4 Results and Discussion

A Reynolds number range 0.5≤Re≤ 300 was investigated numerically, whereReis based
on the cylinder diameterD and the maximum flow velocityumaxof the parabolic inflow pro-
file. The following section starts with a description of the different flow patterns observed
with increasingRe. The subsequent sections present a detailed comparison of the computed
results (Lattice-Boltzmann and Finite-Volume) based on velocity profiles at several posi-
tions in the flow field. Furthermore, the computations are analysed and compared regarding
integral flow parameters such as recirculation length, Strouhal number and dimensionless
force coefficients (lift and drag).

Flow Pattern

Fig. 4.11 shows computational results (Finite-Volume) in the vicinity of the cylinder by
streamlines at four different Reynolds numbers (Re= 1,30,60,200), each characterising
a different flow regime. At lowRe≤ 1, the creeping steady flow past the square cylin-
der persists without separation (Fig. 4.11(a)). The magnitude of viscous forces decreases
with increasingReuntil a certain value, at which separation of the laminar boundary lay-
ers occurs. In comparison with the circular counterpart, for which a value ofRe≈ 5 was
found [119], separation at the trailing edges of the sharp-edged body can be observed at
lower Re. Above this limit, the wake comprises a steady recirculation region of two sym-
metrically placed vortices on each side, as shown in Fig. 4.11(b) atRe= 30, the length ow
which grows asRe increases. The same trend was observed for circular cylinders. Ow-
ing to the sharp corners, the separation point is fixed at the trailing edge and the flow is
attached at the side walls. The steady, elongated and closednear-wake becomes unstable
whenRe> Recrit (Fig. 4.11(c)). The transverse oscillation starts at the end of the near-
wake and initiates a wave along the trail. This phenomenon isvisualized by streak-lines
in Fig. 4.12(a) (Re= 60). Weightless particles released at different sources infront of
the cylinder were integrated during the time-dependent flowcomputation. For the circular
cylinder the onset of the wake instability was found to be a manifestation of a Hopf bifurca-
tion [118], and there is no counter-argument available to indicate that the same mechanism
is not responsible for the onset of the wake instability alsofor a square cylinder. As stated
in the introduction, Kelkar and Patankar [121] determined acritical value ofRecrit = 54.
Although this limit depends on flow parameters such as the blockage ratio, a similar value
(Recrit ≈ 60) was observed in the present computations. WhenRe is further increased,
the free shear layers begin to roll up and form eddies as shownin Fig. 4.12(b) atRe= 100.
This phenomenon is well known as the von Kármán vortex street. The wavelength of vortex
shedding decreases with risingRe, as seen in Figs. 4.12(a-c). Another important change
in the flow structure is observed in the rangeRe= 100−150, where separation starts at
the leading edge of the cylinder (Fig. 4.11(d),Re= 200). As will be seen below, this
strongly influences the frequency of vortex shedding. The upper limit of this laminar 2D
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shedding has an enormous spread in the literature. Preliminary three-dimensional simula-
tions with the LESOCC-code have shown that the flow computation shown in Fig. 4.12(d)
at Re= 300 is slightly beyond the limit where two-dimensional simulations can be per-
formed. The deviations from fully periodic structures in the far wake are also a clear hint
for this statement. Furthermore, it should be considered that the Reynolds number based on
the channel heightH and the mean velocityumeanin the channel is alreadyRechannel= 1600
for this case. Therefore, owing to the triggering effect of the obstacle on the channel flow,
transition to turbulence has to be expected leading to three-dimensional structures in the
wake.

Figure 4.11: Streamlines around the square cylinder for different Reynolds numbers, from top left
to lower right:Re= 1,30,60,200.

Steady Flow:0.5≤ Re< 60

Recirculation Length The length of the closed near-wake (Lr ) has been measured for a
circular cylinder, eliminating the effect of blockage by extrapolating the measured data to
B→ ∞. Then the empirical relationship is linear [119]:

Lr/D = 0.05Re for 4.4 < Re< 40 (4.14)

Fig. 4.13 illustrates the computed values for the recirculation lengthLr for a square cylinder
inside a channel as a function of the Reynolds number. First,in Fig. 4.13(a) the Finite-
Volume results obtained on the three different grids are compared in order to prove grid
independence. On the coarsest grid the recirculation length is slightly shorter than that
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Figure 4.12: Streak-lines around the square cylinder for different Reynolds numbers, from top to
bottom:Re= 60,100,200,300.

on the medium and fine grid. The agreement between the two non-equidistant grids is
excellent over the entire Reynolds number range. No improvements can be expected by
further grid refinement. Fig. 4.13(b) shows a comparison of the Lattice-Boltzmann and
Finite-Volume results based on the finest grids used for bothmethods (see Table 4.1). The
computed values forLr coincide, showing a linear dependence on the Reynolds number.
Similar to the relationship (Eqn. 4.14) for the circular cylinder, a curve fit of the square
cylinder results (B = 1/8) leads to

Lr/D =−0.065+0.0554Re for 5 < Re< 60 (4.15)

which is also plotted in Fig. 4.13(b). As a consequence, the recirculation length of the
confined square cylinder flow is slightly shorter for Reynolds numbers belowRe≈ 12
and larger above this value in comparison with the circular counterpart. Unfortunately, no
experimental data for comparison can be found in the literature for the square cylinder.

Drag Coefficient One of the most important characteristic quantities of flow around a
cylinder is the drag coefficientCd. In the region of small Reynolds numbers, the drag
coefficient varies strongly withRe. The contributions of the viscous and pressure forces to
the total drag are of the same order of magnitude. A comparison of the computed Finite-
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Figure 4.13: Computed recirculation lengthLr vs. Reynolds number. (left:a) Comparison of differ-
ent Finite-Volume results; (right:b) comparison of Finite-Volume and Lattice-Boltzmann results on
finest grids.

Volume results on the three different grids is shown in Fig. 4.14(a) for the steady-state
results in the range 0.5≤ Re≤ 60. On the coarsest grid the drag coefficient is slightly
smaller than on the medium and fine grid, especially at the lower end of theRe range.
The agreement between the results of the two non-equidistant grids is excellent over the
entire Reynolds number range. As mentioned previously, no improvements are expected
on further grid refinement. Fig. 4.14(b) shows a comparison of the Lattice-Boltzmann and
Finite-Volume data on the finest grid levels for 10≤ Re≤ 60. Deviations occur for small
Reynolds numbers, but the agreement for the upperRe range considered is satisfactory.
Because the discrepancies are larger in the lowerRerange, where the viscous forces play
a dominant role for the drag, it can be concluded that an insufficient resolution of the
boundary layers by the Lattice-Boltzmann method is responsible. This also agrees with the
observations based on the Finite-Volume results on the coarsest grid, which show larger
deviance from the fine grid solutions at the lower end of theRerange.

Unsteady Flow: 60≤Re≤ 300

Velocity Profiles In order to make a detailed comparison of the Lattice-Boltzmann and
Finite-Volume results, velocity profiles at different positions in the flow field were extracted
at Re= 100. Because the flow is unsteady at thisRe, it was first necessary to define the
moment of evaluation. In the present study this is given by the time level at which the
cross-stream velocityV at an axial position of 10D behind the cylinder (x = 10.5,y = 0)
changes its sign from minus to plus. Fig. 4.15 shows the distribution of the two velocity
components along the centreline. Both Lattice-Boltzmann and Finite-Volume results were
achieved on the finest grid (Table 4.1). The agreement between the Lattice-Boltzmann
and Finite-Volume simulations is excellent in the upstreamregion, in the vicinity of the
cylinder and also in the downstream region up to about 12D. In the far wake> 12D,
small deviations occur. However, these can be explained. Owing to the stretched grids
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Figure 4.14: Computed drag coefficientCd vs. Reynolds number for steady flow. (left:a) Com-
parison of different Finite-Volume results; (right:b) comparison of Finite-Volume and Lattice-
Boltzmann results on finest grids.

used in the Finite-Volume computations, the resolution in the vicinity of the cylinder is
higher than that for the Lattice-Boltzmann simulations, whereas in the far wake the grid
is much coarser. This is a typical configuration when flows around bodies are investigated
and special attention is paid to the vicinity of the structure. Owing to the present version of
the Lattice-Boltzmann (equidistant grids), this strategywas not applied, leading to a higher
resolution and therefore more accurate results for Lattice-Boltzmann compared with Finite-
Volume.

Figure 4.15: Comparison of instantaneous Lattice-Boltzmann and Finite-Volume results at a certain
moment (see text for explanation): (left:a) stream-wise (U ) and (right:b) cross-stream (V) velocities
along the centreline (y = 0), Re= 100.
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Fig. 4.16 shows velocity profiles ofU andV at three different axial positions,x = 0D,4D
and 8D. For the profile through the centre of the cylinder (x = 0), no deviations are visible
between the two sets of results. Further downstream small deviations occur, especially for
theV component which is smaller thanU and therefore more difficult to predict correctly.
When assessing the agreement between the results of the different numerical methods, the
unsteady nature of the flow must be considered. The definitionof the moment of evaluation
has a strong influence on the results. Owing to finite time steps (and also finite spatial
resolution), the accuracy in time in the worst scenario is one time step size. Therefore, an
exact agreement between the computational results cannot be expected.

Figure 4.16: Comparison of instantaneous Lattice-Boltzmann and Finite-Volume results at a certain
moment (see text for explanation): (left:a) stream-wise (U ) and (right:b) cross-stream (V) velocities
at three different positions in the flow field, centre of cylinder (x = 0), near-wake (x = 4D) and
far-wake (x = 8D), Re= 100.

Strouhal Number One important quantity considered in the present analysis is the
Strouhal numberSt, computed from the cylinder diameterD, the measured frequency
of the vortex sheddingf and the maximum velocityumax at the inflow plane:

St=
f D

umax
(4.16)

The characteristic frequencyf was determined by a spectral analysis (fast Fourier trans-
formation, FFT) of the time series of the lift coefficientCl . Fig. 4.17 illustrates the com-
putational results of both methods, where the Lattice-Boltzmann data are represented by
lines and the Finite-Volume results are given by symbols (partly with lines). All simula-
tions, including those on the coarse grids, agree fairly well in theRerange 60≤Re≤ 133,
showing an increase in the Strouhal number with increasingRe. At the upper limit of
this range an important change in the flow structure takes place, namely the movement of
the separation point from the trailing edge to the leading edge of the square cylinder. As
expected, the separation on the side walls is strongly influenced by the resolution in the
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vicinity of the body. Therefore, the results of both methodson the coarsest grid with only
10 points on each surface do not have to be taken seriously. Atthe finest resolution of the
Lattice-Boltzmann simulation, each side of the cylinder isrepresented by 40 nodes with
the smallest distance to the wall being 0.025D. The Finite-Volume applies 100 CV at each
surface on the finest level with a 2.5 times smaller wall distance (stretched grid), resulting
in a much finer resolution in the vicinity of the cylinder. Therefore, the small discrepan-
cies between the computed Strouhal numbers of Lattice-Boltzmann and Finite-Volume at
Re> 133 are probably due to the insufficient resolution of the recirculation regions at the
side walls for Lattice-Boltzmann. However, owing to resource limitations, no further re-
finement was possible for the Lattice-Boltzmann simulations. The Strouhal number has a
maximum at aboutRe= 150− 160 and decreases again for higherRe. With the excep-
tion of the results on the coarsest grids, the agreement between the Lattice-Boltzmann and
Finite-Volume data is reasonable.

Figure 4.17: Computed Strouhal numbers vs. Reynolds numberfor Lattice-Boltzmann and Finite-
Volume on different grids.

In order to demonstrate this good agreement in comparison with data from the literature,
Fig. 4.18 provides a collection of different numerical investigations for blockage ratios
B = 0−1/4. No experimental data are available for a parabolic inflow profile. Mukhopad-
hyay et al. [126] carried out numerical simulations in theRerange 90≤ Re≤ 1200 with
equidistant grids of up to 396∗66 CV, resulting in an extremely coarse resolution of 8∗8
grid points on the side walls of the cylinder. ForB = 1/8 the Strouhal numbers increase
with increasing inRewithout showing a maximum. In comparison with the present re-
sults included in Fig. 4.18, the Strouhal numbers of Mukhopadhyay et al. [126] are much
smaller. However, theSt values for highReare particularly questionable because the flow
should be turbulent inside the channel at the upper limit of the computedRe range. For
B = 1/4 theSt curve looks totally different and has a maximum atRe≈ 200. Suzuki et
al. [127] also carried out numerical investigations. They applied a non-equidistant grid
with 207∗54 CV and three different blockage ratios (B= 1/20,1/10,1/5) were evaluated.
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Figure 4.18: Comparison of computed Strouhal numbers (Lattice-Boltzmann and Finite-Volume)
on finest grids with data from the literature. (left:a) Entire St(Re) range; (right:b) Zoom of the
interesting region, same legend as in (a).

