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Boltzmann’s work met with mixed reactions during his lifedi
and continues to do so even today.
Stanford Encyclopedia of Philosophy

As such models become more sophisticated and realistie traatitional
numerical methods of simulating fluid flow in porous media fractured rock
(...) lose their competitive edge, and will be phased oub@ftiture.

Muhammad Sahimi

Reaching full maturity is just a matter of time and labour,
no conceptual hurdles in sight.
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Chapter 1

Introduction

1.1 Complex Flows and Multi-Physics

The various phenomena of fluid flow have such presence in alyrlide, that most human

beings are fascinated by their complexity from early choloth. ‘Experiments’ on surface
wave propagation (age 1), water channeling (age 5) or wipémmxents with any kind of
flying objects (age 7) help us to develop a natural feeling amdkerstanding of complex
flow phenomena before any scientific analysis.

Conversely, the impressive complexity and often seeminglyredictable behaviour of
fluids leads to many kinds of surprises in daily life, whicle drard to explain without
deeper scientific understanding: the suddenly increasimguat of ketchup coming out of
the bottle (shear thinning fluids); the unexpected ternitdesse when opening the window
of a badly designed car (Helmholtz cavitation); the varisoignds air-flow can cause when
interacting with solid objects (vortex shedding and fluidisture interaction at the onset of
transient or turbulent flow), finding its most artistic exgg®n in a rich variety of musical
wind-instruments all over the world.

Nowadays, a deep insight into the dynamics of fluid flow is neglfor the efficient design
of many kinds of technical devices, from micrometer scaéading heads of the hard-
disc) to hundreds of meters size (large ships or buildinBeyond the design of technical
devices, research related to geological (e.g. ground Milatey and biological (e.g. blood
flow) phenomena requires an understanding of the underfididgbehaviour.

Often, a solution of the flow problem alone is insufficient kplain certain complex phe-
nomena. It is the interaction of the flow with other physicdlemical or biological pro-
cesses which has to be considered within a coupled scheraehiieve the understanding
required for modelling and simulation. If this is the case,speak of ‘multi-physics’.

The aforementioned fluid-structure interaction within makinstruments is an example of
multi-physics flow, since coupling of the flow field to structunechanics must be consid-
ered?!

1One might argue that for wind instruments (reed instrumerttuded, where the fluid-structure inter-
action is obvious) like flutes or trumpets only the geomesryelevant for a certain steady sound-wave to
establish in the corpus of the instrument. Alas, as the au#o confirm from his own experience studying
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More complex multi-physics flow problems in daily life arestfaging’ of a catalytic con-
verter in a caf or the complex biophysical processes in the human body whietent
blood clotting inside the arteries and veins, but ensuriglfagaling of open wound$.

The prediction of flow phenomena, aside from the intuitived(@ften misleading) un-
derstanding as described above, is obtained from the taasfgexperiments, analytical
solutions of the underlying equations and numerical sithnia.

Since analytical solutions of the governing equations atg possible for relatively simple
boundary conditions, with a few degrees of freedom in a fraank of simplified, reduced
expressions, wind, water or oil-tunnel experiments hawe@panied previous major de-
velopments. These experiments are usually extremely ¢omsuming and require large-
scale highly specific equipment and elaborated methodsdwoir@cprecise data. For this
reason, experimental fluid dynamics is very expensive amgtbduction of results requires
significant experience, time and forward plannfnblevertheless, and against the explicit
announcements of some prestigious automotive companies;imental investigations are
still the backbone of most developments in this field.

The increasing availability of relatively cheap computewpr, together with an equivalent
development of efficient numerical methods during the pdist dir so years, allows for

the simulation of complex fluid flow systems with many millidagrees of freedom. The
advantages of computational fluid dynamics (CFD) comparexkperiments are obvious:
general-purpose hardware can be used for simulations watidard commercial CFD-

software and results can be obtained in a relatively shog &llowing detailed insight into

flow phenomena, sometimes not accessible by experiments.

The difficulty of setting up and running large expensive expental equipment is shifted

to the challenge of efficiently implementing numerical nogth to solve the governing

equations, and in the case of complex multi-physics phenam@® perform the appro-

priate modelling and mathematical description of the phesa that are the subject of a
simulation.

the Shakuhachi [1], this is not the case. The interactiorhefdir pressure oscillations inside the instru-
ment with the surrounding material seem to play an impomaietfor the formation of the sound, which the
musicians sometimes describe as ‘vibration’ of their instent (some interesting remarks on this and other
aspects of Shakuhachi physics can be found in [2]). A Laiokzmann simulation of a flute (neglecting
the fluid-structure interaction) has been carried out bialt at the Institut fir Wiener Klangstil [3, 4].

2This is related to catalytic chemical reactions in compleometries (Chap. 5.1) and adsorp-
tion/resorption processes (Chap. 5.2).

3A first study on clotting processes will be presented in Chap.

4The author had the chance to make his own experiences wittothelicated process of acquiring ex-
perimental wind-tunnel data with the help of LDA [5] and heate devices [6], during his time as a research
scientist at LSTM, Erlangen.
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1.2 Computational Fluid Dynamics

1.2.1 CFD-I: Navier-Stokes

The most common approach in CFD is to discretise the Nav@keS equation, which
governs the flow properties of a ‘simple fluiel’:

O(pv) = 0, (1.1)
ov - 1- u
EJr(VD)V = —EDp+EAV (1.2)
whereV is the velocity vectorp is the fluid densityu is the dynamic viscosity angdis the
pressure.

Almost 50 years of experience with hundreds of thousandsisgn years of development
resulted in a rich diversity of highly sophisticated CFD esdincluding many commer-

cially available packages. Nevertheless, carrying out B Gifulation has remained an
expert’s task, often with unknown predictability of sucs®s estimation of the quality of

the daté

The major paradigm in the development of this ‘classicalDC&pproach was to invent
more and more sophisticated methods of implementing the s&hof equations. Alas,
often in science progress is not made from repeatedly inipgabhe same idea, but from
stepping back and solving the problem from a completelyediifit point of view.

So, it was a lucky coincidence, that theoretical physicistso were developing ‘toy-
models’ for a better understanding of non-equilibriumistetal mechanics, realised that
their approach could actually be used to solve real-world flooblems. That is, how the
Lattice-Gas and later Lattice-Boltzmann method emefged.

1.2.2 CFD-ll: Lattice-Boltzmann

Instead of solving the homogeneous (Navier-Stokes) eguatn the macroscopic level,
in the microscopic (Lattice-Gas) or mesoscopic (LatticdtBnann) approach a set of
equations derived from statistical physics is considefidply, the idea behind Lattice-
Boltzmann is not to look at the time and space-developmahiediuid, but at the (average)
momentum and interaction of its particles. In contrast srthmerical simulation of the
Boltzmann equation itself, this is done for a simplified @iand space-discrete) scheme.

Within the framework of a simple Lattice-Boltzmann simigat, an equidistant orthogonal
lattice is choseR.On every lattice node, a set of real numbers, the particlsitledistribu-
tions, is stored. Updating of the lattice consists of twpstea streaming process, where the

5For a ‘simple fluid’ we consider transport coefficients to beépendent of the flow properties (Newto-
nian fluid) with no phase transition occurring.

8In not just a few cases the ‘C’ in ‘CFD’ is more obviously thebadviation for ‘Coloured’ than anything
related to engineering or science.

For a short history of these so called ‘cellular automata’Gbap. 2.1.

8More advanced approaches allow local mesh refinement, figsfested by Filippova and Hanel [7] or
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particle densities are shifted in discrete time steps tjindbe lattice along the connection
lines to their next neighbouring nodes, and a relaxatiop, stkere locally, a new patrticle
distribution is computed by evaluating an equivalent toBb&zmann collision integrals.

Every time step, the flow variables present in the Naviek&taequation (velocity, den-
sity) can be locally computed in terms of moments of this dgrdistribution, while the
viscosity is a function of the relaxation constant (equewalto the collision frequency of
the particles) and the pressure is derived via an equatistat# from the density.

Since the numerical solution of these equations simulatescagoverned by the Navier-
Stokes equation, it is sometimes argued that this is not ticpkarly exciting idea. The
true excitement the method caused came from providing aleirapt of equations, which
can generally be implemented in a more efficient way than theied-Stokes equation,
resulting in higher performand.

1.3 Research Focus

By reviewing a variety of examples from the past ten yearsiefauthor’s research, under-
taken within various co-operations, the focus behind thesits is two-fold: first, giving a
contribution to fluid mechanics and multi-physics reseafohwhich Lattice-Boltzmann
was used as a powerful tool to perform the numerical simanatiand second, to demon-
strate the applicability of the Lattice-Boltzmann methadaacompetitive flow solver, in
terms of performance and applicability to real-world flowlplems.

For problems where traditional CFD (Navier-Stokes) apghea have difficulties due to
the handling of complex or varying boundaries, or addingesion for the simulation of
complex multi-physics procedures, the advantages of tliceaBoltzmann method are
demonstrated.

The choice of the method and its particular implementatiaghiwthis research was driven
by the application. Certain features and hardware-spegtienisations were only imple-
mented if required to solve the problem, and not simply bsedhiey were possible.

1.3.1 Structure of the Thesis

In Chapter 2 the method is introduced together with a shetbhical review of the develop-
ment and, for didactic reason, a basic explanation of thideaGas approach. The step to
Lattice-Boltzmann and a derivation of the Lattice-Boltzmaquation from the Boltzmann
equation conclude this chapter. It is the intention of theosd chapter to give the reader
from outsidethe CFD/Lattice-Boltzmann community an understandindefrhethod.

octree-based data structures as suggested by Krafczyk §8pl mesh refinement is not considered in this
thesis.

9Details of the method will be explained in Chap. 2.2.2.

10By ‘performance’ we speak of the relation between theoakfieak performance of the hardware in
guestion and the performance a code achieves on this hardwais is not always coming along with a
shorter turn-around time to solve the flow problem itselfif®@nance aspects are discussed in Chap. 3.1.
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A complete introduction and derivation of the governinga&tipns can be found in a variety
of text-books [9, 10, 11, 12, 13].

Chapter 3 reviews basic concepts required for the efficrapiementation of a Lattice-
Boltzmann solver. A detailed performance analysis, compaa full-matrix and a sparse
Lattice-Boltzmann code, illustrate the necessity to apadyanced algorithms and data
structures for achieving the required performance to addreal world’ applications. The
aspect of MPI-parallelisation is briefly discussed, anchémoduction to a specific approach
for the visualisation of HPC simulations concludes thisatba

Chapter 4 presents several detailed quantitative flowasydivestigating steady- and tran-
sient complex flows in a variety of geometries. After iniNalidations of the method in
comparison with analytical and other numerical results, ghoblem of pressure loss in
complex geometries is analysed. The detailed simulatiénmmus media flow, made
possible with the Lattice-Boltzmann method, demonstrétedtortuosity’ as being over-
estimated within the common ‘capillary theories’ and théodmation of fluid elements is
identified as a second dissipative source, which is usualljected within these theories.
These numerical simulations confirmed experimental sitimnla carried out by Durst et
al. [14] in the mid eighties, which were at the time heavilificised.

Aside from a contribution to fluid mechanics research, thention of this chapter is to
highlight the Lattice-Boltzmann method as an efficient amchpetitive tool, when applied
to the simulation of transient or complex flows within compigeometries.

In Chapter 5, various extensions to the flow solver for maadglnulti-physics phenom-
ena are presented. It is demonstrated how from relativetplsi local rules (making use
of the cellular-automata-like structure behind LatticetBmann) a surprisingly complex
behaviour emerges on the macro-scale. By presenting gtiaditand quantitative simu-
lations from various research fields, such as heterogerwaialytic reaction, adsorption
and milk/blood clotting, this chapter is dedicated to ithasing the strength of the Lattice-
Boltzmann method as a complex-flow multi-physics simulatimol.

The last Chapter 6 briefly reviews Lattice-Boltzmann sofevdevelopment and provides
some arguments for the industry and researchers to engaddiessing ‘real world’ prob-
lems with Lattice-Boltzmann. A brief outline of the auth®current research within two
European projects in the area of medical physics conclidgs$hesis.

Due to the large variety of studies presented within thisigienot everything could be
explained in full detail. The reader is referred to the atighpublications on which the

various chapters are based. Since the work of almost tes J@accumulated — ten years,
in which the Lattice-Boltzmann method rapidly developedtaill results presented in the
following have been carried out using today’s state-ofdhteémplementations®

Some of the older studies were, at the time of publicatioa fitist of their kind within the
Lattice-Boltzmann community, and although achieved witmatvare now slightly out of
date implementations, nevertheless present valid results

11See also Chap. 6.5.1 ‘If | did it today ... .



6 Introduction

As explained in Chapter 3.1, more elaborate methods thahraditrix implementation are
available today, which have been applied to the most rec@nidations in the area of med-
ical physics, presented in the Chapters 5.3, 6.3 and 6.4€l$tadies are ongoing research
and partially leading in their field even outside the smatiseof Lattice-Boltzmanh?

The author strongly believes in the future of the LatticdtBoann method, with which he
was concerned for the past ten years of academic and inalugtsiearch. An additional
target of this thesis is therefore to promote the Latticé#oann method (with various
extensions) as a very useful and highly efficient simulatawi for the academic and in-
dustrial study of complex-flow multi-physics problems.

12A few recently submitted collaborative papers on milk anabbl clotting have not been included in this
thesis, since they are subject of the PhD thesis of S.E $teret the University of Sheffield, in the supervision
of which the author was involved. For details, the readegfisrred to Sarah’s very comprehensive thesis [15].



Chapter 2

The Method

This chapter starts with a short historical review of how Hagtice-Boltzmann method
emerged from its cellular automata Lattice-Gas roots. Atsthescription of Lattice-Gas
methods and a comparison with Lattice-Boltzmann is preskintthe second section. The
final part of this chapter very briefly describes the deromtof the Lattice-Boltzmann
equation from the Boltzmann equation.

2.1 Cellular Automata: A Short History *

The Lattice-Boltzmann method, as it is currently used in potational fluid dynamics, has
its roots in the concept of cellular automata, based on idating back to the 1940s (for
details see e.g. [16, 17]).

Inspired by the idea of imitating the behaviour of the humeairband based on sugges-
tions by Ulam [18], the computer pioneer von Neumann dewaddpe concept of a self-
reproducing machine to solve highly complex problems. Tagdframework suggested
by von Neumann consists of a fully discrete universe madefugelts. These cells are
characterised by a discrete set of internal states, whielijadated in discrete time steps.
While the initial and highly complex self-replicating adihr automata suggested by von
Neumann [19] is primarily of theoretical interest, a vayief simplified cellular automata
for modelling the behaviour of living species were devebbpethe framework of ‘artificial
life’.

A particularly popular model suggested in the 1970s is Cgravgame of life’ [20], a two
state model residing on a square lattice with cells updagprding to the binary state
of their four next neighbours. Ten years later, Wolfram si@esd a family of simple one-
dimensional rules (the so called ‘Wolfram rules’ [21, 22)e noticed that from a cellular
automata with a few simple local rules many features of a ¢exngontinuous system can
emerge. Thus, the concept of ‘complexity’ based on mathieailahodels could be studied
by exact computer simulations which (due to their Booleatumgg did not suffer from
numerical errors, as it is the case for the more traditioppt@aches.

1This section is based on the more detailed historical regigan in Chap.1 of the book by Chopard and
Droz [10].
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Toffoli, Margolus and Fredkin in the mid-1980s recognisetildar automata as a possible
model framework for the simulation of physical systems amelytdeveloped dedicated
hardware (the CAM-6 and CAM-8 machine) for the highly penfi@ant simulation of many
different cellular automata applications [23].

The first cellular automata fluid flow simulator is based ondbecalled HPP lattice gas
models by Hardy, Pomeau and de Pazzis [24]. Originally dgesl in the 1970s as a
theoretical model for the study of interacting particlésjmplementation in the framework
of cellular automata raised the question whether or not suofodel would be able to
simulate the behaviour of a real fluid or gas. Alas, thisahitnodel soon turned out to be
insufficient for correctly simulating flow as governed by thavier-Stokes equation.

With the FHP model published in 1986 by Frisch, HasslachdiRomeau [25] and almost
simultaneously by Wolfram [26], an accurate lattice gas ehdar the simulation of fluid
flow was available for the first time.