However, only forB = 1/5 are enough values available to determine theSt(Re) relation-
ship plotted in Fig. 4.18. The curve has a maximum atRe≈ 150 and is in good agreement
with the results of the present study, although the blockageratio is higher. Davis et al.
[123] investigated this flow problem experimentally and numerically for B = 1/6 and 1/4.
However, in the experimental investigations, non-parabolic inflow profiles were detected.
For the numerical simulations, only oneSt value is given for each blockage ratio in theRe
range of the present work. Franke et al. [120] computed the laminar cylinder flow under
free stream conditions (B = 0). They found a similarSt(Re) curve to that in the present
investigation with a maximum atRe≈ 150. TheSt values are slightly higher than the
Lattice-Boltzmann and Finite-Volume results in the present study (B = 1/8), although it is
well known that an increase in the blockage ratio should leadto an increase inSt12. Further-
more, Okajima [124] found a local maximum of the Strouhal number at the same Reynolds
number as Franke et al. [120] and the present study in his experimental investigation on
rectangular cylinders under free stream conditions. In conclusion, theSt data for confined
square cylinder flow taken from the literature are highly scattered. The corresponding val-
ues for free stream conditions show at least a local maximum at the same Reynolds number
as in the present work, but the values cannot be compared, directly owing to the influence
of blockage. However, in the view of these large deviations,the differences between the
computed Lattice-Boltzmann and Finite-Volume results areonly marginal.

Drag and Lift Coefficients In the unsteady 2D flow regime (60≤ Re≤ 300) the near-
wake becomes unstable and a sinusoidal oscillation of the shear layers commences, later
forming the von Kármán vortex street. In Fig. 4.19(a), thetime-averaged drag coefficients

12Note that in the present studyReandStare based on the maximum flow velocity of the parabolic inflow
profile and that a redefinition based on the mean velocity would change the comparison with the free stream
case.
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in this Rerange are plotted for the three Finite-Volume computations. TheCd(Re) curve
has a local minimum atRe≈ 150. Up toRe≈ 100−150, good agreement is achieved on
the three different grids. However, for largerRe, theCd values on the coarsest grid deviate
strongly from the data on the two finer grids, which are themselves in close agreement.
This discrepancy is clearly caused by the insufficient resolution of the cylinder vicinity
for the coarse grid, which plays a dominant role especially in theRerange at which sep-
aration moves from the trailing to the leading edge of the cylinder. Fig. 4.19(b) shows
a comparison of the Lattice-Boltzmann and Finite-Volume results both obtained on the
finest grid level. The agreement between the Lattice-Boltzmann and Finite-Volume data is
satisfactory up toRe≈ 100. Above this value, the drag coefficients computed by Lattice-
Boltzmann are systematically higher. Comparison of Fig. 4.19(a) and (b) shows that the
Lattice-Boltzmann data on the finest grid are in close agreement with the Finite-Volume on
the coarsest grid. Therefore, the deviations between Lattice-Boltzmann and Finite-Volume
results on the finest grids are expected, again, to be an effect of insufficient resolution for
Lattice-Boltzmann, especially in the vicinity of the cylinder.

Figure 4.19: Computed time-averaged drag coefficientCd vs. Reynolds numberRe for unsteady
flow. (left:a) Comparison of different Finite-Volume results; (right:b) comparison of Finite-Volume
and Lattice-Boltzmann results on finest grids.

No experimental or other numerical data for comparison werefound in the literature for
the same inflow conditions and blockage ratio. However, at least the computations of
Franke [120, 128] for a square cylinder under free stream conditions confirm our finding of
a localCd minimum approximately at the Reynolds number where separation is initiated at
the leading edge.

Finally, in Fig. 4.20 the variation of the drag coefficient (max(Cd)−min(Cd)) and the lift
coefficient (max(Cl )−min(Cl)) are plotted for the Finite-Volume computations. The am-
plitudes of theCl oscillations are approximately one order of magnitude larger than the
corresponding drag values. The drag variation increases progressively over the entireRe
range, whereas for the lift variation a degressive increaseis observed up toRe≈ 150 fol-
lowed by an inflexion point. The results on the two finer grids are in close agreement. No
reasonable results are obtained on the coarse grid above theinflexion point owing to the
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resolution problem discussed previously. No data were found in the literature for the vari-
ation of drag and lift of confined square cylinders. Only the work of Franke [128] reports a
similar curve for the amplitude of the lift coefficient, but for free stream conditions, which
make a direct comparison impossible.

Figure 4.20: Variation of force coefficient vs. Reynolds number for Finite-Volume results. (left:a)
Drag variation,max(Cd)−min(Cd); (right:b) lift variation,max(Cl )−min(Cl).

4.3.5 Conclusion

The lack of accurate and detailed data found in the literature for confined laminar flow past
a square cylinder initiated the present work. In order to generate reliable numerical re-
sults, two different approaches were applied to investigate the two-dimensional flow past a
square cylinder inside a channel (B= 1/8) for the Reynolds number range 0.5≤Re≤ 300.
For both methods (a Lattice-Boltzmann implementation developed for equidistant orthog-
onal lattices and a general-purpose Finite-Volume method)grid independence of the re-
sults was first investigated. For steady flow (Re< 60) excellent agreement between the
Lattice-Boltzmann and Finite-Volume results was found forthe length of the recirculation
region. Small deviations were detected for the drag coefficients in the lowerRe range.
The unsteady flow computations impressively demonstrate the capability of the Lattice-
Boltzmann method to deal with instantaneous flows. Velocityprofiles at different locations
in the flow field (Re= 100) were evaluated and compared with the Finite-Volume data,
showing very good agreement. Strouhal numbers were determined for the entire Reynolds
number range. Both methods provide a local maximum ofSt at Re≈ 150. Compared
with the scattered data in the literature, the deviations between the Lattice-Boltzmann and
Finite-Volume results are almost negligible. Finally, drag coefficients were computed and
compared. As is known from the literature for square cylinders in free stream, the drag co-
efficient of a confined cylinder also shows a local minimum atRe≈ 150. In conclusion, the
study presented in this section provides reliable and accurate results for confined cylinder
flow which were not previously available.
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4.4 Numerical Analysis of the Pressure Drop in
Porous Media Flow13

The final flow study in this chapter brings a comparison of Lattice–Boltzmann simulations
to experimental results in the very domain of Lattice-Boltzmann: the simulation of low-
Reynolds complex geometry flow.

The Lattice-Boltzmann method is used in this study for a detailed investigation of the ori-
gins of the pressure drop in porous media flow. In agreement with the experimental results
[14] it is shown that the elongation and contraction of fluid elements is an important fac-
tor for the pressure loss in porous media flow and that a significant error is made when
only shear forces are taken into account. To obtain the geometry information of the porous
media for our simulations, we used the 3D computer tomography technique.

As shown in the previous chapters, one advantage of the Lattice-Boltzmann method is its
specific way of handling large computational meshes regardless of the complexity of the
geometry. The detailed discretisation of the porous geometry allows the exact simulation
of the transport of mass and momentum without any of the underlying semi-empirical ho-
mogenisation models, generally used in engineering applications. Thus, on one hand, they
allow for investigations of the transport phenomena in porous media and improvements of
the basic understanding, e.g. of the high viscous pressure losses in these flows. On the other
hand, valuable information entering in the formulation of homogenisation models can be
obtained from these data. In this respect, the Lattice-Boltzmann method may be consid-
ered to replace standard experiments to determine quantities such as the permeability, with
the additional advantage that more information about localflow properties can be obtained
than usually possible in experiments.

Quantitatively accurate Lattice-Boltzmann simulations for the specific case of fibrous me-
dia have been carried out by Kandhai and Koponen et al. [45, 148]. In these studies, the
permeability was measured as a function of porosity and the Lattice-Boltzmann method
was shown to deliver accurate results over a wide range of porosities for sufficient discreti-
sations, taking into account finite-size effects. It is worth noting that for high porosities
the simulations showed a tendency to over-estimate the dissipative effects when compared
to theoretical values. A possible explanation (in additionto the one given in the quoted
literature) might well be found in the analysis presented within this section.

The standard homogenisation approaches usually applied for Finite-Volume simulations in
complex geometries are based on the assumption of a linear orquadratic relationship be-
tween the pressure gradient and the mean velocity (Darcy or Forchheimer law, see e.g. [149,
150, 151, 152]). Usually, a proportionality is assumed witha constant permeability. This
parameter has to be estimated from experiments or from theoretical considerations, such as

13The research work presented in this section was performed atLSTM Erlangen (Germany) under super-
vision of G.Brenner and F.Durst. It was presented at the Workshop on Scientific Computing in Chemical
Engineering II (Hamburg, Germany, 1999), the International Symposium on the Discrete Simulation of Fluid
Dynamics - LGA’99 (Tokyo, Japan, 1999) and the First International Conference on Computational Fluid
Dynamics - ICCFD (Kyoto, Japan, 2000), published in [145, 146, 147, 57]. The author would like to thank
the Hattinger Prüf- und Entwicklungs- GmbH (HAPEG) for providing the computer tomography data. This
project was founded by the Deutsche Forschungsgemeinschaft (Proj.Nr. Br 1864/1).
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the Kozeny-Darcy equation (see, e.g. [153]). In this theory, it is assumed that the porous
media can be modelled as a bundle of capillaric tubes. Only shear forces in a laminar
Poiseuille-like flow are taken into account and any forces due to elongation and contrac-
tion of fluid elements are neglected. Durst [14] demonstrated that this approach leads to
an underestimation of the momentum loss by a factor of 2.5 anda significant discrepancy
from experimental results for specific geometries. The discrepancy between the pressure
loss predicted by such capillaric models and the experimental results is usually explained
by the introduction of another fitting parameter, the ‘tortuosity factor’. While in some mod-
els the tortuosity is assumed to be just a numerical parameter to fit the experimental data,
other approaches link it to the effect of additional length of the channels due to the complex
tortuous structure of the flow paths.14

In this last section, the results of detailed numerical simulations are used to investigate
quantitatively the effect of elongational forces and theircontribution to the pressure loss in
porous media flows.

In the next section, we summarise the basic idea of the capillaric theory in comparison to
some experimental results and present two simulations of porous media flow. In the last
part, the results of these two simulations are evaluated with regard to shear and elongational
forces and their contribution to the pressure drop.

4.4.1 Analytical Models for the Pressure Drop

In general, the idea behind analytically estimating a viscous porous media flow is to define
a relation which describes the pressure drop as a function ofthe geometry (e.g. porosity,
specific surface), fluid parameters (density, viscosity) and flow parameters (velocity).

∂xP = f (geometry, f luid, f low) (4.17)

Kozeny-Darcy Equation

The most common models which address this problem can be summarised under the term
‘capillaric theories’, where the porous media flow is being modeled as a flow through a
bundle of channels with weakly changing cross-sections. For each of these channels, the
Navier-Stokes equation can be solved, and the relationshipof the mean flow velocityŨx

and the pressure drop for a single channel results in:

Ũx =− 1
2µ

(
dP
dx

)

R2
h (4.18)

whereP is the pressure,µ the fluid viscosity andx the mean flow coordinate. The hydraulic
radiusRh, which is defined as the ratio of fluid volume and wetted surface, can be derived
from the radiusRof the pipe by:

14For a detailed discussion of the various definitions of tortuosity see e.g. [154].
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Rh =
πR2

2πR
=

R
2

(4.19)

Now, assuming a bundle of tubes with an average hydraulic radius R̃h and a lengthL,
(Eqn. 4.18) can be rewritten as:

Ũx =− 1
2µ

∆P
∆L

R̃2
h (4.20)

Neglecting the underlying channel-geometry, one can try touse this formula as a general
expression for calculating the pressure drop in other typesof geometries, assuming that the
average hydraulic radius is known or can be derived. For example, consider a porous media
built up of spheres of an average diameterD̃p. R̃h can be written as a function of̃Dp and
its porosityε:

R̃h =
D̃p

6
ε

(1− ε)
(4.21)

Inserting this expression into Eqn. 4.20 yields:

Ũx =
1
ε

U0 =
1

2µ
∆P
∆L

D̃p
2

36
ε2

(1− ε)2 (4.22)

whereU0 is the so called ‘effective velocity’ inside the porous media.

Eqn. 4.22 can be rewritten in so called Ergun coordinates (see, e.g. [153]),

72=

[
∆P
∆L

D̃p

ρ U2
0

ε3

(1− ε)

][
U0 D̃pρ
µ (1− ε)

]

(4.23)

Introducing the dimensionless quantities Reynolds numberReand friction factorf as de-
fined by

f =
∆P
∆L

D̃p

ρ U2
0

ε3

(1− ε)
(4.24)

Re=
U0D̃pρ
µ (1− ε)

(4.25)

the advantage of using the Ergun coordinates becomes obvious, because Eqn. 4.23 can be
written in the compact form

f =
Λth

Re
(4.26)

with the ‘theoretical’ friction coefficientΛth = 72.
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4.4.2 Experimental Results

The friction coefficient was experimentally measured by Durst [14] for a packed bed of
spheres with different diameters with a wide range of Reynolds numbers (see Fig. 4.21).

Figure 4.21: Friction coefficient versus Reynolds number (section from [14]).

For Reynolds numbers belowRe= 1, the experimentally determined friction coefficient
appears to be constant withΛexp = 182. This value is about 2.5 times higher than the
theoretical one derived within the capillaric theory.

To explain this additional pressure loss, it is usually argued, that the capillaric theories do
not take into account the complex paths, the fluid normally has to go through a porous
media. When only the effects of longer flow paths compared to the edge length of a porous
media are considered, the tortuosity factor is introduced as follows (see, e.g. [153]):15

τ =
lengtho f f low paths

macroscopic lengthscale
(4.27)

It might be doubted that a tortuosity factor ofτ = 2−3 only caused by the additional length
of the flow paths is a realistic assumption, because this would imply that the length of the
fluid channels is up to three times larger than the length of the porous media.16

In the following section, by applying the Lattice-Boltzmann method for a detailed investi-
gation of complex geometry flow, we will show that there exists another, by the capillaric
theories, not recognised physical effect causing pressuredrop in porous media flow.

15As Koponen [154] remarks that “it is evident that, as a physical quantity, tortuosity is not uniquely
defined”.

16Direct measurements of the tortuosity for 2D samples of randomly placed rectangles were carried out
by Koponen [154]. A relation between porosity and tortuosity was established, resulting in a maximum
tortuosity ofτ < 1.6 for the lowest porosities.
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4.4.3 Numerical Simulation of Porous Media Flow

The flow field produced by a Lattice-Boltzmann flow simulationthrough a packed bed of
spheres was analysed with respect to the elongational stresses, which can produce addi-
tional pressure losses.

Boundary Conditions

A parabolic velocity inlet profile and fixed pressure at the outlet were chosen for all test
cases. This was achieved by introducing the equilibrium density distribution at the first and
last lattice column computed with an upstream extrapolatedpressure and a downstream ex-
trapolated flow velocity for the inlet and outlet respectively. The inlet and outlet region was
chosen to be long enough to prohibit any errors introduced bythis method from affecting
the measured quantities.

To ensure a fix position of the solid surface with the standardbounce-back wall boundary
condition applied here (see the discussion in Chap. 2.2.3),the relaxation parameterω was
only allowed to vary in a very small range after calibrating.17

Validation

To produce quantitatively reliable CFD-data, it is necessary to ensure the grid indepen-
dence of the numerical results. This is usually done by discretising the same geometry
with meshes of increasing sizes and observing the convergence of the results with increas-
ing mesh refinement. When applying the marker-and-cell approach, a discretisation of
spherical objects with rectangular elements makes it necessary to carefully investigate the
discretisation error.

As a validation test case, the pressure drop for low Reynoldsnumber flow through an
orthorhombic package of spheres was simulated. The domain sizes were chosen to be
lx∗ ly∗ lz = 120∗20∗20 lattice nodes for the 8∗2∗2 spheres with a diameter ofDp = 10
for the coarsest resolution andlx ∗ ly ∗ lz = 480∗ 80∗ 80 lattice nodes withDp = 40 for
the finest resolution. Periodic boundary conditions were applied normal to the main flow
direction to make this test case similar to the experimentalset up of Durst et.al. [14].

Good convergence of the numerically achieved friction coefficient to the experimental val-
ues (see Fig. 4.21) can be observed in Fig. 4.23. A sphere diameter ofDp = 20 is sufficient
to approach the convergence result to within< 3%. This is consistent with results by Kand-
hai and Koponen et al. [45, 148] on fibrous media, who found a diameter of 15-20 lattice
nodes for the fibre diameter sufficient to achieve resolution-independent results.

In order to use realistic geometries for further pressure drop studies, two porous media
from engineering applications were chosen: one sponge-like SiC matrix, and one catalytic
converter consisting of a tube filled with spheres.

17At the time of the publication the author believed that an additional relaxation step on the wall boundary
nodes helped further to improve that scheme. Alas, this assumption was never systematically investigated.
See also Chap. 6.5.1 ‘If I did it today . . . ’.
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Figure 4.22: Packed bed of spheres, surface shaded by the pressure.

Figure 4.23: Friction coefficient versus particle diameter.

Geometry Pre-Processing

For both samples, the geometry was digitised using 3D computer tomography (3D-CT).
The tomography data were mapped on an equidistant orthogonal mesh for the lattice Boltz-
mann simulation [51, 145].
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Case 1: Catalytic Converter

A cylindrical porous probe with a height of 110 mm and diameter of 80 mm was scanned
using 3D-CT with an average resolution of 0.9 mm. This leads to a discretisation of
lx ∗ ly ∗ lz = 123∗ 90∗ 90 voxel. The complex geometry data were centred inside an
lx∗ ly∗ lz = 250∗99∗99 sized channel (see Fig. 4.24), and a flow with a Reynolds number
of approximatelyRe≈ 0.1 was simulated using velocity inlet and pressure outlet boundary
conditions.

Figure 4.24: Computer tomography data as input for the Lattice-Boltzmann simulation: catalytic
converter.

The simulation was performed on one processor of a VPP 700 at the Leibniz-Rechenzen-
trum in Munich; 50,000 iterations were necessary for this set-up, which took about 25,200
CPU seconds and 850 MBYTE of computer memory were necessary for the storage of the
≈ 2.45∗106 voxel.

Figure 4.25: Pressure field for the flow through a catalytic converter (x-z plane).
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Case 2: SiC Matrix

A cylindrical porous probe with a height of 30 mm and a diameter of 82 mm was scanned
using 3D-CT with an average resolution of 0.5 mm. This leads to a discretisation of
lx∗ ly∗ lz = 44∗147∗147 voxel (see Fig. 4.26). The average diameter of the flow chan-
nels is large enough with this resolution to produce resolution-independent results. The
complex geometry data were centered inside anlx∗ ly∗ lz = 100∗149∗149 sized channel,
and a flow for a Reynolds number of aboutRe≈ 0.1 was simulated using velocity inlet and
pressure outlet boundary conditions.

Figure 4.26: Computer tomography data as input for the Lattice-Boltzmann simulation: SiC matrix
(right: section).

The simulation was performed on one processor of a VPP 700 at the Leibniz-Rechenzentrum
in Munich; 10,000 iterations were necessary for this set-up, which took about 5760 CPU
seconds18 and 800 MBYTE of computer memory were necessary for the storage of the
≈ 2.2∗106 voxel. The pressure distribution in a cross-section and thevelocity iso-surface
(isotache) can be seen in Fig. 4.27.

Analysis of the Pressure Drop from Experimental Data

As argued above, the tortuosity is obviously not the only reason for the higher pressure drop
observed in experiments and numerical simulations when compared to the results derived
from the capillaric theories.

The total dissipation in the flow when passing through a porous media can be expressed by:

Φ =−τi j
∂ U j

∂ xi
(4.28)

18This simulation was repeated with the current sparse implementation on one CPU of the NEC SX-8
vector computer in less then 500 seconds.
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Figure 4.27: Pressure field for the flow through a porous SiC matrix (left: x-z plane, right: iso-
surface of the flow velocity (isotache), shaded by the pressure).

with

−τi j =−µ
(

∂ U j

∂ xi
+

∂ Ui

∂ x j

)

− 2
3

µ δi j
∂ U j

∂ xi
︸ ︷︷ ︸

= 0

(4.29)

for incompressible fluid.

Eqn. 4.28 can be rewritten as

Φ = −µ
(

∂ U j

∂ xi
+

∂ Ui

∂ x j

)
∂ U j

∂ xi

= −µ

{
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∂x3
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∂x3
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︸ ︷︷ ︸

Φs (shear)

}

(4.30)

The dissipation can thus be expressed as a sum of two parts: the dissipation caused by shear
forcesΦs and the dissipation caused by elongational strainΦe:

Φ = Φs+Φe . (4.31)

An evaluation of the detailed flow fields produced by the numerical simulation with the
fraction,Φe/Φs, yields:
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Example 1 (Catalytic Converter):

Friction coefficient Λ = 217.6

Dissipation (elongation) Φe = 2.111∗10−02

Dissipation (shear) Φs = 2.854∗10−02

elongation / shear Φe/Φs = 0.74

Example 2 (SiC matrix):

Friction coefficient Λ = 342.4

Dissipation (elongation) Φe = 3.853∗10−04

Dissipation (shear) Φs = 6.486∗10−04

elongation / shear Φe/Φs = 0.59

In both examples, the friction coefficientΛ is much larger than predicted by the capillaric
theory. A considerable amount of the pressure drop is causedby the elongational strainΦe,
what can be clearly observed from the relationΦe/Φs.

Similar to the case of a packed bed of spheres presented in theprevious section, an expla-
nation of the tortuosity only by the increased length of the flow channels is not correct.

It shall be noted that for both examples the friction coefficient is higher than that of the
previous test case. For the catalytic converter, possibly the confining tube and a different
(denser) packing of the spheres is responsible for the increase. Also the resolution of
the spheres with a diameter ofDp ≈ 10−15 is slightly too coarse, resulting in a too high
friction coefficient (see Fig. 4.23). Due to its completely different surface structure, a direct
comparison of the friction coefficient of this geometry withthe data measured by Durst for
a packed bed of spheres is not reasonable.

Case 3: Randomly Distributed Cubes

Geometry and Boundary Conditions For a refined test, five samples with a porosity of
ε = 0.75 were generated by randomly distributing cubes of edge length le = 10 lattice units
inside alx ∗ ly ∗ lz = 100∗50∗ 50 domain. Overlapping of the cubes was not allowed in
order to control the shape and specific surface of this artificial porous media.19

The whole set was centred inside alx ∗ ly ∗ lz = 200∗50∗ 50 sized channel and periodic
flow boundary conditions were applied orthogonal to the meanflow direction. At the inlet,
a constant velocity profile was applied, and at the outlet thepressure was fixed.

Simulation Parameters For each of the five samples, six simulations with Reynolds
Numbers in the range 0.01≤ Re≤ 100 were performed on a SGI Enterprise 2000 with
an 270 MHZ IP27 Processor. 180 MBYTE of memory were used for the 500,000 lattice
nodes, and for 20,000 iterations 45,000 s of CPU-time were consumed.

19The use of randomly distributed square shapes for Lattice-Gas simulations was first suggested by
Kohring [43].
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Simulation Results The friction factor can be derived from the flow field with the help of
the above mentioned equations. It is known from experimental investigations, that the fric-
tion factor is a constant forRe< 1 and increases linearly with the Reynolds number. As can
be seen in Fig. 4.28 (left), the experimental results by Durst et al. [14] predicting a relation
Λ = 182+1.75∗Refor the Reynolds number dependent friction factor are approximated
very well by the simulation results.

Figure 4.28: Left: friction factor as a function of Reynoldsnumber, right: relation of elongation and
shear, both for five different geometries and six different Reynolds numbers.

The dissipation caused by shear and elongation can be determined from the flow field by
evaluating Eqn. 4.30. As expressed by Eqn. 4.31, these two parts sum up to the total dissi-
pation and must therefore be directly related to the friction factor. This was investigated in
detail for the five simulation results atRe≈ 0.22. As can be seen from the plot on the right
hand side of Fig. 4.29,Φ is strongly related toΛ.

This result is in good agreement with the observation made inthe two previous studies with
a catalytic converter and a SiC structure, presented in the previous section.

Figure 4.29: Left: dissipation by shear, elongation and sum, right: total dissipation.

Comparing the tortuosity for the five different geometries (Fig. 4.30 left) with the total
dissipation (Fig. 4.29 right), one can see that these two quantities are not related to each
other and that the average tortuosity (τ ≈ 1.12, measured by integrating the average length
of streamlines) is much too small to explain the gap between capillaric theory and numerical
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Figure 4.30: Correlation between left: tortuosity, right:relationship of elongation and shear.

simulation. Comparing Fig. 4.30 (left) and Fig. 4.30 (right), there is a strong indication
that the tortuosity is related to the relation of dissipation caused by elongation and the
dissipation caused by shear. Thus, this relationshipΦe/Φs is, as is the tortuosity, directly
related to the geometry for low Reynolds number flow. This is also indicated by the almost
constantΦe/Φs over six orders of magnitude for the Reynolds number (Fig. 4.28, right).

4.4.4 Conclusion

Applying the Lattice-Boltzmann technique for low-Reynolds flow simulations through reg-
ularly packed beds of spheres, a digitised SiC matrix and randomly generated geometries,
we were able to determine the friction coefficient, the tortuosity and the dissipation caused
by shear and elongation of the fluid.

It could be shown by thea posteriorianalysis of the simulated flow fields, that elongational
strain gives an important contribution to the pressure drop. Therefore, the derivation of
a tortuosity factor from pressure drop measurements might produce a considerable error,
when neglecting the dissipation due to elongational strain. The hypothesis of elongated
flow paths cannot explain the gap between the friction factorpredicted by the capillaric
theory and experimental or numerical results.

We believe that the above study, validating almost 20 years old experimental results ob-
tained by Durst,20 is a very good example to exemplify the power of the Lattice-Boltzmann
method for quantitatively accurate simulations, particularly for complex flows.

20Due to their obvious contradiction to the widely accepted tortuosity hypothesis, these experimental re-
sults were highly criticised at the time of publication.
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Chapter 5

Multi-Physics Extensions

After investigating, in the previous chapter, a variety of complex flow problems with the
Lattice-Boltzmann method, the aim of this chapter is to review a few extensions towards
multi-physics applications. We speak of multi-physics, when more than ‘just flow’ has to
be considered within the simulation.

Studies carried out by Kaandorp on coral growth [41, 42] and transport and erosion pro-
cesses by Chopard, Masselot and Dupuis [155, 156, 157] are inspiring examples of multi-
physics extensions of the Lattice-Boltzmann method. The complexity of simulation results
achieved with these models are in fascinating contrast to their inherent simplicity.