The hope of replacing classical numerical methods in CFDeseth wind-tunnels, as for
example expressed in an article on the front-page of the MWagisim Post on November
11, 1985, could not be fulfilled.Further theoretical developments of the method, mainly
driven by the group around d’Humieres and Lallemand at tb@ld=Normale Supérieure
in Paris lead to a variety of improvements, though the majawback, a relatively high,
fixed viscosity and a lack of Galilean invariance of the sca@ould not be cured.

By the end of the 1980s, McNamara and Zanetti [27], and HeguBmenez and Succi [28]
presented the idea of replacing the Boolean dynamics byleaicg the time evolution of

a probability density distribution of the particles. Thiodel, commonly referred to as
‘Lattice-Boltzmann’, turned out to be more suitable for #i@ulation of a broad variety of
real-world flow phenomena.

When the Lattice-Boltzmann method was derived from Lat@aes, overcoming the draw-
backs of a fixed very high viscosity and a lack of Galilean rrauace, first attempts of
realistic engineering applications could be madmplementing and running a large-scale
three-dimensional Lattice-Boltzmann code to simulatedfflow inside an industrial de-
vice was quite a challenge at this time: the method was itestainl not enough was known
about how to implement inlet, outlet and particularly wadumdaries. It was the time of
‘Legoland’-geometries, where a simple ‘marker and celprach identified the solid frac-
tion of the flow domain on a regular equidistant lattice. N#weless, it was demonstrated
in a variety of publications (part of which contributed tastthesis), that the method can
be used to produce quantitatively accurate results, whare wften difficult or impossible
to generate with the same effort using Navier-Stokes orratled established approaches.

A variety of further improvements, particularly the intredlion of the BGK single-time
relaxation operator [29] and years later the multi-releprascheme [30, 31], improved wall
boundary conditions [32, 33, 34, 35], local mesh refinemeuit @on-uniform grids [36,
7, 37] allowed the Lattice-Boltzmann method to grow into atuma tool in the area of
computational fluid dynamics.

2From today’s point of view, it can be said that the limits o tapplicability of these early models was
not sufficiently understood at that time.

3|t was around this time, that the author began his own rebeaithin an environment strongly focused
on engineering.
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However, even today a variety of publications by the comrnyustiow reluctance to over-
come the hardships of applying the method to real world gmislby producing quantita-
tively validated results for academic or engineering peats.

2.2 From Particles to Fluids'

For the reader familiar with Navier-Stokes CFD and not with toncept of the Lattice-
Boltzmann method, a short review of Lattice-Gas methodstheaonnection to Lattice-
Boltzmann is given in the following.

The underlying principle of Lattice-Gas cellular automatal later the Lattice-Boltzmann
method is the numerical simulation of simplified moleculgnamics of the fluid. This is
done by evaluating a time and space discrete Boltzmanniequ#ite so called Lattice-
Boltzmann equation [25]. Macroscopic values such as pressud velocity can be ob-
tained from the fluid density distributions, which (undemsassumptions) have a be-
haviour governed by the Navier-Stokes equation [28, 40].

Before describing the Lattice-Boltzmann method, we firgtfly introduce the Lattice-Gas
approach in the form of the so called FHP-I automata.

2.2.1 Lattice-Gas (FHP-I)

The FHP automata was first proposed by Frisch, Hasslachd?@nédau in 1986 [25]. The
underlying principle of this approach is that binary ‘peles’ with unit mass are propagated
on a hexagonal Bravais lattice (see Fig. 2.1) in discrete steps with unit velocity. It
should be noted that a triangular or quadrilateral latisecommonly used in connection
with finite volume or finite element techniques, would causisatropic flow.

The particle position and a (discrete) velocity vector adidated by its lattice coordinates
and position at the node respectively. Every node splitssitcells as indicated in Fig. 2.2,
showing as an example, a lattice node with particles at dgld and 5. An exclusion

principle is imposed that prevents the location of more tbae particle per cell at the
same time. The six possible velocity vectdjsare:

Cj = [cog2jm/6),sin(2jm/6)], j=1,...,6 (2.1)

A flow diagram of the algorithm is indicated in Fig. 2.3.

The propagation step consists of moving all particles tonie node in the direction of
their velocity vectors, with the restriction that propagatis only possible between the six
nearest neighbours along the lattice connection linesHgpe.4).

4The research work presented in this section was performeSEY Erlangen (Germany) under supervi-
sion of M.Schafer and F.Durst. It was presented at the &@@as sur Réseau (Paris, France, 1994) and the
ICA Seminar on Modelling and Computation in EnvironmenteieBces (Stuttgart, Germany, 1995), pub-
lished in [38, 39]. Financial support by the Bayerische Ebwngsstiftung in the Bavarian Consortium of
High-Performance Scientific Computing (FORTWIHR 1) is ggfally acknowledged.

5All details of the theory can be found in a variety of text bepgee e.g. [9, 10, 11, 12, 13].
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Figure 2.1: Hexagonal Bravais lattice (one lattice nodaghlighted).

Figure 2.2: Lattice node with particles at cells 1, 2 and 5.

-—

Propagatiof
Y
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| Acceleration

U

Averaging

Figure 2.3: Flow diagram of the cellular automata algorithm

Depending on the particular model employed (FHP-I, -11 t)-tollision rules of varying
complexity may change the velocity vectors of those pasieintering a collision state after
the propagation step. A minimum set of collision rules reegiito reproduce fluid flow are
the head-on and three patrticle collisions (see Fig. 2.5iciwére used in the FHP-1 model.
The particle mass and momentum is conserved during caiBsio

To obtain directed flow (and a pressure gradient), the visle€ictors of a certain amount
of randomly chosen particles must be changed at everyitaraio produce flow in the
(positive)x direction, for example, particles from cell 3 are moved tth 6eat the corre-
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Figure 2.4: Propagation: particles moving to new positions

/%

or —>
\%
Figure 2.5: Head-on and three particle collisions (thellovadification of the post-advection dis-
tribution is shown).

sponding nodes as illustrated in Fig. 2.6 (for the numbeoiintpe cells see Fig. 2.2). The
resulting local disturbance is propagated through thec&atind, after a certain number of
iterations, an equilibrium between acceleration and wisdorces (imposed by collisions
and boundary effects, see below) evolves.

Figure 2.6: Acceleration: randomly chosen particles {teftge, indicated by dashed circles) change
their velocity vector.

In order to obtain macroscopic values, such as pressureaacity, from the particle dis-
tributions, appropriate time and space averaging proesduave to be done. By denoting
ni(Ts,t.) € (0,1) as the binary particle density at cek (1,2,...,6) of lattice noder, at
timet,, for example, the mean velocity can be obtained by:

1 ¥ sigye (ot
UM, St @2)

whereM is the number of iterations considered for averaging.
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2.2.2 Lattice-Boltzmann

Due to the discrete nature of the binary FHP automata, sstichaoise is present which
necessitates averaging over long time and large areascahise avoided by using parti-
cle densities as ensemble averages of the Boolean valuesparticle collision rules are
replaced by a relaxation operator (last term in Eqn. 2.3ctviproduces the new particle
distributions after the collisions. The Lattice-Boltznmeequation can be written &s:

fi(Fe + Gt + 1) = fi(Fe,t) + Q(F) (2.3)

The densitiesf; are equivalent to the ensemble averages of the binary lgadénsities
ni, where the exact definition of the collision operaf(f) depends on the details of the
model employed.

Since no fluctuations are present, the advantage of thiapipiis that computations can
be performed on smaller grids with fewer iterations and thelfvalues can be directly
obtained without any time and space averaging processeas.effact is illustrated by a
comparison of FHP-I and Lattice-Boltzmann simulationslahe Poiseuille flow, which is
shown in Fig. 2.7. In practical applications, this advantage compensatekesiseefficient
and slower operations (from the computational point of yieth real numbers (parti-
cle densities) required for the Lattice-Boltzmann methmminpared to the more efficient
logical operations on binary particles with an FHP approach

0.03 0.100
0.075 |
0.02 |
em————— M- L. p 1 W - ] .
L. M4 M 0.050 | '
| h [
o.01 Hii 1Rl ‘ ‘
0.025
0.00 . ' k 0.000 ' J '
d 2500 5000 7500 10000 0 500 1000 1500 2000

Figure 2.7: Mean flow ratey(axis) of plane Poiseuille flow vs. iteration numbgrakis) for FHP
(left) and LBA (right). The dashed lines indicate the thé¢iced value.

6More details of the derivation are presented in sectiorb2.2.

"The two figures are related to two different simulations withards to viscosity and Mach-number and
one iteration represents a different time-step in each agkthhe figures are shown to illustrate the statistical
noise present in Lattice-Gas and absent in Lattice-Boltama



2.2 From Particles to Fluids 13

2.2.3 Fluid-Solid Boundary Conditions

The Lattice-Boltzmann equation 2.3 concerns the timetgian of a single quantity, the
density distribution functiorf;. It is therefore natural to treat boundary conditions not in
terms of the macroscopic flow variables, pressure and \gldeit through the distribution
function itself.

In the case of a fluid-solid boundary, the question is how tmmstruct the distributions
which are not updated during the propagation process, bed¢hair connecting links reside
on the solid surface. The first, and still very popular, applois the so called standard
bounce-back procedure: particles or particle densitigsiwivould be moved to occupied
nodes are simply bounced back, that is, reflected towardasittemmingdirection. This
is resulting in a zero mean velocity at the boundary, lochtdfiway between a boundary
fluid node and its adjacent solid node (no slip boundary daji

In both cases (Lattice-Gas and Lattice-Boltzmann) solifase boundary conditions can
be implemented easily by marking lattice nodes of the sdi@bse as ‘occupied nodes’, and
applying the bounce-back rufe.

The same bounce-back principle is applied to fixed wallsatdtiice boundaries.

This procedure allows for the simple implementation of &by complex structures (see,
for example, the simulation of flow through a porous sedimgnlayer, as presented in
Fig. 2.10) or even to change the solid structure during cdatfmn, as is necessary for
problems with time-varying geomet?y.

When applying this so called marker-and-cell approach jaseto ensure that the smallest
elements of the discretised structure are large enougletept a finite-size effect [43, 44,
45], which may lead to unphysical results if the number of-ncoupied cells between the
obstacles is too small.

Of further consideration is a sufficient resolution of thegetry to capture all relevant
details. In case of porous media, certain characteris@ntjies such as porosity or the
hydraulic radius must not be changed during the voxeligatio

The accuracy of these standard ‘bounce-back’ boundaryitbomslis discussed at length in
the literature. More complex approaches for reconstrgdtiie missing distributions have
been suggested in the mid-1990s (see e.g. [32, 33, 34, 46, A7¢ drawback of all of

these ‘first-generation’ advanced boundary conditionseg suitability for only a reduced
set of geometries and a significant amount of additional adatnal effort required®

Conversely, it has been demonstrated (see e.g. [48]) thiatr @appropriate conditions (flow
viscosity not too high and large enough lattices), the bul fls of second order accuracy
in space and time. He et al. [49] showed by theoretical andemaal analyses that the
bounce-back scheme is of second order accuracy for planeehi#ow. A detailed analysis

8Such a mesh, defining ‘free’ and ‘occupied’ nodes on an odhatregular grid is also termed a ‘voxel-
mesh’, and its generation from CAD or tomography data is $on&s called ‘voxelisation’ (see Chap. 2.2.4).
9An example in the framework of medical physics is given in @©Ha3 for the simulation of milk/blood
clotting. The simulation of coral growth by Kaandorp et dl1]42] is an excellent application of Lattice-
Boltzmann with flow dependent geometry in marine biology.
101n case of a sparse implementation as described in Chaph8.ipunce-back condition can be integrated
in the preprocessing step, resulting in zero computationadhead.
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by Kandhai et al. [50] proves the standard bounce-back ndetbdoe of second order
accuracy, when the boundary position is assumed to be gxaatiiveen the last fluid and
the first solid nodél

A clearly unwanted feature of the standard bounce-back edeith combination with the
BGK relaxation scheme (see Chap. 2.2.5) is a slight depeyd#rihe wall position on the
relaxation parametep. This error was found to be belowl®6 by Kandhai et al. [50] for a
wide range of relaxation parameters. Ferréol and Rothreaoribed this slight relaxation
parameter dependency of the wall position already in 1998y Dbserved that, regardless
of its very small quantity, it might have a significant impact the accuracy of porous
media flow simulations, if the mean pore size is very smal].[51

A recent study by Pan [52] comparing a variety of advancedideaBoltzmann (TRT or
MRT) schemes [30, 31], in combination with the relativelywiaterpolated boundary con-
ditions [53, 54] and multi-reflection schemes [55], conésithat only the combination of
either TRT or MRT with an advanced boundary condition leads viscosity independent
position of the wall?

In the light of this controversial discussion, we are notwnoed that the standard bounce-
back boundary condition in combination with a BGK relaxataztheme necessarily leads
to inaccurate results. However, special care has to be takeglect the relaxation param-
eter accurately and keep it constant for specific paramaidies. The choice of a more
advanced scheme is usually accompanied by a reduced parfoemnso it might well be
that for carefully prepared simulations the standard betlvack scheme will survive for
another decade.

Interpolation schemes appear to be promising candidatestéde of the art’ wall bound-
ary conditions, since they allow a fixed arbitrary positidritee wall between two lattice
nodes. This leads to increased accuracy of the discretiséte boundary with relatively
small computational overhead. Within the preprocessiag,ghe additional information
of the distance between the last fluid node and the solid kayr(the ‘g-values’) have to
be provided (for details see [53]).

For all studies presented in this thesis, the standard lmeback wall boundary condition
was applied. Special care was taken (where required) torermstixed position of the
wall by keeping a constant relaxation parameter, or varjtirmgly in a relatively ‘safe’
low viscosity limit. A sufficiently fine discretisation of éhgeometry and absence of finite-
size effects was verified (where possible and required) Iofopeing mesh convergence
studies.

2.2.4 Geometry Discretisation

Due to the relative simplicity of integrating arbitrary cplex geometries without impact
on the performance, the Lattice-Boltzmann method at firsalbvee popular in the area of

Hpefining the fluid-solid surface on the boundary nodes itseldls to only first order accuracy.

12This statement is in contrast to the author’s recent obsiervan simulating porous media flow with a
TRT scheme using standard bounce-back wall boundary ¢onslitThe position of the wall was found to be
constant over a wide range of relaxation parameters.
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complex geometry flow, where the standard Navier-Stokesdasethods caused severe
complications for the mesh generation. It soon became obutlmat the simple marker and
cell approach allows fast and semi-automatic mesh-gaoerfiom digital images, CAD-
data and other synthetic geometries. The major strategiegeometry discretisation as
applied in this thesis are briefly described in the following

Application Strategy I: Digital Images

For research into porous media flow, the development of newcelein the area of chem-
ical engineering (e.g., heterogeneous catalytic reastisee Chap. 5.1), or in the area of
medical physics concerning patient specific data (see Ghd@and Chap. 6.4), a detailed
knowledge of flow properties inside highly complex geongstiis required. It is often not
possible to perform mesh generation for such geometridsamitventional methods. Us-
ing 3D computer tomography (CT), arbitrary complex struesucan be digitized and the
CT data can be converted into Lattice-Boltzmann voxel dsge Fig. 2.8}3

Real Object

«—— 3D computer tomography
ﬂ + data conversion

\oxel Data

H «—— LB Simulation

Results

Figure 2.8: Flow diagram illustrating the voxel-mesh getien from real objects.

To illustrate the capabilities of the method, the fluid flowotlngh a digitised electron mi-
croscope picture of a sedimentary layer taken from the n@égiman sea shore as shown
in Fig. 2.9 was simulated*

The computation, originally performed in the year 1993 oroavex C-210, was repeated
in 1994 on one processor of a Cray-YMP. 10,000 iterationgwequired for a 500500
lattice to reach the steady state. This corresponds to 1@88hds of total CPU tim&

135ometimes, as in the case of medical data, a more or less evmgonstruction procedure has to be
performed in order to identify the exact position of solidiza

14This approach was developed by the author during his time diplama student at the Institute of
Biology and Chemistry of the Sea (ICBM) at the University &burg (Germany) under the supervision of
Prof. Schellnhuber, without being aware of the work simmétausly carried out by Ferréol and Rothman on
Lattice-Boltzmann simulations of flow through Fontainehlesandstone [51], the first publication on flow
through real digitised geometries with the Lattice-Boleam method.