We will demonstrate in the following that the Lattice-Boltzmann method is particularly
suited for integrating a variety of concepts for modelling multi-physics. It is the locality
of the method and the option of simple geometry representation by the marker-and-cell ap-
proach, which makes it possible to define and implement efficient models for the simulation
of complex, heterogeneous processes which interact with the transient fluid phase.

In this chapter, heterogeneous chemical reaction, adsorption and resorption in complex
geometries and milk/blood clotting simulations are presented.

5.1 Chemical Reaction Modelling1

In chemical engineering, diffusion and mass transport playan important role. The interplay
of mass transport and chemical reactions is of particular importance. An investigation of
the coupling of these transport phenomena is only possible when simultaneously solving
the Navier-Stokes equations and the convection-diffusion-reaction equation. With usual
engineering approaches, both equations are often treated separately on a global, or at least
homogenised, scale.

1The research work presented in this section was performed atthe C&C Research Laboratories, NEC Eu-
rope Ltd. (St.Augustin, Germany). It was presented at the First International Symposium on Advanced Fluid
Information - AFI-2001 (Sendai, Japan, 2001) and the Parallel Computational Fluid Dynamics - ParCFD
2002 (Kansai Science City, Japan, 2002), published in [98, 99]. Extensions of the reasearch presented here
was performed by T.Zeiser in co-operation with the author and published in [158, 159, 160, 161].
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Here we use the Lattice-Boltzmann method for calculating both, the flow of the carrier fluid
and the transport of the passive-scalar reacting chemical species simultaneously, using a
real digitised 3D geometry. For the carrier fluid and each species, a separate particle den-
sity distribution function with different relaxation times (kinematic viscosity or molecular
diffusion coefficients) is used based on the algorithm of Flekkøy [162]. All density dis-
tribution functions are coupled via the flow velocity which is determined from the carrier
fluid. Feedback of the species distributions on the flow field is neglected, so only passive
scalar transport is considered. This scheme is a good approximation for many applications,
e.g. environmental processes such as pollutant transport in ground-water flow.

As an example (see Fig. 5.1), we consider a generic surface-catalytic heterogeneous chem-
ical reaction between two species,A andB, of the type

A+B ⇋ C (5.1)

with a reaction rater proportional to the concentrations[A] and[B] of the species

r = k[A][B] =
∂ [C]

∂ t
=−∂ [A]

∂ t
=−∂ [B]

∂ t
(5.2)

which takes place only on the surface of the porous geometry,a fraction of a digitised SiC
matrix structure.

Figure 5.1: Snapshot from a time dependent visualisation ofthe chemical reactionA+B⇋ C
(shown are the geometry and iso-surface of the product concentration [C]).

Due to the locality of the Lattice-Boltzmann method, the reaction coefficientk is simply
made a space-dependent variable to model the heterogeneouscatalytic reaction. Local
deactivation of the catalyst can also be implemented in thisway. The source term due
to the chemical reactions is implemented as an additional part in the Lattice-Boltzmann
equation which, accordingly to the differential equation 5.2, modifies the local distribution
functions after the relaxation process.
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5.2 Nonlinear Adsorption / Desorption2

Adsorption/desorption models describe the transfer of a solvent from the fluid into the solid
phase (adsorption) or from the solid into the fluid phase (desorption). In most approaches,
details of this process which involves the micro-scale diffusion inside the solid-phase are
modelled in a simplified way by a rate equation.

This idea can be realised with a Lattice-Boltzmann multi-physics extension by applying
a local rule describing the temporal change of the adsorption rate∂s/∂ t on the solvent
concentrationc and the adsorbed masss (i.e. the immobile mass deposited per unit volume
of the porous media matrix) [163]:

∂s
∂ t

= r(kpcp−sq) (5.3)

with parameterskp > 0 and exponentsp,q fulfilling p/q ≤ 1. At equilibrium, i.e. for
∂s/∂ t = 0, this model reduces to a Freundlich isotherm

s= kcn (5.4)

with k = kp
1/q andn = p/q.

Such a relationship betweens andc frequently describes the adsorption of substances like
pesticides, polycyclic aromatic hydrocarbons and heavy metals in soil and aquifer sedi-
ments (see e.g. [164],[165], [166]) over several orders of magnitude in concentrations.

5.2.1 Lattice-Boltzmann Extension: Adsorption Model

Using a passive-scalar diffusion scheme for the solvent (e.g. based on the algorithm de-
scribed by Flekkøy [162]), adsorption is simulated within the Lattice-Boltzmann code by
introducing arrays for the adsorbed species concentrationsn link-wise on the surface of the
solid phase (see Fig. 5.2).

Each time step, the concentrations of the adsorbed speciessn and the solventc are locally
updated by applying Eqn. 5.3 to calculate the amount of concentration to be transferred
from the fluid to the solid phase.

5.2.2 Simulation Results

For (effectively) one-dimensional media, Grundy [167] andJaekel [168] showed by asymp-
totic analysis that in the quasi-equilibrium case, after pulse-type injection, the concentra-
tions at a fixed position (breakthrough curves) should approach power laws in time:

2The research work presented in this section was performed together with U.Jaekel at the C&C Research
Laboratories, NEC Europe Ltd. (St.Augustin, Germany). It was presented at the Parallel Computational
Fluid Dynamics - ParCFD 2002 (Kansai Science City, Japan, 2002) and the IVth IMACS Seminar on Monte
Carlo Methods - MCM-2003 (Berlin, Germany, 2003), published in [99]. A later version submitted (but not
presented) at the the Third International Conference on Computational Science - ICCS 2003 was published
in [100].



88 Multi-Physics Extensions

Figure 5.2: Link-wise concentration of the adsorbed species sn at the solid surface, and solvent
concentrationc in the fluid phase.

c ∝ t−α

s ∝ t−β (5.5)

where the exponentsα = 1/(1−n) andβ = n/(1−n) are determined by the Freundlich
exponentn alone. This is in contrast to the exponential decay of breakthrough curves
observed for chemically inert substances without adsorption.

For the rate equation (Eqn. 5.3), the concentrations cannotalways approach quasi-equili-
brium. However, asymptotic analysis predicts that the quasi-equilibrium asymptote holds
for the caseq = 1 [163].

For our simulations we exploited Eqn. 5.3 with factorsr = 0.1 andkp = 0.001. We per-
formed simulations for the exponentsn = p = 0.5 andn = p = 0.8 for a porous media
generated from a 3D-CT scan of a SiC-matrix (see Fig. 5.1).

After establishing steady laminar flow, for a short time a small amount of the solvent species
was introduced near the inlet and transported downstream through the porous media by
advection-diffusion.

After the peak of the concentration passed the porous media an order of 106 more itera-
tions were necessary to achieve asymptotic behaviour, which took several CPU-hours on a
single-CPU NEC SX-6i vector-computer.

Fig. 5.3 shows the first 45,000 iterations of the time evolution of the solvent concentration
and the adsorbed mass at a surface point inside the porous media in a linear plot for the
exponentn= p= 0.8. It can be seen that the the solvent concentration reaches amaximum
earlier and decays faster than the adsorbed mass.

Figs. 5.4 show the long term behavior of the two exponentsn = p = 0.5 (left) andn = p =
0.8 (right). In both cases, one observes an approach towards the power laws predicted in
Eqn. 5.5. More detailed simulations with more iterations are necessary to investigate the
long term behaviour and show whether power law behaviour wasachieved.

Keeping this in mind, with a regression in the linear part over the last 200,000 iterations
the slopes were determined to bet = 1.03 (adsorbed species) andt = 2.05 (solvent species)
for the exponentn = p = 0.5 as well ast = 4.36 (adsorbed species) andt = 5.45 (solvent
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Figure 5.3: Linear plot of the time evolution (first 45,000 iterations) of the concentration of the
adsorbed and dissolved fractions for an exponentn = p = 0.8.

Figure 5.4: Logarithmic plot of the time evolution of the concentration of the adsorbed and dissolved
fractions for the exponentsn = p = 0.5 (left) andn = p = 0.8 (right).

species) for the exponentn = p = 0.8. These are in good agreement with the predicted
t = 1.0 (adsorbed) andt = 2.0 (solvent) for the exponentn = p = 0.5 and of the correct
order for the exponentn = p = 0.8, where the predicted slopes aret = 4.0 andt = 5.0
respectively. Due to the slower decay resulting from the exponentn = p = 0.8, one should
expect the result to approach the theoretical value more accurately when more than the
actual 106 iterations are performed.

5.2.3 Visualisation

Using the previously described coupling of our Lattice-Boltzmann code with the RVSLIB
routines (see Chap. 3.4.1), we were able to produce movies which provide a detailed insight
in the time dependent concentrations of the adsorbed and solvent species.

Fig. 5.5 shows two screen snapshots taken from the movie at two different time-steps. The
concentration of the solvent is displayed on a cut in the x-y plane, while the concentration
of the adsorbed species colours the surface of the porous media.



90 Multi-Physics Extensions

Figure 5.5: Screen snapshot of the visualisation (flow from the left to the right). Displayed is the
concentration of the solvent (x-y plane) and the adsorbed species (on the surface of the porous
media) at two different time steps. One can observe the peak concentration of the solvent travelling
downstream through the porous media, followed by the peak concentration of the adsorbed species.

The simulation was performed on a NEC SX-6i as a server and a NEC PowerMate PC as a
client, both connected by a local area network.

5.2.4 Conclusion

For a non-linear adsorption/desorption model, the preliminary simulation results were
found to indicate good agreement with the theoretical predicted power law model.

Adsorption/desorption is an very good example of utilisingthe special capabilities of the
Lattice-Boltzmann method to model multi-physics, namely the explicit discretisation of the
geometry and the simplistic introduction of local rules.

5.3 Concurrent Numerical Simulation of Flow
and Clotting3

In this chapter, a novel approach for a concurrent numericalsimulation of the unsteady
flow within an idealised stenosed artery and a simplified milkclotting process,4 based on a
residence time model is presented. This model is presented as a first step towards modelling
the significantly more complex process of blood clotting.5

3The research work presented in this section is a first result from the joint research of the C&C Re-
search Laboratories, NEC Europe Ltd. (St.Augustin, Germany) and S.E.Harrison (under the supervision
of P.V.Lawford and D.R.Hose) in the Academic Unit of MedicalPhysics, University of Sheffield (UK). It
was presented at the 11th International Conference on Parallel and Distributed Systems - ICPADS 2005
(Fukuoka, Japan, 2005), the Second International Conference for Mesoscopic Methods in Engineering and
Science - ICMMES 2005 (Hong Kong, China, 2005 - invited talk)and the 14th International Conference
on Discrete Simulation of Fluid Dynamics in Complex Systems- DSFD 2005 (Kyoto, Japan, 2005), pub-
lished in [75, 77, 169, 170, 171]. The simulation results presented in this section were mainly generated by
S.E.Harrison [15] under supervision of the author, who implemented the solidification algorithm.

4Milk was used as blood analogue in the experiments performedby Smith [172], since it is considerably
cheaper and easier to handle than blood. After enzymatic activation, the clotting behaviour is comparable to
that of activated blood. For details see [172].

5More recent results with advanced blood clotting models, taking into account processes like platelet acti-
vation and enzyme reactions, were presented at the Third International Conference for Mesoscopic Methods
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The aim of this study was not to capture all the complex bio-chemical details of the milk
clotting process itself, or discuss its relation to blood clotting. This chapter is intended as
a ‘proof of concept’ for the general possibility and efficiency to simulate clotting with the
Lattice-Boltzmann method.

In fact, it can be considered as a particularly well suited example of extending a Lattice-
Boltzmann flow solver with a multi-physics model to simulatecomplex transient flow and
mass-transfer processes, which result in changing geometry.6

Since the subject of medical physics has been the author’s major field of research during
the past three years, a brief introduction of the medical background, which motivates the
clotting simulations, shall be given.

5.3.1 Medical Background

Cardiovascular disease annually claims the lives of approximately 17 million people world-
wide [175]. Atherosclerosis is one particular disease which causes the formation of deposits
(plaque) on the inner lining of an artery. Plaque rupture mayresult in emboli, which in turn
may lead to myocardial infarction and ischaemic stroke. A secondary concern is that of
flow disturbances associated with disease related narrowing of the vessel lumen (vessel
stenosis, see Fig. 5.6).

It is likely that areas of stagnant or recirculating flow willdevelop downstream of a stenosed
artery and if activated blood remains in such a region for a prolonged period of time, throm-
bosis may occur.

Coagulation can be initiated by shear rates of sufficient magnitude to cause cell lysis and
release clotting factors [176, 177, 178, 179, 180]. Following activation, the route to coag-
ulation involves a unique cascade of reactions. Several attempts have been made to model
the relevant molecular pathways [181, 182, 183, 184, 185, 186] but these fail to consider re-
alistic flow fields and their development with the growth of the thrombus. A comprehensive
understanding of thrombosis requires full consideration of the three entities of Virchow’s
triad; blood chemistry, vessel wall properties and fluid mechanics.