Bwith a state of the art implementation it would take less th@seconds to produce the same result on
one CPU of an NEC SX-8 vector computer.
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Figure 2.9: Digitised electron microscope picture of a sefitary layer, from [56].

where 147+ 1P lattice updates per second were accomplished with a peafoceof 190
million floating point operations per second (MFLOP/s) fr@30 MFLOP/s theoretical
peak performanc¥ This indicates the possibility of a straightforward vetation of the

Lattice-Boltzmann approach, which constitutes a greaaathge of this method.

Fig. 2.10 shows the computed velocity vectors for the sedirtayer. Constant velocity
inlet and pressure outlet boundary conditions where agydiethe upper and lower boarder
of the domain periodicity was considered. This illustréi&tt regardless of the complexity
of the pores, the flow features are well captured.

Application Strategy Il: CAD-data

In modern car design, a complete model of the automobileasahle as CAD data. Using
dedicated software, the geometry description for the tetBoltzmann simulation in terms
of voxel-meshes can be generated almost automaticallythher@AD data (see Fig. 2.11).

As an illustration, the turbulent flow simulation around tg@ometries defined in terms of
CAD data are shown in Fig. 2.12.

Application Strategy lll: Synthetic Geometries

Occasionally, neither a real geometry nor CAD data are abkilas a description of the
solid fraction. Particularly for academic flow studies, geashapes consisting of regularly
or randomly positioned rectangles or boxes [44, 39], padlaxs of spheres or randomly

16Today'’s figures for a performance optimised 3D code are 40omilattice site updates per second with
a performance of 6 GFLOPS on an NEC SX-8 machine with a ped&noeance of 10 GFLOP/s. For further
performance considerations see Chap. 3.1.
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Figure 2.10: 2D Lattice-Boltzmann simulation of flow in a sadntary layer (every tenth velocity
vector in both dimensions is plotted). Geometry courtesy.dfropp, University of Oldenburg,
Germany. Flow-solver: LB-FLOW, University of Oldenburgd@3), hardware: Convex C-210.

CAD Data

ﬂ +—— Semi-automatic conversion

\oxel Data

ﬂ «—— LB simulation

Results

Figure 2.11: Flow diagram illustrating the voxel-mesh gatien from CAD data.

arranged spheres [57, 58, 52] can be considered. The pracetigenerating the voxel
mesh for these synthetic geometries is described in thewoil flow-chart Fig. 2.13.

As an illustration of this approach, the flow through a comp@gnthetic geometry gener-
ated by a computer simulation of a spinodal decompositiongss is shown in Fig. 2.14.
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Figure 2.12; Left: Streamlines around a motor engine. Righirbulent flow field around an
ASMO shape. Geometry data courtesy of INVENT Computing GmBldrmany. Flow-solver
BEST, LSTM Erlangen (1998), hardware: Cray Y-MP.

Mathematical
Description

ﬂ «—— Generic voxel mesh generation

\Voxel Data

ﬂ «—— LB simulation

Results

Figure 2.13: Flow diagram illustrating the voxel-mesh gatien from synthetic geometries.

The above discretisation approaches become more demahdinge complex computa-
tional grids or boundary conditions are considered. Foragdated boundary schemes
which take into account the exact position of the wall betweeo lattice nodes, the g-
values have to be computed (see Chap. 2.2.3).

As a minimum requirement for local mesh refinement [7, 59,63], the option to de-
fine refined areas must exist. In the case of octree-base@émedint (see e.g. [62, 63]),
significant effort is required in the preprocessing stepeioggate an adequate mesh.

Other more exotic approaches for Lattice-Boltzmann sitiwia on irregular meshes are
described in the literature (see e.g. [37, 64, 65, 36]). Alas additional computational
effort to extrapolate the distributions (a simple propagastep as in the case of regular
equidistant meshes is no longer possible) is too high to rhaktee-Boltzmann a compet-
itive tool for practical applications on these types of messh
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Figure 2.14: Flow through the solid phase created by spindeleomposition. An isosurface of
the velocity is shaded by the pressure. Geometry data eyunfeMitsui Chemicals, Japan. Flow-
solver: MUSUBI, CCRLE, NEC Europe Ltd. (2002), hardware: QNEX-4.

Following this introduction to the method, the Lattice-Bohann theory will be briefly
reviewed in more detail in the following section.

2.2.5 From the Boltzmann Equation to Lattice-Boltzmanr’

From a pragmatic point of view, it is sufficient to show tha¢ tRavier-Stokes equation
(which describe the mass and momentum conservation of thg dan be derived from
the Lattice-Boltzmann equation. It is interesting to rekntirat this follows the histori-
cal development of the method from its Lattice-Gas origh@sed on the observation that
a variety of different non-Physical ‘micro worlds’ can résim the same physically cor-
rect ‘macro world’. It is sufficient to ensure certain symme= in the microscopic rules
(translation-invariance, rotation-invariance (isogrppparity invariance and Galilean in-
variance), to achieve the correct number of conserved gigasmf the macro system.

Eight years after the first publications on Lattice-Boltzmait was demonstrated how the
Lattice-Boltzmann equation can be derived from the Boltamaquation itself [66, 67],
which is, from a theoretical point of view, a slightly moreisgying approach. Since it is
well established, how and under which conditions the NaSitekes equation follows from
the Boltzmann equation, for the theoretical justificatidthe Lattice-Boltzmann method
it is sufficient to derive the equations to be applied for a atioal simulation directly from
the Boltzmann equation.

1"This section follows a description given by Krafczyk [8].
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In the following we will very briefly sketch this derivatiofof details, the reader is referred
to the literature and textbooks [9, 10, 11, 12, 13]). For diaity, we restrict ourselves to
the simple BGK-approximation of the collision term.

The probability distribution of the particles at the timlecated ak with velocityg can be
described in the framework of Statistical Physics by theBoann-equation (Eqn. 2.4).

of - of -O0f
il 4+ F= =Q(f 2.4

ot +¢ o0X + ’H (f) (2.4)
The time development of the distribution functiéns determined by the advective term
(second term of the left-hand side), an external fér¢third term on the left-hand side) and
the collision operator (right-hand side). The collisiorecgtorQ( f ) models the interaction
of particles involved in a collision.

From Statistical Physics it is known that a velocity digttibn of a homogeneous gas in
equilibrium can be described by the Maxwell-distributi@u(. 2.5):

eq__ P (5_0)2

wherel is the average velocity of the particlesthe speed of sound, amidthe dimension
of space. This distribution function is also referred tolasal equilibrium’.

Bhatnagar, Gross and Krook [68] suggested a simplificatidheocollision operator (right
term of Eqn. 2.4) by the assumption that collision resulta laocal relaxation towards the
Maxwellian equilibrium (Eqn. 2.5). Therefore, the distrilon function f locally relaxes
towards its equilibrium distribution functioffd.

Assuming an average relaxation timerelated to the average time between two patrticle-
collisions, the collision term of Eqn. 2.4 can be replaced@lone-step relaxation process:

Q:—%(f— fea) (2.6)

Using this relation, the Boltzmann-equation (Eqgn. 2.4) lsamewritten as:

of 2 odf -odf 1 eq

at—i-'f‘di-i-lzag— - (F—1%9) (2.7)
A solution of the Boltzmann-equation in this form is usuatlgt practical. With the as-
sumption that the considered fluid is a dense gas and thetideviaf f from its local
equilibrium is f®%is small, a discretisation of the velocity-space with jufa degrees of
freedom is possible. The continuous distributiois now replaced by its velocity-discrete
equivalentf;, which propagates with the discrete velodty

The Boltzmann-equation (Eqn. 2.7) changes (neglectingreat forces here) into the dis-
crete Boltzmann-equation (Egn. 2.8) as follows:

E‘*‘Qan"‘ ?(f, fi ™) (2.8)
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wherei = 1,...,N enumerate the discrete velocities (degrees of freedpwith indicesa
describing the components of the Cartesian coordinates.

For the purpose of numerical simulation, the velocity-thse Boltzmann-equation (Eqn.
2.8) is discretised in space and time by a finite-differerateeme. Withcs = 1/+/3c and
applying a lattice described by its lattice-vectgrs- %é, Egn. 2.8 modifies into:

fi(t+At,%) — fi(t,%)
At +e AX

fi(t+ At X+ BAX) — Fi(t+At,%) :_%(fia,xf)— £29(t,%))

(2.9)

With a space-discretisatiofix = cAt and multiplication withAt the Lattice-Boltzmann
eqguation can be derived:

i (t+ At X+ 8AX) = fi(t,%) — § (fi(t.%) — £%%t,%)) (2.10)

With an appropriate choice of the lattice and equilibriustdbution f €9, this equation can
be used for the numerical simulation of the time-evolutibthe distribution functionf.

For the three-dimensional case, lattices with sufficiensyetry are typically the so called
D3Q15 or D3Q19 models (see Fig. 2.15 for the more common D3&1fiée).
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Figure 2.15: Stencil of a D3Q19 lattice.

In the limit of small Mach numbers, a Taylor-expansion of kaxwellian velocity distri-
bution (Eqgn. 2.5) leads to the equilibrium distribution (£4.11).

eq €qUag UalUp [ €a€p
fi =tpp {l-l— Cg + ch ( Cg _5013 (2.11)

with tp as a direction-dependent weighting factor which takesactmunt the appropriate
contribution of the links (orthogonap = 1, diagonal:p = 2 and centerp = 0).
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For the D3Q19 model, which was used throughout this wiyks 1/3,t; = 1/18,t, =
1/36. The quantitycs is the (also model-dependent) speed of sound (for D3@319:
1/V/3).

Below it is briefly explained how the macroscopic quantipessent in the Navier-Stokes
equation (pressure and flow velocity) are computed from #residly distributionf in the
Lattice-Boltzmann equation (Eqn. 2.10).

The fluid densityp and the velocity componentg, can be derived in terms of the zeroth
and first moment of the density distribution function:

p=5"fi=Y .54 (2.12)

pU:Zéfi:Zéfieq (2.13)
I |
The pressur@ is given by an equation of state as

1
p=pcs=3p (2.14)

and the viscosity is related to the relaxation timéthe inverse of the particle collision

frequencyw) by
T 1
V= (5_6) (2.15)

and the stress-tensor is given by

Sup = — (1— 2—1T) > eaep(fi— ) (2.16)

In the limit of small Mach and Knudsen numbers, these quastdre a solution of the
Navier-Stokes equation, which can be written as:

1o (%ﬂam) — _Op+0S (2.17)

whereS= (S)ap=123 is the strain tensor, defined as
0ua dUIg
= — + — 2.18
Sup u(ﬁxﬁ+%) (2.18)
with the dynamic viscosityt = vp.
It is worth noting that, opposite to methods based on theelisation of the Navier-Stokes

equation, the stress-tensor (Eqn. 2.16) is a local quawiiyin the Lattice-Boltzmann
framework. It is computed from the non-equilibrium part bétdensity distribution and
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does not require a (possibly more complicated) derivatiomfthe velocity field. This fea-
ture is particularly used for the implementation of subguidulence models (see e.g. [69,
70, 71, 72, 73]) or non-Newtonian flow (see Chap. 6.3.3), wltbe viscosity is a shear
dependent local quantity.
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Chapter 3

Implementation Challenges

In this chapter, some aspects of a performance orienteceimgaitation are presented. A
three-dimensional simulation involving several ten roillifluid nodes on a PC-cluster or
vector-supercomputer can currently be considered as atdltee art. Depending on the
solid fraction, the bounding box might contain one order aigmtude more lattice nodes
(fluid plus solid) in total.

The Lattice-Boltzmann method is often said to be very efficend easy to implement.
But, in most cases described in the literature, a simplenfialirix implementation is used,
a method where not only the fluid nodes but also the soliditmads allocated in the
computer's memory.

The difference between a straight-forward coding of thedxeguations and a sophisticated
(often hardware optimised) implementation can easily neakiference of one order in
memory consumption and up to two orders in CPU-time. Theeefnon-optimised sim-
ple implementation, solving one million grid points can ueq ten days, whereas a ten
times larger optimised implementation will finish on the samachine within 24 hours.

Moreover, special hardware such as parallel computersatorvarchitectures require spe-
cific implementation techniques, otherwise the code wouldaxtremely slowly, if at all.
Conversely, general purpose cache-based machines beofia hardware-optimised lay-
out of the data in the computer's memory, considering théneaize, number of cache
lines etc. [74]

These details are not presented here, since they will bestubj the PhD thesis of Thomas Zeiser, a
researcher working in close co-operation with the author.
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3.1 Performance Optimised Implementatiord

The following section is focused on the performance op&aignplementation primarily
on vector architectures. The sparse implementation apbrdascribed below has been
well established in linear algebra for several decades,hbatnot been applied to the
Lattice-Boltzmann method until recently [79, 75].

In the following, the advantage of this method in comparisothe still widely used full
matrix implementation is demonstrated.

3.1.1 Full Matrix versus Sparse Implementation

In the framework of a simple full matrix implementation, tthensity distribution array for
all nodes (solid and fluid) within the bounding box is alleghtn the computer’s memory.
This results in(2x)19x Ix x ly x|z REAL numbers for the D3Q19 model for &xx ly x|z
lattice.

Sparse implementation techniques were first applied to #tece-Boltzmann method by
Schulz et al. [79], suggesting storage of the density thstion only for the fluid nodes.
This requires keeping an adjacency list for the next neighti@ddresses, but (depending
on the geometry) can save considerable memory. Q&N x 19 REAL numbers for the
density distribution (N=number of fluid cells) amd« 19 INTEGERS for the adjacency list
have to be stored in the case of a sparse Lattice-Boltzmapleimentation.

The adjacency list is required for looking up the addres$éseonext neighbouring lattice
nodes during the advection step. This address look-up isewdssary in the full matrix
approach, since the neighbourhood can be determined byiredesy algebra, making use
of the fact that the geometric topology is mapped 1:1 ontcthihee-dimensional arrays
storing the distributions.

In the case of a sparse implementation, the voxel mesh dgfihensolid fraction in terms

of Cartesian coordinates of the occupied lattice nodes dvée tpreprocessed: the fluid
fraction is then mapped onto a graph, giving a unique identifir each node and defining
its connectivity (see Fig. 3.1).

Depending on the hardware considered for the simulatiom hoight prefer to either store
all distributions belonging to one node in a contiguousyafearay-of-structures layout),
or first store all densities of direction 0, then all densitdé direction 1 etc. (structure-of-
arrays layout¥

Another performance relevant rearrangement of the dgtaitacan be achieved by ‘block-
ing’ adjacent groups of lattice nodes in a suitable way tiey fit into the computer’s cache

2The research work presented in this section was perfornmtbe &&C Research Laboratories, NEC Eu-
rope Ltd. (St.Augustin, Germany). It was presented at trow&e International Conference for Mesoscopic
Methods in Engineering and Science - ICMMES 2005 (Hong K&tgna, 2005 - invited talk), the 4th Ter-
aflop Workshop (Stuttgart, Germany, 2006 - invited talkg, Third International Conference for Mesoscopic
Methods in Engineering and Science - ICMMES 2006 (HamptdrgiMa/USA, 2006 - invited talk) and
at the 15th Discrete Simulation of Fluid Dynamics confeeen®SFD 2006 (Geneva, Switzerland, 2006),
published in [75, 76, 77] and submitted for publication i8][.7

3Hardware dependent details in the performance of theseppmaches are discussed in [74, 80].
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— Density distribution (D3Q19):
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Figure 3.1: Mapping of fluid nodes onto a graph and constroatif the adjacency list.

(see e.g. [80]). Thus, several iterations can be performéle cache, making use of its
faster memory access.

It is notable that such flexibility of arranging an optimatakéayout is not possible within
the framework of a full matrix implementation. Alas, it walso be difficult to control these
details when the implementation is carried out in moderrecbpriented programming
languages. It remains to be shown that the trade-off of ayaeleC++ implementation is
not the loss of at least one order of magnitude in performénce

Although the above indicates some obvious advantages aiidwse method compared to
the full matrix implementation, it is necessary to see iftbguired indirect address look-
up causes a computational overhead and delay in memorysagdgish maybe outweighs
all advantages. Therefore, a direct comparison of a |aBi&& full matrix and sparse
implementation was undertaken.

3.1.2 Performance Measurement on a Vector Computer

When estimating the efficiency of a full matrix versus a spangplementation, three fig-
ures are of interest:

e MFLOP/s(million floating point operations per second): in companito the theo-
retical peak performance, this figure indicates how effidiea implementation is for
the given hardware. A good MFLOP rate relates to an optimalaishe CPU with
few idle cycles while waiting to load or store data. This figiis usually not related
to the wall clock time for solving a given problem, since partarly a non-optimised
implementation of computationally demanding equatiomslead to high MFLOP/s.

e MLUP/s(million lattice site updates per second): the MLUP/s gittesupdate rate
of the code and thus the total speed of the implementatidhigh MFLOP/s number
does not necessarily result in high MLUP/s, since a moreefffiemplementation of

4The author is extremely keen to see benchmark results peoduith a high performance C++ Lattice-
Boltzmann implementation.

SFor estimating the MLUP/s as a measure for the actual spesdite a given problem, only thituid
nodeshave to be considered. Counting all (fluid and solid) lattioeles within the bounding box would
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the equations to be solved (requiring less floating pointatpens per cycle) could
reduce the MFLOP/s while actually increasing the MLUP/se MLUP rate directly
relates to the wall clock time for solving the problem.

e MBYTE the total memory required to store the density distribuoray (and the
adjacency list for the sparse code) shows which implemientatrategy - sparse or
full matrix - is more efficient with regard to memory. Althdugve expect to re-
guire some additional memory for the adjacency list, we sa@mory from a certain
fraction of occupied lattice nodes, since only memory fa fllnid nodes has to be
allocated.

Geometries

To estimate the performance with respect to the aforemeadiguantities, a set of twelve
different geometries was considered; from an empty squaaerel over porous media to
medical geometries such as an aorta and a cerebral anelggsrrig. 3.2).

With a great variety of porosity, specific surface and coxipjethese geometries represent
the most typical problem configurations (for details see Bab).

| Sample] Bounding Box Nodes| Fluid Nodes| Porosity |
1|100*100*100| 1,000,000 1,000,000 1.0
2 100 * 96 * 96 921,600 454,217 0.49
3| 44*147 * 147 950,796 677,186 0.71
41 780*122*122| 11,609,520 6,405,404 0.55
5 500*80*80| 3,200,000 2,267,308 0.71
6 64 *32 *32 65,536 46,256 0.71
7 128 * 64 * 64 524,288 316,272 0.60
8|256*128*128| 4,194,304, 2,530,176 0.60
9|256*128*128| 4,194,304 2,277,168 0.54
10| 256 * 128 *128| 4,194,304 2,139,046 0,51
11| 263*175*74| 34,058,503 171,166 0,05
12| 459*121*154| 8,553,006 494,684 0,06

Table 3.1: Dimensions of the 12 benchmark cases.

Performance Results

All performance results were obtained on CCRLE’s NEC SX-&cter-computer which
has a peak performance of 8 GFLOP/s. A summary of all resigitsigsed in the following
can be found in Tab. 3.2 at the end of this section. The dathadrnhree columns of the
table Tab. 3.2, ‘Performance’, ‘Speed’ and ‘Memory’ areodlkistrated in the Figs. 3.3,
3.4 and 3.5 respectively.

naturally always result in a higher rate for the full matrixglementation, but represent a meaningless figure,
since the update of solid nodes does not contribute to theisnlof the problem.
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Figure 3.2: Benchmark cases 2-12 (increasing numbers fpgrardeft to lower right), case 1 is an
empty square channel (not displayed here).

MFLOP/s Fig. 3.3 illustrating the first column of Tab. 3.2 shows tratdll 12 samples,

a performance of approximately 4 GFLOP/s (50 % of the peafopeance) is achieved
with no strong preference for either methb@his indicates that the full matrix and sparse
code can be implemented with equivalent performance on@wveemputer for a variety
of different geometries. Moreover, it is worth noting that the samples considered here
the performance is roughly independent of parameters sucteah size or fluid/solid frac-
tion.” This supports the statement of an efficient handling of eatily complex geometries
with the Lattice-Boltzmann method.

MLUP/s A significant performance gap between the full matrix andspamplemen-
tation is observed with regard to the fluid lattice site updagter second. Except for the
trivial case of an empty square box, all MLUP/s of the spargg@deémentation are far above
the full matrix case (see Fig. 3.4 illustrating the seconldrom of Tab. 3.2). This effect is

5The MFLOP/s were measured using the performance analyfsigase ‘ftrace’.

’Although it can be assumed that these parameters are résiedos the small variations in the attained
performance, due to varying memory access giving preferémt¢he one or other method from sample to
sample.
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Performance Speed Memory
(MFLOPI/s) (MLUPI/s) (MBYTE)
sparse| full | sparse| full | sparse| full

Sample

1| 4555|5444 27.48| 31.73 432| 268
2| 4173|3946| 25.17| 11.31 224 | 352
3| 4208| 4324| 25.19| 17.57 304| 368
4| 4367| 4188| 26.56| 13.90| 2544| 3840
5| 4618|4742 28.08| 19.83 912| 1104
6| 3980|3368 23.77| 12.58 64 80
7| 4171 3852| 25.09| 13.32 176| 224
8| 4284| 3760| 25.94| 13.55| 1024| 1424
9| 4329 4484| 26.19| 14.55 944 | 1424
10| 4366| 5050| 26.40| 15.40 880 | 1424
11| 4253|5207 26.40| 1.55 144 | 1184
12| 4338|5404 26.50| 1.88 366 | 2880

Table 3.2: Comparison of performance, speed and memorguogption between full matrix and
sparse implementation for the geometries 1-12 (see Fiy. I Be values contained in the three
columns are illustrated in the Figs. 3.3, 3.4 and 3.5.

Performance

6000

5000 ---l
® 4000
% — mfull matrix
I ® sparse
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1000
0

12 3 4 5 6 7 8 910 11 12

Sample

Figure 3.3: lllustration of column 1 of Tab. 3.2: Comparisoinfull matrix and sparse Lattice-
Boltzmann performance (MFLOP/s) for the geometries 1-&2 (&Eg. 3.2).

strongest for the medical geometries 11 and 12 (aorta amtbi@@raneurysm) with com-
plex thin channels inside a large bounding box, where onlgvagercent of the domain
are fluid nodes. The performance of the full matrix implemaéinh is below 2 MLUP/s,
whilst almost geometry-independent, the sparse impleatientshows an update rate of
approximately 25 MLUP/s.

The reason for the strong variation in the fluid MLUP/s for th# matrix code has its
origin in the the specific treatment af-statements by a vector computer. Although the
computational expensive relaxation subroutine is assumbd executed only on the fluid
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nodes (excluding the solid nodes by aftstatement), typically, vector machines compute
the relaxation for all nodes and later discards the resoitthe fraction ofif cases which
were not fulfilled (so called ‘masking’). While the total (g&band fluid) MLUP/s is more
or less a constant also for the full matrix code, the strorrgatians of the fluid MLUP/s
reflect the amount of the solid fraction contained in the loliog box.

The little additional cost of the indirect address look-@m ®de seen in case 1, the square
channel. The speed of the full matrix implementation usingpte index algebra to find
the next neighbour cells for the advection step is anl¥0% above the sparse code.

Speed

@ full matrix
W sparse

MLUP/s

Sample

Figure 3.4: lllustration of column 2 of Tab. 3.2: Comparisoinfull matrix and sparse Lattice-
Boltzmann speed (MLUP/s) for the geometries 1-12 (see F&). 3

MBYTE The computer memory required for both methods (shown inhid tolumn
of Tab. 3.2 and Fig.3.5) is obviously dependent on the proldize, hence large variations
can be observed amongst the 12 samples in Fig. 3.5.

Except for the free channel (case 1), the memory consumpfidhe sparse implemen-
tation is below that of the full matrix code. The memory retitut, resulting from only
allocating fluid nodes, outweighs the cost of storing thaeglcy list for all relevant cases.
Particularly relevant is the memory reduction to almost ¥0%¢he two medical cases 11
and 12. Opposite to the observation made for the speed neebsuvILUP/s, the memory
reduction is not an effect specific for vector computers.

3.1.3 Detailed Analysis: The Medical Case

A more detailed analysis for a medical geometry was undentédr the case 11 (Fig. 3.6).
The size of the bounding box is 26375 74 = 3,405,850 nodes, of which only 171,166
nodes (5%) are fluid. The figures for both the full matrix andrsp code are listed in
Tab. 3.3.
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Memory consumption

4500
4000
3500
3000
2500 @ full matrix
2000 M sparse

1500

500 -
o 10 O,

1 2 3 4 5 6 7 8 9 10 11 12

Sample

MBYTE

Figure 3.5: lllustration of column 3 of Tab. 3.2: Comparisoinfull matrix and sparse Lattice-
Boltzmann memory consumption (MBYTE) for the geometrieB2l(see Fig. 3.2).

Figure 3.6: Geometry case 11: medical image showing an ainabraorta (left trunk) with an
aneurysm in the iliac region.

As in the above example, medical geometry data often cookisdmplex tortuous flow

channels, resulting in a very small portion of fluid nodeddesa large bounding box.
Compared to a full matrix code, the memory consumption fersiparse implementation is
almost an order of magnitude less (12.2 % for case 11, 12.7 %Yafe 12).

Although the performance of the sparse implementationlmAbthat of a full matrix code

(4253 MFLOP/s (sparse) compared to 5207 MFLOP/s (full mptrthe speed (measured
in MLUP/s for the fluid nodes), and such the total time to sahesproblem, is more than
one order of magnitude better for the sparse code: 26.4 M& |(Hplarse) require 6.6s for
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| | Full matrix | Sparse| Comparison (%)

Nodes 3,405,850( 171,166 5.0
Memory (MBYTE 1184 144 12,2
MLUP/s 1.55 26.40 1703
CPU seconds 110 6.6 6.0
MFLOP/s 5207 4253 81.2

Table 3.3: Comparison of sparse and full matrix performdoca medical geometry (case 11).

1000 iterations, while the very low 1.55 MLUP/s (full mafrixeed 110s to accomplish the
same task.

The enormous gain in performance and reduction of memorthiertype of geometries
when using a sparse implementation is obvious, the samecaasbe computed with 5-
10 % of the resources required to run a full matrix implemeorta

These measurements and considerations were the basis oh thiki decisions for the
data layout of the new Lattice-Boltzmann flow solver devebbpvithin thelnternational
Lattice-Boltzmann Software Development Consortivene madé.

3.2 MPI-Parallelisation®

The concept of parallelisation is distributing the compiotaal effort onto several CPUSs,
with each CPU working simultaneously on solving a fractidrthe@ problem. Often, this
is done by splitting the computational domain into piecgsuitioning’) to be solved in-
dividually by each CPU. Usually, this approach requireshaxge (‘communication’) of a
fraction of the data (residing in the disjoint address sp@ach CPU) across each parti-
tion’s boundary at defined time-stefs.

This implies, that optimising the partitioning of the contigtional domain requires consid-
eration of three associated features: which portion of dathwhich computational tasks

8The current version, which was used for the studies in Ch&pasd Chap. 6.3, is amongst the fastest
Lattice-Boltzmann flow solvers worldwide.

9The research work presented in this section was performéteat&C Research Laboratories, NEC
Europe Ltd. (St.Augustin, Germany) in co-operation withnmbbers of thenternational Lattice-Boltzmann
Software Development ConsortiurAn extension of the approach described here was presested mn-
vited talk at the Second International Conference for MespgE Methods in Engineering and Science -
ICMMES 2005 (Hong Kong, China, 2005), the 4th Teraflop Wod¢s(Stuttgart, Germany, 2006), the Third
International Conference for Mesoscopic Methods in Engjimg and Science - ICMMES 2006 (Hampton,
Virginia/USA, 2006) and as a contributed talk at the 15thcibése Simulation of Fluid Dynamics conference
- DSFD 2006 (Geneva, Switzerland, 2006), published in [B5,77] and submitted for publication in [78].
Since it will also be part of the PhD thesis of L.Axner at theiénsity of Amsterdam (UVA) [81], only a
short introduction to the underlying concept is given, asafait was worked out by the author of this the-
sis. Financial support of the European projects @neurl8tfact no. IST-027703) and COAST (contract
no. 033664) is gratefully acknowledged.

1%For shared-memory systems, the explicit coding of the comiation is not required, since all CPUs
share the same address space. The distribution of the catigmatl work to the CPUs is handled via ex-
tensions of the operating system, using specific compilectves (such as OpenMP), e.g. to carry out a
loop-based parallelisation. This approach is generablijeedo implement than an MPI parallelisation.
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(these are not necessarily the same) to distribute on whade,rand identifying the data
involved in communication.

The optimisation is performed under the paradigms of gooadlbalancing’ and minimal
‘communication overhead’:

e Memory load balancing: an equal amount of memory should loeatked for each
partition.

e CPU load balancing: each partition should require the samauat of CPU-time
between the communication.

e Reducing the communication overhead: the amount of dathaexe between the
nodes must be minimised.

In this chapter, some aspects of a specific approach pasalteh Lattice-Boltzmann im-

plementation are discussed. For motivating the METIS-th@setitioning [82] of the pre-

viously described sparse implementation, the disadvastafa simple regular partitioning
(which is still frequently applied) are pointed out.

3.2.1 Partitioning

In the literature, it is often stated that Lattice-Boltzmas an inherently parallel scheme
which can be easily parallelised [83, 79, 84] using commation libraries (e.g. imple-
mentations of the MPI standard [85]).

Since only next neighbour interactions are consideredHerstreaming operator within

one time-step, this statement is partially true. The alsehcomplicated or long-range

interactions makes it easy to identify the data involvedhindcommunication process: they
are simply the outgoing and incoming density distributiahthe domain boundaries.

As will become clear in the following section, a regular fianhing scheme can not si-
multaneously fulfill the three conditions of a successfulfialisation, memory-balance,
CPU-load-balance and minimising the communication ovadhas defined above.

Starting with a complex geometry, e.g. a porous media or ca¢deometry, enclosed by
a bounding-box of sizé xly « 1z, simple partitioning is achieved by dividing one or more
axis regularly into nify, ny andn,) pieces.

Each partition contains a subsgt ny x n, of the original domain, and communication with
the neighbouring partitions has to be done via the surfacgs=al, x = ny,..., which is
straightforward and easy to implement.

The drawback of this simple approach is obvious, when thengéy considered is not
homogeneous: for example when a longer inlet and outlebnggiontaining no solid frac-
tion) is present, or the solid fraction is irregularly distited, so some partitions contain a
larger amount of fluid nodes than others.

The CPU-time required for completing one iteration in eaakhtipon is a function of the
number of fluid nodes and not of the size of the bounding boxit 8oobvious, that for
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inhomogeneous distributions of the the solid fraction fagpartitioning causes a CPU
load-imbalance.

An improvement can be achieved by dividing the computatidoeain into boxes of var-

ious size, each containing the same number of fluid nodesioQdly, this approach only
makes sense for a sparse implementation where only fluidsnadeallocated, otherwise
the different sizes of the bounding boxes will cause a merrobalance.

These considerations confirm that an equal partitioning wagard to memory and CPU
consumption can only be achieved in the framework of a spanpéementation. The
statement of an ‘easy and straightforward parallelisdtippears to be highly questionable.

Even an irregular decomposition of a sparse Lattice-Batamcode into different sized
domains does not yet take into account our third criteriomimmsing and balancing the
communication overhead. It is obvious that by a restrictmaquared boxes, the number
of links connecting to a neighbouring partition can be gbitgh and differ from partition
to partition, depending on the number of fluid nodes conthiwéhin the cutting plane
separating two adjacent partitions.

Giving up the restriction of square shapes for the part#tialtows for minimisation of the
number of links involved in the communication process vitthe number of fluid nodes
per partition are balanced.

In the context of a sparse implementation the fluid domainapmed on a graph with a
known number of nodes and edges, therefore an optimisedrgexsition can be consid-
ered after weights to the nodes and edges are definadollection of ‘graph-partitioning’
algorithms making use of multilevel recursive-bisectiord anultilevel k-way schemes
based on Kernighan-Lin and modified Fiduccia-Mattheysestjpaing algorithms is (for
example) provided by the METIS library [82].

The preprocessing step, in which a graph is built up from gagewvoxel mesh, is fol-
lowed by a partitioning step, which distributes the fluid a@@mongst a given number of
partitions. The resulting partition can have complex skgpee Fig. 3.732

In the framework of a sparse Lattice-Boltzmann implemeoatists of the nodes involved
in the communication process (exposed nodes) must be figenithin each partition. It
has to be known exactly which outgoing link is sending to- arch incoming link is
receiving from which neighbouring partition (see Fig. 3.8)

The parallel Lattice-Boltzmann algorithm has an additlammmnmunication step following

relaxation and propagation. After propagation, the saufteb(ghost cells, see Fig. 3.9) are
filled up by the outgoing densities of the exposed nodes. & bagjoing densities are then
sent to the neighbouring partitions, where they are stardte receive-buffer. From the
receiver-buffer, the missing incoming links are copiedi® ¢xposed cells (see Fig. 3.10).