In this first attempt to model blood clotting, we will not dealwith the complex pathway
to coagulation, but describe a model which covers the aspects of transient flow simulation
and clotting of activated blood based on a simple residence time model. This approach is
of course a very crude approximation of the highly complex biochemical processes, but
it includes the interaction of a time-dependent flow-field with the varying geometry of a
growing clot, which has a major influence on the final shape of the clot itself.

in Engineering and Science - ICMMES 2006 (Hampton, Virginia/USA, 2006 - invited talk) and the 15th
Discrete Simulation of Fluid Dynamics conference - DSFD 2006 (Geneva, Switzerland, 2006), published
in [173, 174] and accepted for publication in [76]. Since theauthor of this thesis is not the first author of
these recent publications, which are mainly part of the impressive research undertaken by S.E.Harrison in the
framework of her PhD-thesis [15] (which was partially supervised by the author), these results will not be
presented here.

6The author believes that the general approach explained in this chapter can be applied to model a whole
class of problems where the interaction of flow and mass-transfer influences the solid fraction of the compu-
tational domain.
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Figure 5.6: Angiographic image of a stenosed coronary artery. Diameter of parent vessel is approx-
imately 3mm (image courtesy of Dr. Julian Gunn).

An extension of the passive-scalar diffusion model implemented into a sparse Lattice-
Boltzmann solver described in Chap. 3.1 was used to estimatethe residence time of a
fluid. By applying a residence-time based clotting model, the increase of the solid fraction
(clotting) was simulated together with the flow field, which had to adapt to the constantly
changing boundary conditions.

5.3.2 Lattice-Boltzmann Extension: Aging Model

Assuming that clotting occurs after a certain elapsed period since the ‘activation’ of milk
or blood, the residence time of the activated fluid is the mostimportant variable for the
clotting process because it indicates the likelihood of clot formation.

A passive scalar is used as a tracer to estimate the residencetime of activated fluid in our
model. This tracer is transported by advection-diffusion and a small, constant quantity
is injected at every lattice node each time step. The local concentration of the tracer is
therefore proportional to the average ‘age’ of the fluid (blood) which can be used as a
threshold parameter within the clotting model.

The diffusion coefficient relates to the amount of mixing between different regions of a
fluid and is an important parameter that must be chosen carefully.7 Recirculation zones
with closed streamlines may be produced, for example, immediately downstream of the
stenosis and the only mechanism of transport between these regions and the remaining
flow is diffusion.

For the carrier fluid and the tracer, separate particle density distribution functions with
different relaxation times (relating to the kinematic viscosity or molecular diffusion coeffi-

7In this preliminary study the diffusion coefficient was set to a value which produces clots within a time
frame more or less comparable to the experiments. A more detailed study revealed that molecular diffusion
alone cannot be sufficient for the amount of mixing which was observed in the experiments. More details to
this can be found in the thesis of S.E.Harrison [15].
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cient) are used, based on the algorithm of Flekkøy [162]. Alldensity distribution functions
are coupled via the flow velocity which is determined from thecarrier fluid. Feedback of
the species distributions on the flow field is neglected, so only passive scalar transport is
considered.

5.3.3 Lattice-Boltzmann Extension: Clotting Model

In this approach we assume that a fluid (milk or blood) is able to clot after a certain elapsed
period post activation. The local age of the fluid is determined by the concentration of the
passive scalar tracer, as described in the previous section.

When the local concentration of the tracer (which is computed at each time-step) reaches
a certain threshold, solidification takes place. Within theLattice-Boltzmann framework
this means a fluid node becomes a solid node and the solid surface boundary condition is
applied (see Fig. 5.7).

Figure 5.7: Clotting is modelled by increasing the solid fraction when the concentrationc of the
tracer species reaches a thresholdct .

During subsequent iterations the flow field and age distribution adapt to the new geometry,
while further clotting on adjacent fluid nodes may occur. This allows for the concurrent
simulation of solidification and flow, which is believed to beessential for capturing the
complex flow-related clot morphology.

5.3.4 Simulation Results

With our Lattice-Boltzmann implementation, all simulations presented in this section
were performed on the NEC SX-6i vector computer which has a peak performance of
8 GFLOP/s. Our code always achieved a sustained performanceof more than 50% of the
peak performance with about 25 MLUP/s for the flow simulationalone. Although these
figures indicate a very good vectorisation, the simulation of 320,000 iterations (2.75 s real
time) of the turbulentRe= 550 3D flow, to be presented here, required 40 CPU hours.

Flow through an Idealised Stenosis

Prior to simulations using the aging and clotting models, werequired verification that the
Lattice-Boltzmann flow solver accurately computes flow through an idealised stenosis.
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The stenosis is 5mm long forming a square edged occlusion of 75% by area, situated two
diameters downstream of the inlet (see Fig. 5.8).

Figure 5.8: Idealised 75% stenosis geometry.

Throughout these simulations we applied a steady parabolicvelocity profile at the inlet and
constant pressure at the outlet. The non-Newtonian behaviour of blood was neglected.8

A simulation of laminar flow with a Reynolds number ofRe= 100 was performed which
gave a recirculation length of 29 mm.

For the purpose of validation, a perspex test section was constructed of identical geome-
try. Flow visualisation was accomplished9 at Re= 100 by the injection of a dye stream
immediately upstream of the stenosis. This dye became entrained near the wall within the
stenosis, therefore demarcating the boundary layer between regions of recirculation and
the central jet (Fig. 5.9). These results show similar dimensions of the recirculation zone,
although exact determination of the reattachment point is not possible.

The next challenge was simulating turbulent flow at a Reynolds number ofRe= 550, which
is approximately the average Reynolds number within the femoral artery. Achieving turbu-
lent flow at such low Reynolds numbers is not trivial since theflow will tend to damp back
into the unsteady laminar regime.

It transpired that the slightly rough walls (generated by randomly varying the radius±1 lat-
tice node) we used (lx∗ ly∗ lz = 1214∗98∗98) in the three dimensional simulations were
sufficient to induce and maintain turbulence. After a long transient initial period where
complex vortices developed, laminar flow broke down and fully turbulent flow was ob-
served (see Fig. 5.10), remaining stable until the end of thesimulation (320,000 iterations).

Qualitatively comparing the computational flow solutions to experimental results, good
agreement can be observed between the size and speed of the flow features (see Fig. 5.11).

8For non-Newtonian blood flow simulation see e.g. [187], a Carreau-Yasuda model was recently also
implemented into the sparse Lattice-Boltzmann solver of the International Lattice Boltzmann Software De-
velopment Consortium. First simulation results (briefly reviewed in Chap. 6.3) indicate that under certain
circumstances the non-Newtonian behaviour of blood flow cannot be neglected.

9The experiments were performed by Smith [172].
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Figure 5.9: Comparison of experimental (above, from [172])and numerical (below) results for flow
through a 75% stenosis atRe= 100.

Figure 5.10: Snapshot of a velocity iso surface of fully developed turbulent flow through a 75%
stenosis atRe= 550.

Aging Simulation

For the previously described aging model the most simple validation involves simulating
the age distribution of a laminar fluid in a 2D channel. For this purpose a channel of
lx ∗ ly = 200∗42 lattice nodes was created and allowed to develop a steady,laminar flow
profile. At each subsequent iteration, a small amount of the previously discussed passive-
scalar tracer was added to the local concentration at all lattice points.

Flow velocity is maximum in the centre of the channel, falling parabolically to zero at the
walls. Therefore, after a certain time has elapsed, the ‘youngest’ fluid will be found in the
centre at the inlet and the ‘oldest’ fluid will be found near the outlet walls.
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Figure 5.11: Comparison of simulated (left) and experimental (right) flow through a 75% stenosis
atRe= 550 at four different times.

Figure 5.12: Tracer concentration (‘age’) for parabolic channel flow (dark colour is referring to
higher concentrations representing ‘elder’ fluid).

In previous milk clotting experiments carried out by Smith [172], clot deposition was ob-
served to be maximal in regions distal to the stenosis. One explanation for this is that the
recirculation regions retain clottable fluid, allowing it to age and adhere.

2D simulations of laminar (Re= 100) and turbulent (Re= 550) channel flow containing a
stenosis of 50% by diameter (equivalent to the 75% by area stenosis in 3D) clearly indicate
that the regions with the highest concentration of the tracer, and hence the oldest fluid, are
similar in location to the clot depositions produced experimentally.

Clotting Simulation

For the 2D clotting simulation a lattice size oflx ∗ ly = 532∗ 82 nodes was used and an
initial 200,000 iterations were performed to establish time–dependent flow atRe= 550.
Following this, the tracer was injected at a constant rate.

Defining a threshold for the tracer concentration, indicating the age of the fluid, allows
us to implement the solidification process: all fluid latticenodes where a concentration
above this threshold is found are solidified and no further mass transport is allowed (see
Fig. 5.7). The threshold concentration was chosen to be small enough to allow clotting
within a reasonable simulation time and large enough to avoid solidification of many lattice
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nodes within a few iterations. Obstruction of the outlet dueto clot growing from the walls
must also be avoided.10

A further 300,000 iterations (equivalent to 11.7 s in real time) were performed to allow a
clot to grow (see Fig. 5.13).

Figure 5.13: Growing clot (black) downstream of a 2D stenosis at different time steps t. The age of
the fluid is shown in grey, darker regions indicating older fluid.

In this first approach we exploit the fact that a scale separation exists between the typical
rate at which clot forms and the frequency with which flow patterns change.11 This means
it is not necessary to adhere to the experimental time scaleswhere a clot grows within
several minutes. For the results presented here the typicaltime-scale associated with clot
growth is approximately two orders of magnitude greater than that associated with vortex
shedding.

As can be seen in Fig. 5.13, clot growth initiates in the recirculation domain downstream of
the stenosis. The size of the clot increases gradually with time, whilst the flow field adapts
to the new geometry. Of particular interest is the downstream migration of the recirculation
region. Due to vortex shedding, a secondary vortex is established leading to a second

10Within this preliminary study, the threshold parameter wasnot derived from physical considerations but
simply adjusted to qualitatively reproduce the experimentally observed phenomena.

11A more sophisticated approach making use of a scale separation can be obtained within multi-scale mod-
els. Separated time and length-scales are identified on a scale-map [188, 189] and dedicated software tools
for each scale are coupled to exchange the required information. Such models are being investigated within
the European research project COAST, to which the author contributes with the sparse Lattice-Boltzmann
flow solver. A short overview will be given in Chap. 6.4.
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concentration maximum approximately one vortex diameter downstream of the clot (see
Fig. 5.14).

A secondary clot has been identified experimentally at this Reynolds number (Re= 550),
though the relation between this and a secondary vortex mustbe investigated further.

Figure 5.14: Secondary milk clot (above) in the experiment and secondary peak in the tracer con-
centration (below: numerical simulation, darker regions indicating older fluid.

The final asymmetric shape of the clot reflects the effect of unsteady flow on the pattern
formation procedure, showing some qualitative similarities with results of milk clotting
experiments [172] using comparable flows.

A comparison of a Lattice-Boltzmann clotting simulation with experimental results pro-
duced by Smith [172] show good qualitative agreement (see Fig. 5.15).

Figure 5.15: Comparison of an experimentally produced milkclot (above) with the Lattice-
Boltzmann simulation (below). The position of the stenosisis indicated.
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To demonstrate that the computationally demanding extension to three dimensions is fea-
sible, a 3D clotting simulation atRe= 100 was carried out within the stenosis geometry
(Fig. 5.8). The shape of the clot (see Fig. 5.16) looks similar to those from the milk clot-
ting experiments, and no artifacts, as e.g. a dependency from the lattice symmetry, were
observed.

Figure 5.16: 3D milk clot downstream of a stenosis atRe= 100.

5.3.5 Conclusion

The above study presents a new approach for simulating clotting using the Lattice-Boltz-
mann technique by using a passive scalar as a tracer of the ageof activated fluid. This
can be considered as a typical example of a multi-physics extension. The possibility of
locally modifying the geometry during the simulation allowed for the interaction of flow
and clotting, which is believed to be the key for reproducingthe experimental clot shapes.

This section has been restricted to briefly introducing the method. Recent studies (not
presented in this thesis) which have been performed at the University of Sheffield in co-
operation with the author (for details see [173] and the thesis of S.E.Harrison [15]) consider
more complex clotting algorithms for 3D simulations. Thereit was shown that taking
account of the vicinity of a growing clot and flow parameters such as the wall shear stress
considerably affects the onset and development of clotting.
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Chapter 6

Discussion, Vision and Outlook

In the previous chapters a selection of complex-flow applications and multi-physics exten-
sions of the Lattice-Boltzmann method have been presented.Considering these successful
applications of the method (and many more described in the literature), the author believes
that Lattice-Boltzmann is not a tool which will one day completely replace the Navier-
Stokes based Finite-Element or Finite-Volume techniques,but has clear advantages if ap-
plied to suitable problems. The goal of comparing the different approaches should not be to
identify ‘the best’ method, but to find out which method is more suitable for the underlying
class of problems.1

Succi described in his book [13] four general classes concerning the applicability of Lattice-
Boltzmann:

• Don’t Use:Problems which require strong compressibility and substantial heat trans-
fer.

• Can Use: These are basically all standard-CFD problems. It is often aquestion
of taste which method to prefer. Alas, the orders of magnitude less person-years
invested so far in the development of Lattice-Boltzmann techniques (as turbulence
modelling and acceleration schemes) and software packages(including pre and post-
processing tools) often set practical limitations. Reaching full maturity is not a con-
ceptual problem per se, but just a matter of time and money invested in developments.