The computational sub domain of each partition is therediorigled into different types of
nodes (see Fig. 3.11):

11The weights are equally distributed if no local mesh refinenoe other inhomogeneous processes are
used.

12The implementation of the partitioner was done by L.AxneVA)in close collaboration with G.Berti
(CCRLE) and the author.
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Figure 3.7: Partitioning of two complex geometries for arspd_attice-Boltzmann code by METIS:
aorta (left) and catalyst (right). Images created by Libkn&r (UvA) and taken from [86, 78].

Figure 3.8: Three partitions of a computational domain nealppn a graph. The outgoing and
incoming links from neighbouring partitions are identified

Node 1
‘ghost’ copy

Node 1 —

Figure 3.9: Three partitions of a computational domain neapgn a graph. The outgoing links are
copied into a ghost-layer during the propagation step.
¢ Inner Nodesthese nodes are not involved in any communication process.

e Exposed Nodeghese nodes are sending to and receiving from neighboudrtg p
tions.
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Figure 3.10: Three partitions of a computational domain pealpon a graph. The incoming links
are copied from the receive buffer.

e Ghost Cellsithe outgoing densities are shifted to these links from tipws&d nodes
during the propagation step. They build up the send-buffer.

e Receive-bufferincoming links of the exposed nodes receiving densities fn@igh-
bouring partitions.

inner nodes receive buffers
7\ /11

7
N v /S

4
AL )
AT \\/

inner nodes exposed nodes inner nodes

Figure 3.11: Three partitions of a computational domain peapon a graph. Inner nodes, exposed
nodes and the receive-buffer are identified.

In principle, it is possible to perform the relaxation-adtien step of the inner nodes si-
multaneously to the communication step of the exposed naltles completely hiding the
communication overhead (see Fig. 3.12).

13This ‘latency-hiding’ is not yet implemented into the codmsidered within this chapter. Preliminary
results from a more detailed study [78] indicate that the tnsggmificant performance loss is due to load
imbalance, and not caused by communication.
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information from
exposed nodes relaxation | «<— the receive buffers
local operation is required

l advection includes MPI communication
exposed nodes advection | «— copying to the ‘ghost  and inner nodes

send to next neighbours cells’ (send buffer, calculation is carried
1 1 / out simultaneously

y e

inner nodes relaxation Y
flocal operation

l MPI communication
non-blocking send/receive

inner nodes advection
send to next neighbours

A 4

«—— synchronisation ——»

Figure 3.12: Flow-chart of an MPI-parallelised Latticelmann algorithm with overlapping com-
putation at inner nodes and communication at the boundaries

3.2.2 MPI Performance Result$?

The sparse Lattice-Boltzmann software developed in thmdveork of thelnternational
Lattice-Boltzmann Software Development Consorthas been parallelised as described
above, and a performance analysis on a METIS-based pamitjevas obtained for the two
sample geometries shown in Fig. 3.7 and a free square chmingd to 128 CPUs. The
first example consists of a medical geometry (aorta) which dvscretised with 5,775,552
fluid voxel; the second example from chemical engineerirggpgoe filled with randomly
positioned spherical obstacles, discretised with 5,2flLiid nodes. The square channel
containing no solid fraction is made up of 5,248,000 fluid emxd

A limitation of the preprocessor concerning the maximune izthe bounding-box made
it impossible to provide larger domains, so the average murobfluid nodes per partition
for the 128 CPU case was below 50,000 fluid nodes.

As can be seen from the performance results (see Fig. 3nE3glatively small domain size
for the NEC SX-8 caused a performance degeneration beyo@dP&4%, since the number
of fluid nodes per partition becomes too small for an efficegcutiont®> Up to 64 CPU
the speedup appears to be almost linear for all three samphlespeak performance for
128 CPUs was measured to be beyond 3000 MLUP/s for all thses¢8705 MLUP/s for
the largest case, the aorta).

On the INTEL Xeon cluster, the above mentioned vector agchitre typical performance
loss for small sample sizes is not present, and an almosirispeedup can be seen up to
128 CPUs (see Fig. 3.14).

14The performance measurements were done by L.Axner (UvApseaollaboration with Peter Lammers
(HLRS), Thomas Zeiser (RRZE) and the author using the NEGBSXHLRS Stuttgart and the INTEL Xeon
cluster ‘Lisa’ at UVA.

very recent investigations [78] indicate an optimal pemiance on the NEC SX-8 from above several
10° fluid nodes per CPU.
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Figure 3.13: Performance of an MPI-parallelised Lattic#tBnann algorithm for three different
geometries on the NEC SX-8 (performance measurements byner\
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Figure 3.14: Performance of an MPI-parallelised Lattic#tBnann algorithm for three different
geometries on the INTEL Xeon cluster (performance measemggrby L.Axner).

These performance figures proof the possibility of a verydgoarallelisation for a sparse
Lattice-Boltzmann code. For very large domains makingrogtiuse of a 128 CPU NEC
SX-8 machine, pre-processing and partitioning are the seadre challenge, since several
100 million fluid nodes have to be considered.
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3.3 Effort-Efficiency Considerations

As described in the previous sections, it is possible to @mant the Lattice-Boltzmann
method on state-of-the-art vector and vector-paralleh ligrformance computers with a
very good efficiency. So the question arises, if this apgreiould always be considered
when developing a Lattice-Boltzmann code.

To answer this question, several considerations play a role

e For what purpose is the software designed: proof-of-conegperimental, research
or production?

¢ How much time and skilled manpower can be invested to dewa®pode ?

e How easy should it be to modify the code (for professionalfinsare experts, stu-
dents, ...)?

e Which platform is available?

A vast majority of papers published in the Lattice-Boltzma&ommunity are, if they con-
tain simulation results at all, produced with relativelynpie and straight forward imple-
mentations on a single-CPU scalar comptferlimitations with regard to memory or
compute power play no role, since the purpose of these milalits and the underlying
research is to prove the applicability of a certain methdteowith a simplified 2D model.
If the focus is on developing a theoretical method and to gipeoof-of-concept, indeed it
makes no sense to invest too much time in the implementatioreasy to understand and
easy to modify code serves best for such a purpose.

Alas, more often than not, these very simple codes mightesomnlater be used to do ‘the
real thing”: larger three dimensional simulations to anseertain research questiots.

Quickly it turns out that the single-CPU desktop machinattsee running out of memory,
the required CPU-time is beyond acceptable limits, or both.

In the case of academic research, usually a compute-csraeailable, which offers access
to a selection of high-performance computers virtuallyffee. In a worst case scenario,
what was meant to be a pure test-code is now put on an expdnglvgerformance ma-
chine, without carrying out any algorithmic improvemenésd it could happen that the
CPU-power and memory of the several 100,000 Euro machimelesed sufficient to solve
the research question addressed. Although this might biyasatisfying solution for the
individual scientist interested in dealing with his resbarand not with details of a per-
formance optimised implementation, such an approach doeldonsidered a misuse of
typically public financed resources.

16Although a certain trend towards more and more technicalyaaced and performance optimised im-
plementations could be observed during the past years.

17Before a selection of textbooks on Lattice-Boltzmann waslakle, the author implemented and put on-
line a simple straight forwvard FORTRAN teaching code caltetb’ [87]. This was meant to help beginners
to understand the simplest way of transforming the equstioio software and the underlying algorithmic
concept.

8The author got much feed-back from students ‘abusing’ thb’‘aoftware for such purpose - against an
explicit warning in the header of the code.
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At this point, efficient implementation aspects come intoypBefore doing the big step of
re-implementing the whole code as a vector- or vector-faralgorithm (which is indeed

a major effort), more basic algorithmic and implementatimprovements can be done.
Simplifying algebraic expressions, taking into accoumplmrders and a cache-coherent
memory access are easy to do but powerful measures to imgreperformance even for
the desktop computer.

If even these improvements can not sufficiently speed-upctit® and reduce memory
consumption, the implementation of a real high-perforneaoade must be considered.
Usually, it takes less time to create a well designed HPGdeaBoltzmann implementation
with an optimised data-structure from scratch, than regaatmanipulating the original

sources.

Once this decision is taken, the design-phase is a very tapiostep, since wrong direc-
tions here have a long-term after-effect for all reseaciter involved in the develop-
ment of the code. As can be seen in the previous chaptersingpiting a well performing
vector-parallel Lattice-Boltzmann flow-solver is feasiblIf sufficient skilled and moti-

vated manpower is available, it makes sense to consider @& phatform implementation

with hardware specific extensions which can be switched oa-off on demand.

On the other hand, it is necessary to consider that extensoothe code should still be
possible, even when carried out by not so experienced sisidérnioo highly performance
optimised code often appears as a scary maze to the begivimeh does not much en-
courage (or simply takes too much time) to add certain extess A two-step solution is
here usually best: provide and easy-to use interface, aoe tve model is working, the
performance optimisation can be done by the expérts.

Concluding these remarks, a simple three-step rule forldewey and porting a Lattice-
Boltzmann code can be given:

1. Optimise for the desktop-PC.
2. Port- and optimise for the HPC machine.

3. Re-implement a performance optimised (vector-)pdratide.

3.3.1 Choosing the Hardware and Programming Language

Which platform is the best for Lattice-Boltzmann? From tl¢har’s experiencé? it is a
vector-computer. As can be seen by comparing the perforenahthe NEC SX-8 vector
computer and the INTEL Xeon cluster (Fig. 3.13 and Fig. 3.128 CPUs of the PC-
cluster provide less MLUP/s than 8 CPUs of the vector compiigking into account the
shared-memory access within one node (8 CPUs) of an NEC 3&a8hing the perfor-
mance of a modern medium sized PC-cluster with a vector-céenploes not even require
the MPI-parallelisation of the code.

9t seems to be a certain trend that research groups hiregsiofel software engineers to help the PhD
students doing the basic design and final optimisation oétbedes, so they have more time to focus on their
research.

200n vector machines as the Convex C210, Cray Y-MP, Fuijitsu RPNEC SX-4-8.
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What if the ‘ideal machine’ is not available? When the prablis not easily solved by
filling in the user account request to get access to a vectopater, the question of the
‘best computer’ is not so easy to answer. In case the hardveesrto be purchased, the usu-
ally better cost/performance ratio of PC-clusters whenmaned with vector computers, at
least for medium-sized problems where the number of CPUbe#&ept within reasonable
limits, plays an important rolé!

What is saved in initial investment and gained in peak peréorce often has to be paid
off by the researcher in additional hardware-specific paogning work and a higher effort
for system administration. The author experienced mone time case where an institutes
small PC-cluster (if up and running at all) was not used for{giéftware, but as a rack of
single-CPU machines.

Considering the power consumption is also of increasingmamce. Although figures in
Watt per MLUP/s are not yet available, it might be worth daihig analysis, at least when
large sustained simulations are to be expected on the nehinesé

Another question is that of the best programming languags. akide the historical de-

velopment which is responsible for the still strong biasdoms FORTRAN at least for

the HPC research codes, modern object-oriented languagesefinite advantages for a
distributed team of developers working at certain modufekecode.

It is always a challenge to find a proper balance between thi@ess of implementing
and maintaining a code, and the resulting performance. Vdherasy to maintain highly
modular C++ code requires a medium-sized PC-cluster toymed performance output
equivalent to a single-CPU FORTRAN coffethis balance is possibly not given any more.
On the other hand side a high performant and complex FORTRAkbéle makes it pos-
sibly very difficult to carry out any extensions or modificats without understanding and
modifying the whole kernel.

The discussions in the performance-aware circles of thexaamty reveal a trend that in
the future possibly a hybrid implementation would be thetbebject oriented for data-
structures, I/O and user interfaces, FORTRAN or C for thégperance critical routines.

3.3.2 Latest Trends

A very recent and exciting development challenging theiti@thl domain of HPC is
the promising attempt of porting Lattice-Boltzmann kesn@h a graphics processing unit
(GPU) [89, 90, 91, 92%* The required graphics hardware is relatively cheap, buéarsp

21This calculation does not take into account the much higrentenance costs of a PC cluster, which has
notorious hardware failures, and also not the waiting tifrta@ scientist, until the busy system administrator
has time to fix it. A vector computer’s usual state, to the adstbest experience, is ‘up and running’.

22The power consumption of a PC-cluster including coolinghimithe first 3 years is nowadays roughly
the equivalent of its procurement cost [88].

23The author has encountered more than one example of this kind

2There have been other attempts to port Lattice-Gas or kaRimtzmann codes on specialised hardware
or develop specific hardware for this purpose: Norman Mag@AM-6 [93] and CAM-8 [94], the approach
of Exa Corporation to develop a specialised co-processthéSGI workstation “which directly implements
the particle collision logic” [95] or to use the VIS instrimm set of the Sun Ultra SPARK CPU for this
purpose [96]. All these are history, since usually the netiegation general purpose CPU allowed the
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to be highly suitable for Lattice-Boltzmann. An implemerda by the group of IRMB
(Braunschweig, Germany) [97] for a 2D simulation using tt#9 BGK model on a sin-
gle nvidia GeForce 8800 Ultra card resulted in the impresserformance of 650 MLUP/s,
and 1300 MLUP/s were achieved on a coupled system with twasagplying pthread par-
allelisation. For 3D simulations the D3Q13 MRT scheme a#dia performance of 470
MLUP/s2®

3.4 Visualisatior?®

Using the Lattice-Boltzmann method, detailed simulatiohime and space dependent,
highly complex processes can be performed for hundredsoofsémds of time-steps in a
computational domain extending over several ten to hunamécbn grid points. Writing
to disc the whole data set for each time-step of such a tnainsieulation is beyond the
capacity of any storage system. To reduce the amount of dl@stored on the hard disc,
significant results to answer the research question musttkected during the simulation.

One might argue that occasional visualisation of trandiemt or complex multi-physics
processes is helpful to improve an understanding. Theredarefficient approach is re-
quired for visualising the enormous amount of data prodwes=sth time step. Problems
occur when visualisation of a large-scale simulation israfited with conventional post-
processing tools. First, an enormous amount of numeridal lolas to be transferred over
the network. Moreover, huge disk space is necessary totfterata both on the comput-
ing server and the user’s terminal and a large amount of mgmeoequired to manipulate
the data. One solution to these problems is server-sidahgsition, where the entire image
rendering process is conducted (in parallel, if requiratlising the computing server’s re-
sources. Thus, the storage and transfer of data can be cagntifi reduced, since only the
(small) image data have to be transferred over the network.

If the visualisation chain is adequately effici@Atthe opportunity of interacting with the
running simulation presents. Belleman [103] defines imtira simulation environments
as “dynamic systems that combine simulation, data presSentand interaction capabili-
ties that together allow users to explore the results of egergsimulation processes and
influence the course of these simulations at run-time.” W&®gting up this kind of interac-
tive environment, the goals are “to shorten experimentaksy decrease the cost of system

production of results with a higher performance than theseific solutions.

25This is not yeta real competitor for traditional high-performance conmpgit because the memory of
these cards isurrentlybelow 1 GB and there are certain restrictions concerningiplesstencils, the domain
size and other algorithmic restrictions. Once these problare overcome and advanced Lattice-Boltzmann
models with local mesh refinement and improved wall boundanditions can be implemented on these
cards, it might well be possible to build a CFD simulator fagmeering applications below 10,000 Euro.
Another possible application of Lattice-Boltzmann on GRthe area of real time processing for computer
games and other related fields, see the beginning remarkisagf. @.

26The research work presented in this section was perforrtée &8C Research Laboratories, NEC Eu-
rope Ltd., (St.Augustin, Germany) in cooperation with ewrgirs of the HPC Marketing Promotion Division,
NEC Corporation, Japan. It was presented at the First latemal Symposium on Advanced Fluid Infor-
mation - AFI-2001 (Sendai, Japan, 2001) and the Parallelgtoational Fluid Dynamics - ParCFD 2002
(Kansai Science City, Japan, 2002), published in [98, 90, 101].

27Efficiency aspects of a real-time visualisation are ade@eas[102].
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resources and enhance the researcher’s abilities for filerakon of data sets or problem
spaces” [102].

One successful example of coupling a Lattice-Boltzmann 8oWwer with a visualisation
and steering environment is the interactive air flow simafatvithin a virtual reality envi-
ronment, developed at the ‘Lehrstuhl fur BauinformatikMunich [104] and the IRMB in
Braunschweig [105]. In the area of medical physics, Bellem@scribes an approach for
the interactive simulated vascular reconstruction in tugiroperating theater [102].

3.4.1 Concurrent Visualisation System RVSLIB

The visualisation system RVSLI® designed for the NEC SX-series vector computers,
was used within a variety of studies presented in this theSithough lacking advanced
features such as stereoscopic visualisation in a caveaiteplar performance-optimised
implementation of server-sided image rendering cap#slinade it a good candidate for
generating movies without significant loss of performancenplementation overhead.

System Configuration

RVSLIB is a server-client type system: RVSLIB/Server, tieever module of RVSLIB,
runs on the computing server and is invoked by subroutinks tiaked to the Lattice-
Boltzmann flow solver. The transient simulation resultsesian the computer’'s memory
are directly referenced, so it is possible to run visualseprocesses at a high speed and
reduce the amount of necessary memory. Since the rendeage ican be stored, the output
of the computational results to a file can be avoided witheyttocess of movie generation.
RVSLIB/Server performs various kinds of visualisationgesses and generates visualised
images. These images are assembled to generate animations.

RVSLIB/Client, the client module of RVSLIB, runs on the usedesktop machine and
displays a GUI for operating the system. It runs on PCs as & #plication or a JAVA
applet.

In the interactive mode, the server compresses visualisages and sends them to the
client, where they are restored and displayed on the GUI thighclient module. Input
visualisation parameters are sent from the client to theesemnd used in the visualisation
processes at the next time step. Because some of the parsuaretelelivered to the simu-
lation program through the server module, they can be ugecbfdrolling the simulation
itself. The user can arbitrarily set such parameters by pugaiing the corresponding GUI
menu that will automatically appear at run time. The comroatidn between the server
and the client can be established or disconnected at anyetiere during the simulation.
This function is particularly effective for large-scal@msilations that generally take a long
time. In addition to the specific communication protocolsdx on sockets, the HTTP
protocol can be chosen for sending data particularly thndirgwalls.

In the batch-processing environment, the Lattice-Boltameode and RVSLIB/Server run

28RVSLIB is a registered trademark of NEC Corporation, Jagére acronym is standing for Real-Time
Visual Simulaton Library.
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on the computing server without any communication with #reninal. In this case, when
a process of changing parameter values is previously wiittdile as a scenario, RVSLIB
automatically performs visualisation according to thensec® and outputs a series of an-
imation data on the computing server. The scenario canydasiivritten in a key-frame
format. If more than one scenario is prepared, animatioa<erated independently for
each scenario.

RVSLIB/Server is provided as a library format. RUSIT and RVSTERM are for initiali-
sation and termination, respectively. RB%C obtains the memory addresses of the arrays
are used in the simulation for storing the grid data and caatfmnal results. Adjustable
arrays are supported to mitigate limitations to availaladormats. RVSMAIN commu-
nicates with RVSLIB/Client and performs various visudtisa processes. RVBFC is for

a simulation using a BFC (boundary fitted coordinates) grid.
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Figure 3.15: RVSLIB GUI and a snapshot from a time depend&ntalisation of the chemical
reactionA+ B = C (volume rendered image of the product concentraj@jj simulated with the
Lattice-Boltzmann code (for details of this simulation €4ep. 5.1).

Process Distribution

Here it is briefly described how a series of processes candiehdited between a com-
puting server and a user’s terminal for the concurrent Visai@on of numerical simulation

results. The main processes are the simulation, the majmpowgss, the rendering pro-
cess, and the user interface. The mapping process gen8iatgsphical objects such as
polygons and poly-lines from the simulation results defiaedrid points. The rendering
process generates the 2D image data of the 3D graphicaksbjgben the simulation runs
on the computing server and the user interface runs on this teseninal, there are various
possible approaches to the distribution of mapping andenémgl processes [106].
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RVSLIB adopts a server-side visualisation approach, irctvbioth mapping and rendering
processes are conducted on the computing server. Thisaghpiohighly tailored to large-
scale simulations due to the reduced amount of data traedfewer the network, thus
realising practical visualisation even with low networkndavidth. If the number of grid
points is&'(n) in one spatial direction, the amount of visualised data dependent of n
in the server-side visualisation, whereas it is frénin?) to ¢'(n®) in other approaches.
This characteristic of the server-side visualisationv®taable for large-scale simulations.
Moreover, with this approach a user’s terminal with ratlosv-performance specifications
can be used as a visualisation terminal. The server-sidehgstion consumes CPU time
on the compute server which has to be considered when rurhenigg scale simulations
with concurrent visualisation.

Coupling with the Lattice-Boltzmann Code

RVSLIB visualisation routines can be integrated into a icatBoltzmann code by adding
only a few subroutine calls.

A snhapshot of concurrent visualisation of a time dependatatytic reaction-diffusion pro-
cess in a porous media is shown in Fig. 3.15 (for details afghhulation see Chap. 5.1).

The additional CPU-time needed for image generation and cdatnpression during the
simulation is, depending on what has to be visualised, ofdgyvgpercent of the total CPU-

time. With the Lattice-Boltzmann algorithm, all local quities (velocity, pressure, and
concentration of chemical species) are calculated frondémsity distributions during the

simulation procedure once per iteration. For visualisgtidditional arrays need to be
defined to store, and later provide, these quantities foRW®LIB routine calls at the end

of the main loop.

The memory for holding these variabf€scales linearly with the size of the bounding box
(not the fluid nodes) and the number of variables to be digplast minimum of three times
the size of the bounding box for storing the mesh in termsreigiCartesian coordinates as
INTEGER is required. Each flow variable (usually storecR84L type) needs an additional
array of the size of the bounding box.

This additional memory-overhead has to be considered iitiaddo the required extra
CPU-time. In spite of these extra costs, generating movees farge scale transient simu-
lations by this post-processing approach is feasible wigthieasonable effort.

29t is worth reminding that within the Lattice-Boltzmann alithm the macroscopic primitive flow vari-
ables, the pressure and the three components of the vel@gitgr, are not permanently stored. They are
typically computed only during the relaxation subroutinenfi the density distributions and stored in local
variables, which are no longer needed after leaving theaétzn subroutine.



Chapter 4

Complex-Flow Studies

In this chapter, a variety of complex-flow studies are presgiogether with detailed val-
idation, by comparing the results to analytical or otherwation results, and in the last
section, to experimental results. The aim of this chaptty lEghlight some typical appli-
cations where the Lattice—Boltzmann method is not only &bleroduce accurate results,
but possibly advantageous compared with other CFD methods.

4.1 Channel Flow in Increasingly Complex Geometrie's

This chapter is based on an early journal publication of i@ and contains one of
the first quantitative comparisons between Lattice-Bo#tmmand Navier-Stokes methods.
A modified version of the geometry of this initial benchmarkssater used as a test-
case in the framework of the Deutsche Forschungsgemeiit $0if&5) ‘Lattice-Boltzmann
Arbeitsgruppe’, comparing the efficiency of a high-end icatiBoltzmann implementation
with a Navier-Stokes flow solver [107].

As a first simple test case for the comparison of the LattiozBhann method with the
Finite-Volume approach we consider two dimensional flow ichannel of height and
lengthL = 4H, with different numbers of square obstacles regularly gdcio the second
guarter of the channel (see Figs. 4.1 and 4.2). The sizesdilibtacles are chosen such
that the occupied space is the same for all cases and thaakdtatween the wall and the
obstacles nearest to the wall is always half the distancedszt the obstacles. Thus, when
increasing the number of obstacles, this test case repseadlow problem of systemati-
cally increasing geometrical complexity. The increasiogplexity of the flow pattern is
illustrated in Fig. 4.3 which shows the profiles of the vetpchagnitude in a cross section
closely behind the obstacle area for the different obstawhebers.

1The research work presented in this section was accomglishthe LSTM Erlangen (Germany) un-
der supervision of M.Schafer and F.Durst. It was publisime[B9]. Financial support by the Bayerische
Forschungsstiftung in the Bavarian Consortium of Highf#terance Scientific Computing (FORTWIHR II)
is gratefully acknowledged.

2Further comparison between Lattice-Boltzmann and Fiviiterme methods can be found in [108].
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Figure 4.2: Obstacle structure with increasing complexity

Concerning the boundary conditions at the inlet and oufi¢h® channel, for the Finite-
Volume code a parabolic inflow profile corresponding to a Réys number oRe= 0.1
(based on the channel height) and a zero gradient outflowittmmds chosen, whereas the
Lattice-Boltzmann boundary conditions are periodic inftber direction. A change in the
density distribution of the first lattice row at the inlet (dease in cells 2, 3 and 4, increase
in cells 1, 5 and 6) leads to a directed flow for the LatticetBuhnn casé. The flow

3These very simple boundary conditions are a direct extansidhe re-distribution of particles in the
framework of Lattice-Gas simulations (see Fig. 2.6 in Cl2ap.1). Much more sophistic boundary conditions
are meanwhile available (see e.g. [32, 33, 34, 46, 47]). Neekess, the described implementation has no
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Figure 4.3: Profile of velocity magnitude in a cross sectitosely behind the obstacle area for
different obstacle numbers.

profile appeared to be parabolic at just a few lattice rowsydvean this first ‘acceleration’
row. The region downstream of the obstacle area, for theiderexi Reynolds number, is
long enough to avoid any influence of the outlet to the flow peofi

The convergence criterion for the iteration process in thigefivolume method is that the
absolute sum of the residuals for mass and momentum (weligtita the corresponding
inlet values) is less than 18. For the Lattice-Boltzmann method the program stops when
the maximum deviations of the mean flow rate in the last quaeetion of the channel
differs by less than 10" over the last 50 iterations.

As reference quantities for evaluating the accuracy of tmaputations, the pressure dif-
ference between the cross-sections atL /8 andx = 7L /8 of the channel (see Fig. 4.1)
and the maximum absolute value of the velocity were computed

In Fig. 4.4 the reference quantities are indicated for th2 @bstacle case for both methods,
using lattice/grid sizes of increasing refinement rangiogif64« 16 cells (grid 1) to 1024
256 cells (grid 5). For the Finite-Volume method an equahsCartesian grid is employed.

The results show very good agreement in the high resoluitioin for both pressure drop

and maximum velocity. In fact, the pressure drop on the evagsids is closer to the

fine grid value for the Lattice-Boltzmann, whereas the EiMblume method gives closer
values for the velocity on the coarsest lattice. For the rotistacle configurations very
similar results concerning the dependence of the accuifaby oeference quantities on the
grid fineness were found.

In Fig. 4.5 the error in the reference quantities for a fixad gize (256« 64 cells) is plotted
against the number of obstacles for both methods indicétmgependence of the accuracy
of the methods on the complexity of the geometry. It can beoiesl that, concerning the

influence on the accuracy of the results, although it is less bptimal with regards to efficiency.
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Figure 4.4: Pressure drop (left) and maximum velocity @iglkersus grid size (indicated as lat-
tice/grid) using Lattice-Boltzmann (LB) and Finite-VoleniFVM) methods.

pressure, the Lattice-Boltzmann results are slightly nagmirate, whereas for the velocity
error the Finite-Volume program is closer to the final valfies
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Figure 4.5: Error in pressure drop (left) and maximum vejofiight) versus number of obstacles
using Lattice-Boltzmann (LB) and Finite-Volume (FVM).

This interesting observation was also made (for a diffefeow case) by Kandhai et
al. [108]. The most likely cause for this behaviour is thettmal’ derivation of the pres-
sure from an equation of state in the case of Lattice-Boltemas opposed to applying
a pressure correction scheme as it is usually done withinel&tokes solvers. Another
possible contribution comes from the higher symmetry oflthtice-Boltzmann stencil,
providing exchange also with the diagonal nodes.

4The big gap between the Navier-Stokes and the Lattice-Baltm error for the last set (right hand side
of the lower Fig. 4.5), referring to the largest number of 2b8tacles in the channel, is possibly caused by
a finite-size effect due to an insufficient resolution of tle®metry (see Chap. 2.2.3). In the given case the
number of obstacles was increased up te 16, while the lattice size dk x|y = 256x 64 was kept constant.
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4.1.1 Conclusion

This initial test case demonstrates that it is possible ¢olypce converging results for low-
Reynolds complex geometry flow with both, the Lattice-Bwlann and Finite-Volume
method. Due to its nature, the Lattice-Boltzmann methodvsha slightly better mesh
convergence concerning the pressure, while the Finiterilelmethod has a slight advan-
tage in computing the velocity.

4.2 Decay of Turbulence

After investigating complex geometry steady-flow case enghevious example, a complex
transient-flow study in simple geometries is presentederfdhowing section.

The decay of an initial turbulent shear layer has previoliggn investigated by Mar-
tinez [111] and the decay of an isotropic turbulent flow fiefdl & Taylor-Green vortex
by Chen [112]. The present validation test cases were chioserder to assess the in-
fluence of the numerical dissipation compared with the giatsriscosity. This can be
examined by comparing the time evolution of an initial flowdit analytical or empirical

data where available.

As a simple test case for shear driven dissipation in vis¢loug the temporal evolution
of a vortex described by Eqgns. 4.1 and 4.2 was simulated amgb&ieed with analytical
solutions. The decay of a synthetic turbulent velocity fisls chosen in order to demon-
strate the capability of the method for more realistic visctiuid flow phenomena, such as
turbulence.

4.2.1 Time Evolution of a Vortex

The velocity componentsig and v of an initial vortex described by the potentigi
(Egn. 4.1) are given by Eqgn. 4.2.

(%)% +(y-¥0)?)
P(xy,t=0)=ype a? (4.1)
2(y— 2(X—Xo
UOZ—%lI/, VO:%W (4.2)

For this velocity field, an analytical solution (Eqns. 4.41ah5) can be found in terms of
acoustic Reynolds numb&mg,, defined in Eqn. 4.3 with speed of souagl characteristic
lengthl and kinematic viscosity (for details of the derivation see [113]):

5The research work presented in this section was performéSaM Erlangen (Germany) under su-
pervision of G.Brenner and F.Durst. It was presented at thdrfernational Conference on the Discrete
Simulation of Fluids (Oxford, UK, 1998) and published in P10 Financial support by the Bayerische
Forschungsstiftung in the Bavarian Consortium of Highf@enance Scientific Computing (FORTWIHR
) is gratefully acknowledged. A recent publication by Yied [110] repeated the set of test-cases in a more
detailed analysis.
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Rec=— (4.3)
u(x,y, )—Uo—%éexp:—vx Vy+ Byz_ <y—2¢R%C%) (4.4)
V(X y,t )—vo—¥lexp _—ys( yy-l— BS? (x—z\/%:%) (4.5)
with definition of the quantitiesr,[%(,by, ¥ andy; as: _
oa=1+ Re:(t:az (4.6)
pm 20 @.7)
B2 @8)
ML (4.9
¥ = (y_T;/O)Z (4.10)

The computations were performed on a ¥AMO lattice with periodic boundaries, which
was initialised with equilibrium density distributioif? computed for equilibrium pressure
and velocities given by Eqns. 4.1 and 4.2 for an acoustic BldgmumbelRe,: = 1000.
This initial field (see Fig. 4.6)was iterated a few times to get the correct non-equilibrium
part of the distribution functiof.

The square velocity and vorticity of the computed flow fieldreveneasured along the
horizontal centreline of the flow field ak & 1...100,y = 50) att = 0,500Q 10000 and
20000 iterations and compared with the analytical solgti@gns. 4.4 and 4.5).

As can be seen from Fig. 4.7, the computed values fit the thealrealues for the measured
times. Only for the first few 100 iterations was a slight déeia from theory observed,
which is obviously due to the initialisation of the denssti@ith equilibrium distribution
fieq. This initial disturbance disappears after a short time lasl no influence on the
results obtained at higher iteration numbers.

6Since periodic boundary conditions were used, the flow figldisturbed at the domain boundaries,
particularly visible in the corners. A test with a smallettitze indicated that this effect can be neglected for
the results shown in Fig. 4.7.

"This is a possible but not the best way to initiate a flow fieés also Chap. 6.5.1 ‘If | did it today . ..".
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Figure 4.6: Square velocity (grey) and velocity vectors vbdex (centre section shown here).
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Figure 4.7: Time evolution of vorticity and square veloafya vortex. Numerical results are marked
by symbols, analytical results as dashed lines.