• Should Use:Succi identifies here single and multi-phase flows in complexgeome-
tries; we believe this was supported (for the single-phase flows) by the examples
given in Chap. 4.

• Must Use:This class was described by Succi as ’rather dilute’. In contrast to this
statement from the year 2002, we believe, by the examples given in the previous
Chapters (4 and 5) that it became obvious that the ’Must Use’ class can be populated

1It might well be argued that some classical CFD-benchmarks the Lattice-Boltzmann method was in-
volved in the past are not very suitable for showing the advantage of the method. Even today there is a certain
tendency to apply the method in areas where conventional, well established software packages have certain
advantages.
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by a variety of complex-flow multi-physics applications. For simulating the inter-
action of complex fluid flow, mass transport and a related modification of the flow
domain, adequate modelling in the framework of traditionalNavier-Stokes methods
would be incredibly complicated and numerically expensive, if possible at all. The
specific way in which solid boundaries are handled within theLattice-Boltzmann al-
gorithm, together with the simplistic cellular automata-like option of implementing
simple local rules, from which complex physical phenomena emerge on larger time
and spatial scales, is a clear advantage of this method.

Another new, and hardly explored area, where the focus is on the fast simulation
of flow phenomena as opposed to precision of the results, is real-time CFD simula-
tion on the computer’s graphics card (GPU) for computer games and other related
fields (see Chap. 3.3.2). A very recent impressive example inthis area is the MoXi-
code [90], a real-time simulation of ink dispersion in absorbent paper on a GPU.
Using a digital pencil on a touch pad, the user can see the ink ‘flowing’ into the paper
when drawing his calligraphy.

To further populate theShould UseandMust Useclass of Lattice-Boltzmann applications,
the author believes it is time for the Lattice-Boltzmann method and its researchers to be-
come involved to do ‘the real thing’. That is, particularly:

• Identify further areas where application of the Lattice-Boltzmann method is benefi-
cial. Focus the research on producing quantitatively validated results within compet-
itive simulation times, achieved by performance oriented implementations.

• Leave the small pond of the community, meeting twice a year atthe ICMMES and
DSFD international conference, and face the challenge of presenting the results at
established CFD-conferences.

• Learn from the two generations’ experience of classical CFDand port suitable
schemes such as multi-grid2 and a variety of turbulence models3

• Involve Lattice-Boltzmann in projects (industrial and research) where results are re-
quired in a reasonable time within a production environment.

Considering these statements, the author hopes his research of the past ten years was con-
tributing to the first two points. While point three should bechallenged by those researchers
with a focus on theoretical work, the last point is more and more becoming the focal point
of the author’s work. Lattice-Boltzmann, though beautiful, is not important enough to jus-
tify theoretical research accompanied by a few illustrative applications. The justification
of all research in this field, in the end, is a successful application. That is, the solution of
real-world problems.

2One approach towards Lattice-Boltzmann multigrid was doneby Tölke et al. [190].
3Subgrid models for Lattice-Boltzmann are meanwhile well established (see e.g. [132, 191, 192, 193,

110]). This is not (yet) the case fork− ε and other two-equation models.
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Guided by the paradigm of practicality, a short descriptionof possible application strategies
of the Lattice-Boltzmann method will be presented after a few comments related to soft-
ware development. Arguments for both, the researchers and industry, are given to illustrate
why an application of the method is of mutual benefit.

The final two sections briefly introduce two exciting research projects in which the Lattice-
Boltzmann method provides the flow solver. An application inthese areas – complex-flow
medical physics and multi-scale multi-physics – is certainly a field where the method is
suitable. We are confident the future will prove that these kinds of applications are located
somewhere between the’Should Use’and’Must Use’class.

6.1 Software Development

In contrast to the rapid development in theoretical and academic research, unfortunately,so
far there is only one commercial Lattice-Gas/Boltzmann software package, PowerFLOW
by EXA Corporation (founded in 1991 by Kim Molvig). EXA has been very successful
particularly in automobile aerodynamics, although the company is active in a range of
industries, including automotive, aerospace, engineering, architectural, environmental, and
government. EXA currently has 100 employees worldwide, andits customer list contains
Audi, BMW, DaimlerChrysler, Dodge Motorsports, Fiat, Ford, Hyundai, Jaguar, Nissan,
Paccar, Porsche, Renault, Toyota, Volkswagen and many others.4

What made the EXA code so successful? It is debatable whetherit was really the superior-
ity of their specific approach in Lattice-Gas/Boltzmann over traditional CFD. Certainly, it
was EXA’s clear understanding of providing the user with a simple and robust method, an
easy to handle user interface which makes tedious meshing unnecessary and an integrated
post-processing solution. It was the understanding of the EXA managers that the develop-
ment of a new commercial CFD software requires sufficient investment in manpower.

Aside from EXA, not a single company or investor was bold enough to spend sufficient
money for a strong team of developers. There are a few exceptions where one or two
researchers are paid by industry for carrying out specific developments with some good
success,5 but in general the method is still an academic research topicwith little impact on
the market.

Besides the the most popular ‘one (PhD) student one code’ approach, a few promising
initiatives for sustained software development have emerged:

• The ParPac-code developed at ITWM Kaiserslautern is coupled with the MAGMA-
SOFT package [195], the standard simulation and visualisation software for casting
processes. The code is able to capture free surface flow and was recently extended
with a Bingham-model.

4Information taken from Exa’s homepage [194].
5The author is only aware of Shell Research, the ITWM Kaiserslautern and the IT Research Division of

the NEC Laboratories Europe.
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• The OpenLB-software, established as an open-source project under the GPL by J.Latt
(University of Geneva), V.Heuveline and M.Krause (Super-computing center, Uni-
versity of Karlsruhe). The software is implemented in C++ and some basic flow
studies (flow past a cylinder and backward facing step) are presented on the project
home-page [196].

• TheInternational Lattice-Boltzmann Software Development Consortium, a ‘restricted
open-source’ project initiated by the author and supportedby the NEC Laboratories
Europe. The focus of this consortium is to develop a high-performance oriented
Lattice-Boltzmann software package for advanced researchand production simula-
tions. The recent MPI implementation achieved an update rate of 3.7∗109 lattice site
updates per second on 128 CPUs of the NEC SX-8 vector-supercomputer at HLRS
Stuttgart for a medical flow problem (see Chap. 3.2).

The Deutsche Forschungsgemeinschaft (DFG) financed a long-term project called ‘Lattice-
Boltzmann Arbeitsgruppe’ with the aim to perform benchmarks of Lattice-Boltzmann and
Navier-Stokes solvers.

Recently the European Commission decided to support the development of the method
and its integration into a complex tool-chain in the area of medical physics in the two
projects COAST and @neurIST (see Chap. 6.3 and 6.4), where the author has the pleasure
to contribute.

Software engineering and maintenance, even of large research or production codes, is still
often considered as a task that students can do without specific education and support along-
side their research work.

The author can confirm from his own experience in co-ordinating the development of two
large Lattice-Boltzmann packages,BEST, and since 2003, the software developed in the
framework of theInternational Lattice-Boltzmann Software Development Consortium, that
performing a sustained development – starting form the basic software design, implemen-
tation and benchmarking of prototypes to co-ordinating thesteady input of various re-
searchers to a rapidly growing code – is an art on its own, which requires a variety of skills
and lots of experienceand time.

Real progress in the area of Lattice-Boltzmann can – with regards to the currently avail-
able advanced techniques – only be achieved, if teaching andapplication of the required
software engineering skills is conducted with the same priority as the method development
itself, preferably in a team providing knowledge transfer from senior developers to the
younger students.



6.2 Perspectives of the Lattice Boltzmann Method for Industrial Applications 105

6.2 Perspectives of the Lattice Boltzmann Method for In-
dustrial Applications6

6.2.1 Application Strategies

The reduction of turn-around times in the design cycle is an important aspect of product
development in many different industries. New tools for efficient numerical simulation on
HPC systems therefore play an increasingly important role in the simulation of fluid- and
aerodynamics, e.g., in the areas of automobile design and chemical engineering.

The Lattice-Boltzmann method has two outstanding features, when compared to other
conventional CFD methods, which make it particularly suitable for addressing these chal-
lenges:

• Very high performance (usually more than 50 % of the peak performance) and nearly
ideal scalability on high performance vector-parallel computers (see Chap. 3.1).

• Very efficient handling of the equidistant Cartesian meshes, which are generated by
the semi-automatic discretisation of arbitrarily complexgeometries (conversion of
digital images, 3D CT data or CAD data, see Chap. 2.2.4).

During the first ten years of its development, the Lattice-Boltzmann method was almost
exclusively applied for academic research purposes, but a significant tendency towards
industrial applications can now be observed.

In the following, we will discuss the advantages of an industrial application of the Lattice-
Boltzmann method for the two parties potentially involved:in industry, the LB methods are
not yet widely known as a potential alternative to classicalCFD methods, whereas some
LB researchers apparently do not yet see the advantages of anindustrial application of their
research work.

6.2.2 Benefits of Industrial Simulations for the Lattice-Boltzmann
Community . . .

A fact which is sometimes ignored by purely academic researchers, is the possible im-
provement of their numerical method and software, initiated or required by the application
in production environments. The feedback of the quality of the simulation results, based
on the extensive experience and/or databases compiled by industrial engineers, is a good
indicator of the reliability of the method. Time-constraints concerning the availability of
expensive hardware and tight schedules require an efficientand robust implementation.

Driven by the demand of continuous improvement, suggestions for further developments
can be given by the industrial engineers. This can lead to a fruitful cooperation with a

6The concept behind this section was developed at the C&C Research Laboratories, NEC Europe Ltd.
(St.Augustin, Germany). It was presented at the Parallel Computational Fluid Dynamics - ParCFD 2000
(Trondheim, Norway, 2000) and published in [197].
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mutual exchange of experience, resulting in a fast and efficient development of the method
or its implementation.

Usually in industry, different numerical codes are in use orunder investigation. Participa-
tion in such an evaluation program is a good opportunity for finding out the advantages and
disadvantages of the Lattice-Boltzmann method when compared with other commercial
Navier-Stokes based codes.

6.2.3 . . . and for the Industry

In companies where HPC platforms are already installed, large scale simulations need to be
performed with software making optimal use of these expensive and powerful machines.
As demonstrated in Chap. 3.1, Lattice-Boltzmann codes can be implemented almost opti-
mally for high end vector-parallel platforms.

Lattice-Boltzmann codes are typically characterised by a relatively easy integration of com-
plex boundaries. The underlying scheme for geometry discretisation allows a straight-
forward integration of arbitrary complex geometries, which can either be derived from
CAD data by special software, or by 3D CT (see Chap. 2.2.4). Byproviding a user inter-
face, it is not necessary to have a highly specialised CFD expert generating the mesh and
running the simulation, a procedure which might easily takeseveral weeks for complicated
geometries. The relative simplicity of conducting simulations with the Lattice-Boltzmann
method can lead to a significant cost reduction during the industrial design process, and the
simulation results are usually available within short time.

Areas where CFD normally fails, due to the impossibility of efficient mesh generation for
complex geometries, or the complexity of the physics to be modelled (e.g., simulation of
heterogeneous catalytic reactions in chemical engineering) are also potential candidates for
the Lattice-Boltzmann method. The simple marker and cell approach, or more advanced
schemes, in combination with 3D CT allow the discretisationof almost every geometry and
the simulation of domains containing several 108 lattice nodes on HPC platforms.

6.3 Blood Flow Simulation in Cerebral Aneurysms:
A Lattice-Boltzmann Medical Physics Application
within the @neurIST Project7

Computer simulations play an increasingly important role in the area of medical physics,
from fundamental research to patient specific treatment planning. A potential application

7The research work presented in this section is performed together with D.Wang and G.Berti at the IT
Research Division of the NEC Laboratories Europe, NEC Europe Ltd. (St.Augustin, Germany) and was pre-
sented at the 4th International Intracranial Stent Meeting- ICS 2007 (Kyoto, Japan, 2007), the Fourth Interna-
tional Conference for Mesoscopic Methods in Engineering and Science - ICMMES 2007 (Munich, Germany,
2007 - invited talk) and the Parallel Computational Fluid Dynamics - ParCFD 2007 (Antalya, Turkey, 2007),
submitted for publication in [198, 199, 200]. Financial support of the European project @neurIST (contract
no. IST-027703) is gratefully acknowledged. Public information about the project can be found on the project
web-page [201].
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of numerical blood flow simulation is to aid decision making processes during treatment of
cardiovascular disease. One example of this is the treatment of aneurysms. Aneurysms are
extreme widenings of vessels which can be, if they rupture, life threatening.

A large European project on rupture-risk assessment of cerebral aneurysm – @neurIST – is
funded by the European commission for a period of four years.Researchers from a variety
of fields collaborate to integrate data from medical studiesand simulation tools into a large
framework, with the goal to provide clinicians with a decision-support tool on hand.

One particular application we address in the @neurIST framework, is the simulation of
blood flow in cerebral aneurysms in domains created from medical images. Our focus is
on the efficient implementation of the Lattice-Boltzmann method for this type of medical
application as well as considering the correct blood rheology.

Previous studies with medical geometries are reported in [202]. Artoli describes the tran-
sient flow reconstructed from an MRI data (further discussion of the background and liter-
ature can be found in his thesis [202, pp. 91 ff.]). Alas, the non-Newtonian blood rheology
is not considered in this particular simulation.

Beronov [203] applied the concept developed by Artoli for flow simulation in a cerebral
aneurysm. The simulations are performed directly on the mesh from the MRI device, and
no reconstruction of the surface mesh or fit of the resolutionto the requirements of the
numerical tool, was accomplished. Also, rheological aspects are neglected, and only a
steady inflow with a very low Reynolds number is considered.

6.3.1 Medical Background

One method of treatment of cerebral aneurysms involves insertion of a metal frame known
as a stent, to divert flow from the aneurysm. An alternative isto pack the aneurysm with
wire; a procedure known as coiling. The resulting modification of the flow field triggers the
process of blood clotting (see Chap. 5.3) inside the aneurysm and in future, the flow-field
following treatment can be predicted by computer simulation. This may ultimately give an
insight into the success of the treatment and long-term prognosis.In vivomeasurements of
specific flow properties are possible, but usually not precise enough to predict for example,
wall shear stress or pressure distribution with a sufficientspatial resolution. Since invasive
treatments of the brain can be problematic, a pre-surgery risk assessment for the likelihood
of rupture of the aneurysm in question is a challenging goal.

To achieve this goal, necessary steps for an accurate numerical simulation of flow properties
within an untreated aneurysm together with preliminary results will be briefly introduced
in the following.
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6.3.2 Image Segmentation8

Discretising the geometry for flow simulations from CT or MR data is a challenging task.
Depending on the applied method, the resulting geometry canvary, and advanced methods
must be applied to generate suitable meshes. This may include manipulations of the trian-
gulated surface mesh representing the geometry (Fig. 6.1 left). Usually, from these data, in
the case of Lattice-Boltzmann, a voxel mesh with adequate resolution is generated (Fig. 6.1
right).

Figure 6.1: Left: Tetrahedral mesh of a cerebral aneurysm (courtesy of the @neurIST Project).
Right: voxel mesh of the Lattice-Boltzmann simulation.

6.3.3 Non-Newtonian Model9

The literature on blood rheology gives a strong indication that the non-Newtonian effects
of blood flow may not be neglected for a variety of geometries (see, e.g. [204, 205, 206]).
Particularly when estimating the rupture-risk within cerebral aneurysms, the precise knowl-
edge of quantities such as pressure distribution and wall shear stress are expected to be
crucial.

Normally, the Casson’s model, the power law model and the Carreau-Yasuda (C-Y) model
are used to simulate shear thinning blood flow [207]. However, the Casson’s model is only
valid over a small range of shear rates and the determinationof yield stress in the equation
is questionable, while the disadvantages of the power law model are the high gradient and
potentially infinite viscosity. The C-Y model can overcome these shortcomings and can
therefore be considered as the most suitable. It is written as:

µ−µ∞
µ0−µ∞

= (1+(λ γ̇)a)(n−1)/a (6.1)

8The surface mesh of the cerebral aneurysm was generated by A.Marzo (University of Sheffield) and
A.Radaelli (Universitat Pompeu Fabra, Barcelona). The voxel mesh for the Lattice-Boltzmann simulation
was produced by G.Berti (NEC Laboratories Europe).

9The Carreau-Yasuda model was implemented by D.Wang, supported by the author. Further support of
P.Lammers (HLRS) for improving the implementation is gratefully acknowledged.
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whereµ0 andµ∞ are the dynamic viscosities at zero and infinite shear rate respectively,γ̇
is the shear rate andλ is a characteristic viscoelastic time of the fluid. At the critical shear
rate 1/λ the viscosity begins to decrease. The power law index parametersa andn can
be determined from experimental data. In our simulations weapply the following set of
parameters for a blood analogue fluid [204]:µ0 = 0.022 Pa s,µ∞ = 0.0022 Pa s,a= 0.644,
n = 0.392,λ = 0.110 s.

6.3.4 Flow Simulation

The MRI patient data were segmented and post-processed on a triangular mesh (see
Fig. 6.1 left). From these data, a Lattice-Boltzmann voxel mesh (see Fig. 6.1 right) of
sizelx∗ ly∗ lz= 160∗120∗100 was generated, which is of sufficient resolution to obtain
mesh-converged simulation. The computational domain contains 1.58 million fluid nodes.

10,000 iterations were performed to reach a converged result, which required 88 s CPU-
time on one CPU of CCRLE’s NEC SX-8 vector-computer. This is equivalent to an update
rate of 39 MLUP/s.

Flow Parameters

For a preliminary simulation, flow at a low Reynolds number ofRe= 20 was considered,
and a direct comparison of Newtonian and non-Newtonian flow was performed. In order
to investigate the influence of the Reynolds number on the non-Newtonian effect, a second
simulation comparing the wall shear stress for two different Reynolds numbers,Re= 1 and
Re= 120 was performed.

The parameters of the C-Y model were chosen to allow the non-Newtonian blood rheology
to be captured. Since a definition of Reynolds number is difficult for non-Newtonian flow, it
was ensured that the total pressure loss was equivalent to that of the Newtonian simulation
for the same average cross-section velocity.

At the inlet, a constant flow velocity was applied and the pressure at the outlet was kept
constant. Bounce-back wall boundaries were applied resulting in zero flow velocity at the
wall.

6.3.5 Simulation Results

The streamlines in Fig. 6.2 reveal a complex flow pattern within the aneurysm. It can also
be seen that only a small portion of the flow enters the aneurysm, while the majority of
trajectories directly follow the main branch (this is due tothe specific geometry and the
very low Reynolds number ofRe= 20). The vortex-like structure inside the aneurysm
triggered by the main flow in the artery can be clearly identified.

As can be seen by direct comparison of Newtonian and non-Newtonian simulation results in
Fig. 6.3, the shear stress distribution plotted at a cuttingplane inside the aneurysm differs
significantly: the non-Newtonian simulation produces a larger region with higher shear
rates inside the aneurysm.
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Figure 6.2: Streamlines indicating the complex flow inside the cerebral aneurysm.

Figure 6.3: Shear stress distribution at an x-z cutting plane inside the cerebral aneurysm.
Left: Newtonian, right: non-Newtonian.

For both models, Fig. 6.4 compares the peak of the wall shear stress distribution near the
neck of the aneurysm. It can be observed that the maximum value is underestimated, if
non-Newtonian effects are not taken into account.

Similar to the previous study atRe= 20, also for the even lower Reynolds numberRe= 1
the wall shear stress at the neck of the aneurysm is much higher when the non-Newtonian
model is applied (see Fig. 6.5).

These preliminary results indicate that non-Newtonian effects might have a significant con-
tribution for low-Reynolds number flow through cerebral aneurysm.

In a next step, the comparison between the Newtonian and non-Newtonian model was
performed for higher Reynolds numbers. From Eqn. 6.1 can be concluded, that for the
higher shear rates present at higher Reynolds numbers, the viscosity µ approaches the
upper limit ofµ∞. In this case, the difference between a Newtonian and a non-Newtonian
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Figure 6.4: Wall shear stress distribution near the neck of
the aneurysm (darker colours indicate higher shear stress).
Left: Newtonian, right: non-Newtonian.

simulation will vanish. This assumption is confirmed by the simulation results (see Fig. 6.6)
when increasing the Reynolds number to a value ofRe= 120.

Figure 6.5: Wall shear stress distribution atRe= 1 (darker colours indicate higher shear stress).
Left: Newtonian, right: non-Newtonian.

Since Reynolds numbers in intra-cranial arteries can be as high asRe= 600−700 [208],
the above results indicate that within the cardiac cycle flowregimes are reached where
the non-Newtonian effect vanishes. Currently, it is an openquestion whether or not non-
Newtonian effects have to be taken into account for the bloodflow simulation within cere-
bral aneurysms.

A critical indicator for the growth process and rupture riskof a cerebral aneurysm is the
oscillatory wall shear stress [209]. Within this ongoing study we will analyse to which ex-
tent the differences of the wall shear stress observed at lower Reynolds numbers contribute
to the oscillatory wall shear stress within a full cardiac cycle. This will help to answer
the question if non-Newtonian models are required for bloodflow simulations in cerebral
aneurysm.
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Figure 6.6: Wall shear stress distribution atRe = 120 (darker colours indicate higher
shear stress, a different colour scale compared to the aboveimages was used).
Left: Newtonian, right: non-Newtonian.

6.4 Multi-Scale Multi-Science Simulation:
A Lattice-Boltzmann Medical Physics Application
within the COAST Project10

Much smaller than the Integrated Project (IP) @neurIST is the Information Society Tech-
nologies (IST) project COAST. Five groups with expertise inthe areas of Cellular-Automata,
Lattice-Boltzmann, High-Performance-Computing and medical physics combine forces to
develop a new framework for multi-scale, multi-science simulations. The COAST applica-
tion is the modelling of a specific complication which may occur during the treatment of
coronary artery diseases, the so called in-stent re-stenosis.

The use of a stent together with balloon angioplasty is a common method of re-opening a
stenosed vessel lumen and modelling can be used to predict the post-treatment blood flow
field. However, the stent material can induce blood clottingand lead to in-stent re-stenosis,
which is an unwanted post-treatment narrowing of the vessellumen. Specially coated stents
can help prevent this effect. In terms of CFD, this is a complex-flow, multi-physics problem
with chemical/biological processes on a variety of time andlength-scales.

A complex scheme in terms of a scalable hierarchical aggregation of Cellular-Automata
and agent-based models with appropriate couplings has to beimplemented to address this
problem. Simply said, the idea behind this approach is not tosolve all scales of the prob-
lem (reaching from milliseconds to months and micrometers to meters) within one piece
of software, but to identify time and space disjoint entities which can be addressed by spe-
cific implementations. These entities then have to be coupled for information exchange
in a suitable way. A selection of multi-scale Lattice-Boltzmann simulations are described
in [188].

10The research work presented in this section is performed together with D.Wang at the IT Research Di-
vision of the NEC Laboratories Europe, NEC Europe Ltd. (St.Augustin, Germany). Financial support of the
European project COAST (contract no. 033664) is gratefullyacknowledged. Public information about the
project can be found on the project web-page [210].
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This ambitious project took off in September 2006 with the definition of a scale-map (see
Fig. 6.7) to identify the disjoint time and space scales of all relevant processes involved in
in-stent re-stenosis.

Figure 6.7: Scale-map for in-stent re-stenosis, image taken from [189].

The sparse Lattice-Boltzmann flow solver developed within the International Lattice-
Boltzmann Software Development Consortiumwill be applied to solve the bulk-flow. The
challenge in the framework of this project is two-fold: firstly, known methods for local
mesh refinement and higher order boundary conditions have tobe implemented in a high
performance production code. Secondly, the coupling to thesoftware addressing the time
and length-scale of species transport to the endothelium (the first layer of cells of the
artery wall which is in contact with the fluid), most likely a particle-based method taking
explicitly into account the shape and movement of individual red blood cells, has to be
achieved.

6.5 Concluding Remarks

This thesis is a retrospective view on ten years of research in the areas of fluid dynamics,
chemical engineering and medical physics. The research question behind this work, high-
lighting the Lattice-Boltzmann method as a powerful tool toaddress complex-flow multi-
physics problems, was answered by a selection of mostly quantitatively validated studies.
These studies spawned from classical CFD problems via advanced modelling of adsorp-
tion until very recent applications of blood-flow and clotting simulations, which required
the development of several new extensions to the standard flow solver.

6.5.1 If I did it Today . . .

Although all these results are still valid today, the numerical method which was used to
produce them experienced a considerable development through the past ten years, thanks
to the very active Lattice-Boltzmann community.
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Several simulations presented in this thesis, performed with what was at their time a state of
the art implementation, can nowadays be accomplished in a more efficient or more elegant
way. It is beyond the scope of this thesis to reproduce all theresults presented in Chap. 4
and 5 with the latest version of our code.11 Instead, it shall be briefly sketched which
methods can and should be applied, if these simulations wereperformed today.

Channel Flow in Increasingly Complex Geometry (Chap. 4.1)

This study, using a geometry made up of an increasing number of square boxes with a long
inlet and outlet region, could significantly benefit from local mesh refinement, providing a
finer resolution around the square shape obstacles and a coarse resolution in the inlet and
outlet region. Also a sparse implementation (see Chap. 3.1.1) would help to safe memory
which was allocated also for the occupied lattice nodes.

Decay of Turbulence (Chap. 4.2)

In this study, the time evolution of a vortex and the decay of an isotropic field of turbu-
lence was investigated. A problem here was the initialisation of the density distribution
function from the given velocity field. In our approach, we initialised with an equilibrium
distribution function and let the system develop for a few iterations before taking the first
measurement as reference att = 0. This does not lead to wrong results, but to accomplish
a start from exactly the given velocity field, it would be a better idea to follow a suggestion
from Luo [211] and keep the velocity fixed while letting the system develop for a short
time.