4.2.2 Decaying Turbulence Field

As a further test case, results for a temporally decayingulent velocity field will be
presented. For that, the analysis of the properties of hemegus and isotropic turbulence
provides an analytical reference solution.
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In order to provide initial conditions for the computatiarfsa turbulent flow, an approach
outlined in [113] and [114] is used, prescribing a randonoegy field with the following
properties: for a scalar energy spectrum according to vamiia and Pao [115], the ve-
locity components are obtained in Fourier space assumirgreogeneous, isotropic and
divergence-free vector field and a random phase angle. A-tasier transform is used to
pass to the physical space. The parameters entering infarolcedure are the Reynolds
number, the initial turbulent kinetic energgy and the dissipation rat.

The computations were performed on a lattice with 6883 lattice nodes with an acoustic
Reynolds number of the initial flow field dte,c = 2000. Similar to the previous case of a
vortex, the flow field was initialised with equilibrium detsdistribution fieq and iterated

a few times to get the correct non-equilibrium part of therthstion function.

The vorticity of the initial flow field after 0.5, 2 and 4 eddyrtdover times can be seen
in Fig. 4.8. One can observe the fast decay of all small s@ldsthe evolution of large
clustered structures which fill the computational domain.
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Figure 4.8: Time evolution of the vorticity of a homogenedamtropic turbulent field for 0, 0.5, 2

and 4 eddy turn-over times.
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It is known from the theory of turbulent flow that the dissipate and the turbulent kinetic
energyk suffer a decay which can be described by

1

k B @ B —C
% = [1-!— Ko (C l)t} (4.11)
& SO lSC

with a semi-empirical constant C = 2.5 for two-dimensionahlt [113]. These averaged
guantities were measured during computation and compaithdtire theoretical values.

As can be seen from Fig. 4.9, the values obtained from théckaBoltzmann simulation

fit the theoretical curves very well.
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Figure 4.9: Time evolution of dissipatioa and turbulent kinetic energl for a homogeneous
isotropic turbulent flow field. Numerical results are markgdsymbols, analytical results as lines.

4.2.3 Conclusion

The results for the above test cases clearly show the pbigsdsiperforming accurate nu-
merical simulations for viscous incompressible transikmts with the Lattice-Boltzmann
method. Especially, as is known from Lattice-Boltzmanrotigeno problems with numer-
ical dissipation exist, which allows for inclusion of thigantity in a suitable definition of
viscosity.
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4.3 Plain Channel Flow around a Square Cylinde?

As a next step, in this section the combination of both, gepnie the flow field and tran-
sient flow, have been investigated by applying the LattioiZzBhann method to a classical
benchmark case. This very detailed study clearly shows $iomtations of an implemen-
tation using simple bounce-back wall boundary conditioiteout local mesh refineme#t.
Nevertheless, the very good agreement with the majorityirofikgtion results produced
by a Finite-Volume code demonstrate the high accuracy af siaple Lattice-Boltzmann
implementations.

The confined flow around a cylinder with square cross-seationnted inside a plane chan-
nel (blockage rati® = 1/8) was investigated in detail by two entirely different nuioal
techniques, namely a Lattice-Boltzmann implementatiah afinite-Volume method. In
order to restrict the approach to two-dimensional comjutat the largest Reynolds num-
ber chosen wae= 300 based on the maximum inflow velocity and the chord length
of the square cylinder. The Lattice-Boltzmann code wast lgibn a lattice-BGK D2Q9
model. The Finite-Volume code was based on an incompreshiéWier-Stokes solver for
arbitrary, non-orthogonal, body-fitted grids. Both nurnatimethods are of second-order
accuracy in space and time. Accurate computations werauteaton grids with different
resolutions. The results of both methods were evaluatecamgared in detail. Velocity
profiles and integral parameters such as drag coefficientcuation length and Strouhal
numbet® were investigated.

4.3.1 The Flow Problem

The flow past bluff bodies, especially cylinders, has beeattraction in all kinds of fluid
mechanical investigations for a long time. Most of theselistsiwere concerned with the
circular cylinder case under free flow conditions. Excdllesviews on this topic were
written by Williamson [118] and Zdravkovich [119]. In coast to the overwhelming num-
ber of publications on the flow past circular cylinders, thaae counterpart has not been
investigated to the same extent, although it plays a domnod&in many technical appli-
cations such as building aerodynamics; for details, sge,[@20, 121, 122, 123, 124, 125,
126, 127]. Owing to fixed separation points for sharp-edgetids, it is generally accepted
that aerodynamic coefficients are less dependent on theoRisymumber than for circular
structures.

Depending on the Reynolds number, different flow regimes lmamlistinguished for a
square cylinder [128]. At very small Reynolds numbeRe € 1), viscous forces dom-
inate the flow. For this ‘creeping flow’, no separation takésce at the surface of the

8The research work presented in this section was perforngedher with T.Zeiser (in the framework of
his ‘Studienarbeit’ [116] which was co-supervised by théhat) at LSTM Erlangen (Germany) under su-
pervision of M.Breuer and F.Durst. The following sectiom&sed on the publication [117]. All simulations
with the LESOCC-code were accomplished by M.Breuer. Firsisapport by the Bayerische Forschungss-
tiftung in the Bavarian Consortium of High-Performanceghtific Computing (FORTWIHR 1) is gratefully
acknowledged.

9See also Chap. 6.5.1 ‘If I did it today . ...

1%For a definition of these quantities see Chap. 4.3.4.
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cylinder. With increasindre the flow separates first at the trailing edges of the cylinder
and a closed steady recirculation region consisting of tyywrsetric vortices is observed
behind the body. The size of the recirculation region insesawith increase iRe When a
critical Reynolds numbeRRey; is exceeded, the well known von Karman vortex street with
periodic vortex shedding from the cylinder can be deteatetthé wake. Different values
of Reyjt exist in the literature. Based on experimental investayetj Okajima [124] found
periodic vortex motion aRe~ 70 leading to an upper limit dRe,iy < 70. A smaller value
(Reyit = 54) was determined by Kelkar and Patankar [121] based orbditstanalysis of
the flow. When the Reynolds number is further increased, tiveseparates at the leading
edges of the cylinder. The onset of this phenomenon is natlgldefined in the literature;
only a wide range oRe= 100— 150 is given [124, 128]. In this Reynolds number range,
the flow past square cylinders can still be considered asdim@nsional. In contrast to
the circular cylinder flow for which Williamson [118] prowed a Reynolds number limit
of Re= 180 for the onset of three-dimensional structures in theaywak such clear state-
ment can be found for the square counterpart. A rough hintzengoy Franke [128] with
Re< 300. Therefore, this Reynolds number was chosen as the lippeof the present
two-dimensional laminar simulations. Beyond this limiteab-dimensional structures have
to be expected and subsequent transition to turbulence pd&ee in the free shear layers.

Only a few studies have dealt with the influence of confinings@n the flow phenomena
around square cylinders (see, e.g., [122, 129]). In corepanvith the free flow case, two
new parameters have to be taken into account, the inflow @il the blockage ratio. As
shown by Dauvis et al. [123], the vortex shedding frequengedes strongly on the inflow
profile. In the experimental investigations by Shair et BB(J] and Davis et al. [123], non
negligible deviations between the velocity profiles far tugsm of the cylinder and the
parabolic distribution expected for fully developed laarithannel flow were observed.
Therefore, this aspect has to be kept in mind for comparisiwden experimental and
numerical investigations which typically apply the thaara velocity profile as inflow
conditions. The second parameter which plays a dominaatinotonfined cylinder flow
is the blockage ratio of the channel, definedBas D/H, whereD is the diameter of the
cylinder andH is the channel height. It is generally accepted that for adfiReynolds
number, an increasing blockage ratio leads to an increasieeistrouhal number. This
holds true for both circular and square cylinders, althotinghmovement of the separation
points cannot be responsible for this phenomenon for a stdgpd body as assumed for a
round geometry.

Davis et al. [123] investigated confined flow past squarenddis for a wide range &e

and two different blockage ratioB& 1/6 and 1/4), experimentally and numerically. De-
pending on the blockage ratio, a maximum Strouhal numbelasrved aRe= Rgnax=

200— 350, For higherRethe Strouhal number decreases again and reaches an almost
constant level. As mentioned above, non-parabolic vetqmibfiles were measured up-
stream of the cylinder. Because most numerical predicticere based on these measured
inflow profiles, a direct comparison with the present studgassible only for the addi-
tional cases in which a parabolic profile was assumed. Thaspuatations were based on

a Finite-Volume code and non-equidistant coarse grids ef4Z6and 7652 grid points.

11The Reynolds numbdRe= Ranaxis based on the maximum velocity of the inflow profile.
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Two-dimensional numerical simulations were also carrigithy Mukhopadhyay et al. [126]
for theRerange 90- 1200, two blockage ratio8(= 1/8 and 1/4) and a parabolic inflow
profile. With respect to the Reynolds number of the corredpanchannel flow, the upper
limit of Rein this investigation seems to be highly questionable besaurbulent flow in
the channel has to be expected under these conditions. &airttulations, two different
equidistant grids with 20034 and 396 66 grid points were used. Because no clustering
of grid points in the vicinity of the cylinder was applied obasurface was resolved by only
4 or 8 control volumes, respectively. As will be shown beltvis resolution is definitely
far too coarse to provide reliable results.

Suzuki et al. [127] performed simulations (836X Re< 225,B = 1/20— 1/5) on a non-
equidistant grid with 20% 54 grid points, claiming to have achieved grid independence
However, based on the present study, it is questionabléftisas possible with the resolu-
tion used, especially for the higher Reynolds number casesich separation starts at the
leading edge of the cylinder. For a blockage rdie- 1/5, Suzuki et al. [127] computed
Strouhal numbers over a widerange and found a maximumRBe= Rgpax= 150.

A comparison of the different data mentioned above alredbyvs a large scatter of the
results for integral parameters such as the Strouhal nu(eber e.g., Fig. 4.18). There is
evidently a lack of reliable experimental and numericabdat this flow case. The objec-
tive of the study presented in this section was to providerdritiution to close this gap.
In order to ensure trustworthy results, two different nugsmethods (Lattice-Boltzmann
and Finite-Volume method) were applied and special attentias paid to the analysis of
the accuracy of the solutions in terms of grid independertes. a fixed blockage ratio
B =1/8, laminar 2D flow was computed in the Reynolds number rangecRe< 300.
The results were evaluated in detail based on velocity fiafdkintegral parameters and
compared with previous numerical and experimental studies

It should be stated clearly that the objective of this worlswat to make a comparison
of both numerical algorithms with respect to computatioeficiency in terms of CPU

time and memory requirements. Therefore, besides the ghgséithe flow past a square
cylinder this section focuses on the comparison of the aogyuof both methods. Similar
investigations have been reported by Eggels and Somer$ fd3& non-isothermal free

convective flow in a square cavity and by Eggels [132] for tliead numerical simulation

of fully developed turbulent channel flow with heat transfer

4.3.2 Finite-Volume Method

In the following sections only a brief introduction to thenke-Volume method is given.
For a more detailed description, we refer to the cited litema

The applied code LESOCC is based on a 3D Finite-Volume metbodrbitrary non-

orthogonal and non-staggered grids. It was originally tyed for simulating incom-
pressible turbulent flows of practical relevance by thedagddy simulation (LES) tech-
nique [133, 134, 135, 136, 137, 138, 139, 140]. Owing to tigh hiemands of LES with
respect to spatial and temporal accuracy, the method isvadcsuited for the accurate
computation of time-dependent laminar flows. Five différegptions are implemented in
LESOCC for the approximation of convective fluxes. Howewased on experience in
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previous investigations [139], only central differencéssecond-order accuracy are ap-
plied for both the convective and the viscous fluxes. Timeaadement is performed by
a predictor-corrector scheme. A low-storage multi-stagade-Kutta method (three sub-
steps, second-order accurate in time) is applied for iategy the momentum equations in
the predictor step. Within the corrector step, the Poisspagon for the pressure correc-
tion (SIMPLE) is solved implicitly by an incomplete LU decpasition method. Explicit
time marching works well for LES with small time steps neegegdo resolve turbulence
motion in time. For time accurate predictions of laminar #owxplicit time marching is
the appropriate choice.

On non-staggered grids, as used in the present investigatispecial interpolation tech-
nique for the cell face velocities is necessary to preveatdbcoupling of pressure and
velocity components leading to non-physical oscillatiofifiese cell face velocities are
required for determining the mass fluxes at the cell faces.mMbmentum interpolation of
Rhie and Chow [141] provides a proper coupling procedure. ififluence of this approach
on the solution was investigated in detail by Miller and Satrfil42] and by Kobayashi

and Pereira [143]. They found that momentum interpolatiomon-staggered grids is
nearly equivalent to the SIMPLE algorithm on staggered ggddncerning formal error

analysis and the attained accuracy of the calculations.

Of course, all models necessary to approximate the norvedde sub-grid scales in LES
are turned off for the laminar simulations. Recently, LESD®@as extended by a multi-
block structure, strongly improving the possibility of obEng complex geometries. Fur-
thermore, the multi-block implementation was also the $&si parallelisation by domain
decomposition and message passing (MPI). LESOCC is higidyovised (vectorisation
rate> 99.8%), allowing one to perform efficient computations on vegtarallel machines.
Typical sustained performances av&l.0 GFLOPS on four processors of a NEC SX-4 ma-
chine and~ 3.7 GFLOPS on a Fujitsu VPP 300/700.

4.3.3 Details of the Test Case
Geometry of the Computational Domain and Grids

The 2D laminar flow around a square cylinder with diamddecentred inside a plane
channel (heighH) was investigated (see Fig. 4.10). The blockage ratio wasl fatB =
1/8. In order to reduce the influence of inflow and outflow bougpdanditions, the length
of the channel was set tg/D = 50. For the Finite-Volume computations an inflow length
of | =L/4 was chosen. For the Lattice-Boltzmann simulations, tflevinlength was
varied betweeh= L /4 andL/3 to investigate the influence of different inflow and outflow
lengths. However, only negligible deviations in the resutere found.

The geometry for the Lattice-Boltzmann method was creatiéd tive marker-and-cell ap-
proach: single lattice nodes are either occupied by an el@amngeobstacle or they are free.
The Finite-Volume code is written for general body-fitteawilinear coordinates. Owing
to the specific geometry in the present study, only Cartegials are applied. However,
in contrast to Lattice-Boltzmann, Finite-Volume allows thpplication of non-equidistant
stretched grids. This has the advantage that grid pointbeatustered in regions of large
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Figure 4.10: Definition of the geometry and integration diooma

gradients (e.g. in the vicinity of the cylinder) and coargeds can be used in regions of
minor interest. Consequently, fewer grid points are nexgder the Finite-Volume simu-

lation to achieve the same accuracy as the Lattice-Boltemagthod. Table 4.1 gives an
overview of all grids used in the present study. Four diffiérequidistant grids with up

to 64Q 000 lattice nodes were generated for the Lattice-Boltznsamalations. The num-

ber of lattice nodes on each side of the square cylindervaetveen 10 and 40, leading
to smallest distances between lattice nodes.bDG- 0.025D. Three different grids were

used for the Finite-Volume simulation. The first is equallie toarsest grid for Lattice-

Boltzmann. The second and third are stretched grids (gemaleseries) where the grid

points are highly clustered in the vicinity of the cylind®mn the finest grid each face of the
cylinder is discretised by 100 control volumes (CV) and timakest CV has a chord length
of 0.01D, which is 25 times smaller than on the finest grid used for Lattice Bo#tmm

Method| Total no. Grid No. of CV | Smallest CV| Max. stretching

of CV type on cylinder| at cylinderD factor

LB 500x 80 equid. 10 0.1 1

LB 1000«160 | equid. 20 0.05 1

LB 1500240 | equid. 30 0.033 1

LB 2000x320| equid. 40 0.025 1

FV 500x 80 equid. 10 0.1 1

FV 400% 240 | non-equid. 80 0.01 1.03

FV 560« 340 | non-equid. 100 0.01 1.02

Table 4.1: Overview of all grids used.
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Boundary Conditions

Wall Boundary Conditions There is a long ongoing discussion on the proper use of
wall boundary conditions within the framework of Lattic@lBmann (see Chap. 2.2.3). It
is often argued that the so-called ‘bounce-back’ wall b@maonditions, which are also
used in the present implementation of the Lattice-Boltzmscheme, are of first-order ac-
curacy, whereas the Lattice-Boltzmann equation is of s&d@vder. However, as explained
in Chap. 2.2.3, more detailed investigations showed tleaéthor produced by the bounce-
back boundary condition is sufficiently small if the relegatparameterw is sufficiently
close to 2, allowing precise knowledge of the wall positidthveero flow velocity. There-
fore, we believe that the bounce-back conditions can be wgbdut any influence on the
order of the Lattice-Boltzmann scheme for the square getesatonsidered here, @ is
chosen within a suitable range.