Plain Channel Flow around a Square Cylinder (Chap. 4.3)

The transient flow around a square obstacle mounted in a channel was investigated in this
section. As in the above example from Chap. 4, local mesh refinement and a sparse imple-
mentation would help to significantly improve the performance and save computer memory.
Since the process of vortex shedding is critically influenced by the details of the develop-
ment of the vortices on the surface of the square obstacle, local mesh refinement is expected
to be particularly beneficial, because it allows a very fine resolution of this region, while
keeping the overall number of grid points small. A sufficiently accurate capturing of the
vortex shedding process has influence on the accuracy of measured quantities as Strouhal
number as well as lift and drag. Discrepancies between the Finite-Volume and Lattice-
Boltzmann results concerning lift and drag at higher Reynolds numbers can be explained
by an insufficient resolution of the equidistant Lattice-Boltzmann mesh around the square
obstacle, which could be cured by applying local mesh refinement.

11Which would not change the results, but only help to produce them with less computational effort.
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Numerical Analysis of the Pressure Drop in Porous Media Flow(Chap. 4.4)

Porous media flow is one of the domains where the Lattice-Boltzmann method is partic-
ularly advantageous. The problem that the wall position forthe BGK scheme in combi-
nation with standard bounce-back wall boundary condition is critically dependent on the
relaxation parameter was discussed in Chap. 2.2.3. Further, an approximation of curved
surfaces by the voxel mesh might lead to additional errors.

In the porous media flow studies presented in Chap. 4.4 we tried to avoid these problems by
first measuring the accuracy of approximating a circular shape with square obstacles and
then calibrating the correct relaxation parameter, which was kept fixed throughout the sim-
ulations. Although a tedious procedure requiring a high resolution for the curved objects
and giving away the option of freely adjusting the viscosityvia the relaxation parameter,
correct results could be produced with the applied Lattice-Boltzmann scheme.

Recent (not yet published) studies investigating the flow through porous structures for
Diesel particle filters12 proved the advantage of the new TRT and MRT schemes (instead
of BGK), which keep the position of the solid-fluid interfacefixed over a wide range of
relaxation parameters.

The additional use of improved wall boundary conditions forthe study on spherical obsta-
cles could further help to reduce the required resolution, particularly in combination with
local mesh refinement.

Similar to the previous studies containing a certain amountof solid fraction, a sparse im-
plementation would help to save memory.

Nonlinear Adsorption / Desorption (Chap. 5.2)

In this chapter an approach for nonlinear adsorption and desorption modelling was pre-
sented. Although the model was relatively simple and straightforward to implement, results
in good agreement with the theory could be achieved.

A major drawback, aside from a missing local mesh refinement to reduce the number of
grid points in the inlet and outlet regions, was the specific way diffusion was modelled as
a passive scalar. More advanced models are available today (see e.g. [212, 213]) which
avoid stability problems and allow to reach lower diffusionconstants.

Concurrent Numerical Simulation of Flow and Clotting (Chap. 5.3)

In this chapter, a model to simulate milk clotting based on a residence time approach was
applied. This very first numerical approach to the much more complex process of blood
clotting13 allowed to produce results which were in good qualitative agreement with the
experiments. Although a highly performance optimised sparse Lattice-Boltzmann code
was used, simulating a few seconds of the clotting process required days on a NEC SX-8

12These studies were carried out by the author in the frameworkof a joint research with a Japanese auto-
motive company, a presentation at the JSAE conference in Tokyo is planned for December 2007.

13The further progress towards modelling of blood clotting and its application to simulate thrombosis are
not presented in this thesis, related publications to whichthe author contributed are [15, 173, 174].
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vector computer. A significant drawback was again the limited stability of the diffusion
model, which resulted in a far too high lower limit of the diffusion constant. As in the
previous example, more advanced diffusion models could help to improve the situation.

The transient flow through an idealised stenosis (Chap. 5.3.4) possibly suffered from the
insufficient approximation of the geometry by the voxel mesh. Applying improved wall
boundary conditions for a better representation of the curvilinear boundary might have an
influence on the flow patterns particularly in the vicinity ofthe stenosis, where the flow
structures seem to be aligned with the mesh.

6.5.2 Things I did not do . . .

Many fields of the current research within the very active Lattice-Boltzmann community
have not been mentioned in this thesis: multi-phase flow [214, 215, 216, 217, 218, 219,
220, 221, 222], fluid-structure interaction [223, 224], particle transport [225, 226, 227,
228, 229, 230, 231, 232, 233] and shallow water and free surface simulation [234, 235],
just to mention the most prominent. Also this work was restricted to implementations of the
BGK relaxation operator, standard bounce-back wall boundary conditions, omitting local
mesh refinement and turbulence modelling [132, 191, 236, 237, 192].

A detailed analysis of all possible extensions and improvements of these basic models
would justify a thesis on its own, this restriction therefore seemed necessary to keep the
scope of this work within reasonable limits. By partially referring to research results pub-
lished years ago, when these models were emerging, this thesis provides a very conservative
estimation of the applicability of the Lattice-Boltzmann method. Particularly with parallel
sparse-matrix HPC implementations providing the MRT relaxation scheme in combina-
tion with improved wall boundary conditions and local mesh refinement, a new class of
problems could be addressed.

Although a state-of-the-art Lattice-Boltzmann flow solvershould offer a few of the above
mentioned new functionalities, the majority of the currently used implementations are
based on a simple bounce-back BGK scheme. The results presented in this work have
relevance also for the planning of future studies, since they clearly demonstrate the power
and some limitations of this basic, but very efficient approach. While the BGK scheme
can, and should, be replaced by the more advanced TRT or MRT relaxation operators [31],
or in the future even with the new cascaded model [238], codeswith simple bounce-back
wall boundary conditions not offering local mesh refinementwill persist in the future, at
least for multi-physics modelling.

As a final conclusion, the author would like to express his gratitude for the opportunity to
contribute to two exciting research projects aiming for an improvement of human health –
a very satisfying experience for a researcher active at the borderline of Fluid Dynamics and
Computer Science.
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porösen Medien.GIT Labor-Fachzeitschrift, 4:387–390, 1999.



128 Bibliography

[146] J. Bernsdorf, F. Delhopital, G. Brenner, and F. Durst.Prediction of pressure losses
in porous media using the lattice Boltzmann method. In Keil,Mackens, Voß, and
Werther, editors,Scientific Computing in Chemical Engineering II, Computational
Fluid Dynamics, Reaction Engineering, and Molecular Properties, volume 1, pages
336–343. Springer, 1999.

[147] J. Bernsdorf, G. Brenner, and F. Durst. Numerical analysis of the pressure drop
in porous media flow with lattice Boltzmann (BGK) automata.Computer Physics
Communications, pages 247–255, 2000.

[148] D. S. Clague, B. D. Kandhai, R. Zhang, and P. M. A. Sloot.Hydraulic permeability
of (un)bounded fibrous media using the lattice Boltzmann method. Phys. Rev. E,
61(1):616–625, 2000.

[149] W. v. Engelhardt.Der Porenraum der Sedimente. Springer, Berlin, 1960.

[150] J. Bear. Dynamics of Fluids in Porous Media. American Elseviewer Publishing
Company, Inc., New York, London, Amsterdam, 1972.

[151] A. E. Scheidegger.The Physics of Flow through Porous Media. Univ. of Toronto
Press, Toronto, Canada, 1974.

[152] M. Sahimi. Flow and Transport in Porous Media and Fractured Rock. VCH Ver-
lagsgesellschaft, Weinheim, New York, Basel, Cambridge, Tokyo, 1995.

[153] R. B. Bird, W. E. Stewared, and E. N. Lightfoot.Transport Phenomena, chapter 6,
pages 180–207. John Wiley & Son, 1960.

[154] A. Koponen, M. Kataja, and J. Timonen. Tortuous flow in porous media.Phys. Rev.
E, 54(1):406–410, 1996.

[155] B. Chopard and A. Masselot. Cellular automata and lattice Boltzmann methods: a
new approach to computational fluid dynamics and particle transport.Future Gen-
eration Computer Systems, 16:249–257, 1999.

[156] B. Chopard, A. Masselot, and A. Dupuis. A lattice gas model for erosion and parti-
cles transport in a fluid.Computer Physics Communications, 129:167–176, 2000.

[157] A. Dupuis and B. Chopard. Lattice gas modeling of scourformation under subma-
rine pipelines.J. Comput. Phys., 178:161174, 2002.

[158] T. Zeiser, G. Brenner J. Bernsdorf, P. Lammers, and F. Durst. Performance as-
pects of lattice Boltzmann methods for applications in chemical engineering. In
C. B. Jenssen et al., editor,Parallel Computational Fluid Dynamics 2000, Trends
and Applications, Proceedings of the Parallel CFD 2000 Conference, May 22-25,
Trondheim, Norway, pages 407–414. Elsevier, 2001.

[159] T. Zeiser, H.-J. Freund, J. Bernsdorf, P. Lammers, G. Brenner, and F. Durst. Detailed
simulation of transport processes in reacting multi-species flows through complex
geometries by means of the lattice Boltzmann method. In E. Krause and W. Jäger,
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Samenvatting

Dit proefschrift bevat in retrospect tien jaar onderzoek ophet gebied van de vloeistofdy-
namica, chemische techniek en medische fysica. Door een grote verscheidenscheid aan
voorbeelden uit het onderzoek van de auteur te bespreken, uitgevoerd binnen verschillende
samenwerkingsverbanden, wordt de nadruk in dit proefschrift gelegd op: ten eerste, een
bijdrage aan het onderzoek in de vloeistofmechanica en multi-fysica modellen, waarbij de
Rooster Boltzmannmethode werd gebruikt als een krachtig gereedschap voor het uitvoeren
van numerieke simulaties; en ten tweede, een demonstratie van het gebruik van de rooster
Boltzmannmethode als een competatieve vloeistofsimulatiemethode, zowel in termen van
rekenprestaties als in termen van gebruik in realistische stromingsproblemen.

Voor die toepassingen waar de traditionele CFD (Navier-Stokes) aanpak problemen on-
dervindt ten gevolge van complexe of variërende randen, often gevolgde van de noodzaak
om de simulaties uit te breiden voor multi-fysica problemen, worden de voordelen van de
rooster Boltzmannmethode aangetoond.

De keuze van de methode en de details van de implementatie werden in dit onderzoek
bepaald door de specifieke toepassing. Bepaalde eigenschappen en hardware specifieke
optimalisaties werden slechts dan geı̈mplementeerd wanneer deze nodig waren om een
probleem op te lossen, en niet omdat ze mogelijk waren.

De rooster Boltzmannmethode wordt in hoofdstuk twee geı̈ntroduceerd, inclusief een korte
historie van de ontwikkeling van de methode en, om didactische redenen, een uitleg van de
roostergas benadering. De stap van roostergas naar roosterBoltzmann en de afleiding van
de rooster Boltzmann-methode uit de Boltzmann vergelijking beëindigen dit hoofdstuk. De
intentie van dit tweede hoofstuk is om lezers vanbuitende CFD - en rooster Boltzmann
gemeenschap een begrip van de methode te geven.

In hoofdstuk drie worden de basisconcepten voor een efficiënte implementatie van de
rooster Boltzmannmethode besproken. De noodzaak om ge-avanceerde algoritmen en
datastructuren te gebruiken, teneinde de benodigde rekenprestaties te halen om realistische
problemen aan te kunnen pakken, wordt geı̈llustreerd door een gedetailleerde prestatieanal-
yse, waarin een volle-matrix en een ijle-matrix rooster Boltzmann code worden vergeleken.
Het punt van MPI parrallelisatie wordt kort besproken, en een introductie in de specifieke
aanpak voor de visualisatie van HPC simulaties beëindigd dit hoofdstuk.

Hoofdstuk vier bevat gedetailleerde quantitatieve studies naar de vloeistofstroming in com-
plexe geometrieën. Na een initieële validatie van de methode door een vergelijking met
analytische oplossingen en andere numerieke resultaten, is het probleem van drukverlies
in complexe geometrieën geanaliseerd. Gedetailleerde simulaties van stroming in poreuze
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media hebben aangetoond dat turtuositeit wordt overschat in de gebruikelijke capilaire the-
orieën, en de vervorming van vloeistofelementen is geı̈dentificeerd als een tweede bron van
dissipatie, die in deze capillaire theorieën meestal wordt verwaarloosd.

Naast een bijdrage aan het onderzoek in de vloeistofmechanica was het de intentie van dit
hoofdstuk om de rooster Boltzmannmethode te promoten als een efficiente en competatieve
methode voor simulaties van complexe stromingen.

In hoofdstuk vijf worden uitbreidingen aan de stromingsimulator besproken, bedoeld voor
het modeleren van multi-fysica fenomenen. Door relatief eenvoudige uitbreidingen van de
lokale regels (gebruikmakend van de cellulaire automaat structuur van de rooster Boltz-
mannmethode) wordt aangetoond dat verrassend complexe structuren kunnen ontstaan op
de macroschaal. Dit hoofdstuk illustreert de kracht van de rooster Boltzmannmethode voor
simulaties van complexe stromingen en multi-fysica toepassingen, via qualitatieve en quan-
titatieve simulaties van verschillende onderzoeksvelden, zoals heterogene catalitische reac-
ties, adsorptie en melk - en bloedstolling.

Het laatste hoofdstuk zes bevat een samenvatting van de rooster Boltzmann software on-
twikkeling en geeft een aantal argumenten voor industrie enonderzoekers om realistische
problemen met de rooster Boltzmannmethode aan te pakken. Een korte omschrijving van
het huidige onderzoek van de auteur binnen een tweetal Europese projecten op het gebied
van medische fysica besluit dit proefschrift.
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