In the framework of Finite-Volume simulations of laminaniis, solid walls can be easily
modelled by Stokes’ no-slip wall boundary condition asswgwi= 0 at the wall. In contrast

to the bounce-back condition for Lattice-Boltzmann, theneo question about the no-slip
condition for incompressible flows.

Inflow Boundary Conditions In order to simulate fully developed laminar channel flow
upstream of the square cylinder, a parabolic velocity mrafiith maximum velocityumax
was prescribed at the channel inlet. This velocity was antsée lower than 10 % of the
speed of sound for the Lattice-Boltzmann simulations tadaganificant compressibility
effects, which are known to increase with the square of thelMaumber [144]. In the
Lattice-Boltzmann implementation for this study, the greg at the inlet was extrapolated
upstream, and the equilibrium density distribution was potad from this pressure and the
given velocity and imposed at the first lattice column. THetinegion was chosen to be
long enough to ensure that a slight error which occurs frogheoting the non-equilibrium
part in the density distribution has no influence on the tegulesented thereafter. The
Finite-Volume code does not require any boundary condftotthe pressure.

Outflow Boundary Conditions At the outflow boundary slightly different boundary con-
ditions are used for Lattice-Boltzmann and Finite-Volumetihhods. However, owing to the
extremely large integration domain behind the cylindennfloience is expected for the so-
lution in the vicinity of the cylinder. For Lattice-Boltzma, a fixed pressure is imposed in
terms of the equilibrium distribution function at the oatlEor this task, the velocity com-
ponents are extrapolated downstream. For the Finite-\Vleloode a convective boundary
condition given by

ou ou
a—tl Ucon\/ﬁ—xl - O (413)

is used at the outflow boundary, whergn,, was set equal to the maximum velocityax
of the inflow profile. This condition ensures that vortices egproach and pass the out-
flow boundary without significant disturbances or reflecianto the inner domain. In all
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previous computations of different test cases [133, 138, 136, 139, 140], the convective
boundary condition was found to work very well. Likewise, difficulties were observed
in the case of the square cylinder flow.

4.3.4 Results and Discussion

A Reynolds number range®< Re< 300 was investigated numerically, whdteis based
on the cylinder diametdd and the maximum flow velocitynax0f the parabolic inflow pro-
file. The following section starts with a description of th&etent flow patterns observed
with increasindRe The subsequent sections present a detailed comparisoa cdtputed
results (Lattice-Boltzmann and Finite-Volume) based olocigy profiles at several posi-
tions in the flow field. Furthermore, the computations ardyesea and compared regarding
integral flow parameters such as recirculation length,ubtabnumber and dimensionless
force coefficients (lift and drag).

Flow Pattern

Fig. 4.11 shows computational results (Finite-Volume)ha vicinity of the cylinder by
streamlines at four different Reynolds numbdRe £ 1,30,60,200), each characterising
a different flow regime. At lowRe< 1, the creeping steady flow past the square cylin-
der persists without separation (Fig. 4.11(a)). The mageiof viscous forces decreases
with increasingReuntil a certain value, at which separation of the laminarruary lay-
ers occurs. In comparison with the circular counterpartiwbich a value oRe~x 5 was
found [119], separation at the trailing edges of the shalged body can be observed at
lower Re Above this limit, the wake comprises a steady recircufatiegion of two sym-
metrically placed vortices on each side, as shown in Fidl(#)latRe= 30, the length ow
which grows asReincreases. The same trend was observed for circular cySnd@w-
ing to the sharp corners, the separation point is fixed atrtiknty edge and the flow is
attached at the side walls. The steady, elongated and ciesseelvake becomes unstable
whenRe> Reyit (Fig. 4.11(c)). The transverse oscillation starts at the enthe near-
wake and initiates a wave along the trail. This phenomenaisigalized by streak-lines
in Fig. 4.12(a) Re= 60). Weightless particles released at different sourcesoint of
the cylinder were integrated during the time-dependent 8omputation. For the circular
cylinder the onset of the wake instability was found to be aifeatation of a Hopf bifurca-
tion [118], and there is no counter-argument available dicate that the same mechanism
is not responsible for the onset of the wake instability &sa@ square cylinder. As stated
in the introduction, Kelkar and Patankar [121] determinediical value ofRey i = 54.
Although this limit depends on flow parameters such as thekialge ratio, a similar value
(Reyit ~ 60) was observed in the present computations. WReirs further increased,
the free shear layers begin to roll up and form eddies as showig. 4.12(b) aRe= 100.
This phenomenon is well known as the von Karman vortexestehe wavelength of vortex
shedding decreases with risif as seen in Figs. 4.12(a-c). Another important change
in the flow structure is observed in the ranige= 100— 150, where separation starts at
the leading edge of the cylinder (Fig. 4.11(&e= 200). As will be seen below, this
strongly influences the frequency of vortex shedding. Theeufimit of this laminar 2D
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shedding has an enormous spread in the literature. Pralignthree-dimensional simula-
tions with the LESOCC-code have shown that the flow computahown in Fig. 4.12(d)
at Re= 300 is slightly beyond the limit where two-dimensional slations can be per-
formed. The deviations from fully periodic structures i tlar wake are also a clear hint
for this statement. Furthermore, it should be consideratttie Reynolds number based on
the channel heightt and the mean velocitymeanin the channel is alread®enhannei= 1600
for this case. Therefore, owing to the triggering effectha bbstacle on the channel flow,
transition to turbulence has to be expected leading to ttlilensional structures in the
wake.

Figure 4.11: Streamlines around the square cylinder féergint Reynolds numbers, from top left
to lower right: Re= 1, 30,60, 200.

Steady Flow: 0.5 < Re< 60

Recirculation Length  The length of the closed near-waklg X has been measured for a
circular cylinder, eliminating the effect of blockage byteyolating the measured data to
B — . Then the empirical relationship is linear [119]:

L,/D=0.05Re for4.4< Re< 40 (4.14)

Fig. 4.13 illustrates the computed values for the recittamdengthlL, for a square cylinder
inside a channel as a function of the Reynolds number. Firgtjg. 4.13(a) the Finite-
Volume results obtained on the three different grids arepamed in order to prove grid
independence. On the coarsest grid the recirculation teisgslightly shorter than that
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Figure 4.12: Streak-lines around the square cylinder fifergint Reynolds numbers, from top to
bottom: Re= 60,100,200 300.

on the medium and fine grid. The agreement between the twaeqoidlistant grids is
excellent over the entire Reynolds number range. No impnavegs can be expected by
further grid refinement. Fig. 4.13(b) shows a comparisorhefltattice-Boltzmann and
Finite-Volume results based on the finest grids used for bwthods (see Table 4.1). The
computed values fok, coincide, showing a linear dependence on the Reynolds numbe
Similar to the relationship (Eqn. 4.14) for the circularinder, a curve fit of the square
cylinder resultsB = 1/8) leads to

L, /D = —0.065+0.0554Re  for5 < Re< 60 (4.15)

which is also plotted in Fig. 4.13(b). As a consequence, do@rgulation length of the
confined square cylinder flow is slightly shorter for Reyrsoliimbers belovRe~ 12
and larger above this value in comparison with the circubamterpart. Unfortunately, no
experimental data for comparison can be found in the likeedior the square cylinder.

Drag Coefficient One of the most important characteristic quantities of floauad a
cylinder is the drag coefficien@y. In the region of small Reynolds numbers, the drag
coefficient varies strongly witRe The contributions of the viscous and pressure forces to
the total drag are of the same order of magnitude. A compan$the computed Finite-
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Figure 4.13: Computed recirculation lendthvs. Reynolds number. (left:a) Comparison of differ-
ent Finite-Volume results; (right:b) comparison of Firitelume and Lattice-Boltzmann results on
finest grids.

Volume results on the three different grids is shown in Fig.4da) for the steady-state
results in the range.B < Re< 60. On the coarsest grid the drag coefficient is slightly
smaller than on the medium and fine grid, especially at theetoend of theRe range.
The agreement between the results of the two non-equidigtats is excellent over the
entire Reynolds number range. As mentioned previouslymmavements are expected
on further grid refinement. Fig. 4.14(b) shows a comparidaheLattice-Boltzmann and
Finite-Volume data on the finest grid levels for £0Re< 60. Deviations occur for small
Reynolds numbers, but the agreement for the ufpferange considered is satisfactory.
Because the discrepancies are larger in the Id®emange, where the viscous forces play
a dominant role for the drag, it can be concluded that an ficgerit resolution of the
boundary layers by the Lattice-Boltzmann method is resjptasT his also agrees with the
observations based on the Finite-Volume results on thesestigrid, which show larger
deviance from the fine grid solutions at the lower end ofRleeange.

Unsteady Flow: 60 < Re< 300

Velocity Profiles In order to make a detailed comparison of the Lattice-Boétmmand
Finite-Volume results, velocity profiles at different pisns in the flow field were extracted
at Re= 100. Because the flow is unsteady at tRes it was first necessary to define the
moment of evaluation. In the present study this is given lgyttime level at which the
cross-stream velocity at an axial position of 1D behind the cylinder{= 10.5,y = 0)
changes its sign from minus to plus. Fig. 4.15 shows theibigton of the two velocity
components along the centreline. Both Lattice-BoltzmamhFinite-Volume results were
achieved on the finest grid (Table 4.1). The agreement betirese Lattice-Boltzmann
and Finite-Volume simulations is excellent in the upstraagion, in the vicinity of the
cylinder and also in the downstream region up to aboud.12n the far wake> 12D,
small deviations occur. However, these can be explainedin@to the stretched grids
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Figure 4.14: Computed drag coefficigd§ vs. Reynolds number for steady flow. (left:a) Com-
parison of different Finite-Volume results; (right:b) cperison of Finite-Volume and Lattice-
Boltzmann results on finest grids.

used in the Finite-Volume computations, the resolutionhia Yicinity of the cylinder is
higher than that for the Lattice-Boltzmann simulationsevdas in the far wake the grid
is much coarser. This is a typical configuration when flowsiadobodies are investigated
and special attention is paid to the vicinity of the struetu@wing to the present version of
the Lattice-Boltzmann (equidistant grids), this strategg not applied, leading to a higher
resolution and therefore more accurate results for LaBigkzmann compared with Finite-
\olume.
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Figure 4.15: Comparison of instantaneous Lattice-Boltamand Finite-Volume results at a certain
moment (see text for explanation): (left:a) stream-wisgdnd (right:b) cross-strear] velocities
along the centreliney(= 0), Re= 100.
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Fig. 4.16 shows velocity profiles &f andV at three different axial positiong,= 0D, 4D
and &. For the profile through the centre of the cylinder 0), no deviations are visible
between the two sets of results. Further downstream smaltitens occur, especially for
theV component which is smaller th&hand therefore more difficult to predict correctly.
When assessing the agreement between the results of teeedifhumerical methods, the
unsteady nature of the flow must be considered. The defirofitmee moment of evaluation
has a strong influence on the results. Owing to finite timess{epd also finite spatial
resolution), the accuracy in time in the worst scenario s tme step size. Therefore, an
exact agreement between the computational results caerextdected.
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Figure 4.16: Comparison of instantaneous Lattice-Boltamand Finite-Volume results at a certain
moment (see text for explanation): (left:a) stream-wigednd (right:b) cross-streanv'] velocities

at three different positions in the flow field, centre of cgln k = 0), near-wake X = 4D) and
far-wake & = 8D), Re= 100.

Strouhal Number One important quantity considered in the present analygsithe
Strouhal numbeSt, computed from the cylinder diametér, the measured frequency
of the vortex sheddindg and the maximum velocityhax at the inflow plane:

fD

Umax

St=

(4.16)

The characteristic frequendywas determined by a spectral analysis (fast Fourier trans-
formation, FFT) of the time series of the lift coefficiefit Fig. 4.17 illustrates the com-
putational results of both methods, where the LatticeZBo#nn data are represented by
lines and the Finite-Volume results are given by symbolstpavith lines). All simula-
tions, including those on the coarse grids, agree fairly inghe Rerange 60< Re< 133,
showing an increase in the Strouhal number with increaBag At the upper limit of
this range an important change in the flow structure takeseplaamely the movement of
the separation point from the trailing edge to the leadingeeaf the square cylinder. As
expected, the separation on the side walls is strongly infle@ by the resolution in the
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vicinity of the body. Therefore, the results of both methodghe coarsest grid with only
10 points on each surface do not have to be taken serioustheAinest resolution of the
Lattice-Boltzmann simulation, each side of the cylinderepresented by 40 nodes with
the smallest distance to the wall bein@®3D. The Finite-Volume applies 100 CV at each
surface on the finest level with a 2.5 times smaller wall dis¢a(stretched grid), resulting
in a much finer resolution in the vicinity of the cylinder. Th#ore, the small discrepan-
cies between the computed Strouhal numbers of LatticezBaltn and Finite-Volume at
Re> 133 are probably due to the insufficient resolution of thércatation regions at the
side walls for Lattice-Boltzmann. However, owing to resmulimitations, no further re-
finement was possible for the Lattice-Boltzmann simulaiohhe Strouhal number has a
maximum at abouRe= 150— 160 and decreases again for higlke With the excep-
tion of the results on the coarsest grids, the agreemeneleetthe Lattice-Boltzmann and
Finite-Volume data is reasonable.
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Figure 4.17: Computed Strouhal numbers vs. Reynolds nufobéattice-Boltzmann and Finite-
Volume on different grids.

In order to demonstrate this good agreement in comparistimdaita from the literature,
Fig. 4.18 provides a collection of different numerical istigations for blockage ratios
B =0-1/4. No experimental data are available for a parabolic inflosfile. Mukhopad-
hyay et al. [126] carried out numerical simulations in Berange 90< Re< 1200 with
equidistant grids of up to 39666 CV, resulting in an extremely coarse resolution 683
grid points on the side walls of the cylinder. 8= 1/8 the Strouhal numbers increase
with increasing inRe without showing a maximum. In comparison with the present re
sults included in Fig. 4.18, the Strouhal numbers of Muklubpyay et al. [126] are much
smaller. However, th&tvalues for highReare particularly questionable because the flow
should be turbulent inside the channel at the upper limihefdcomputedRerange. For

B = 1/4 the St curve looks totally different and has a maximumRe~ 200. Suzuki et
al. [127] also carried out numerical investigations. Thepled a non-equidistant grid
with 207x54 CV and three different blockage ratid- 1/20,1/10,1/5) were evaluated.
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Figure 4.18: Comparison of computed Strouhal numbersifieaBoltzmann and Finite-Volume)
on finest grids with data from the literature. (left:a) EatBt((Re) range; (right:b) Zoom of the
interesting region, same legend as in (a).

However, only forB = 1/5 are enough values available to determineSK&e) relation-
ship plotted in Fig. 4.18. The curve has a maximurRetz 150 and is in good agreement
with the results of the present study, although the blockagje is higher. Davis et al.
[123] investigated this flow problem experimentally and ruizally forB = 1/6 and V4.
However, in the experimental investigations, non-pariaboflow profiles were detected.
For the numerical simulations, only o¢value is given for each blockage ratio in tRe
range of the present work. Franke et al. [120] computed tmenlar cylinder flow under
free stream condition®(= 0). They found a simila6t(Re) curve to that in the present
investigation with a maximum &@Re= 150. TheSt values are slightly higher than the
Lattice-Boltzmann and Finite-Volume results in the prestady B = 1/8), although it is
well known that an increase in the blockage ratio shouldteaah increase i6t'2. Further-
more, Okajima [124] found a local maximum of the Strouhal bemat the same Reynolds
number as Franke et al. [120] and the present study in hisriexgetal investigation on
rectangular cylinders under free stream conditions. Irckwion, theSt data for confined
square cylinder flow taken from the literature are highlytierad. The corresponding val-
ues for free stream conditions show at least a local maxintuheasame Reynolds number
as in the present work, but the values cannot be comparegttigiowing to the influence
of blockage. However, in the view of these large deviatidhs,differences between the
computed Lattice-Boltzmann and Finite-Volume resultsary marginal.

Drag and Lift Coefficients In the unsteady 2D flow regime (60 Re< 300) the near-
wake becomes unstable and a sinusoidal oscillation of teardhyers commences, later
forming the von Karman vortex street. In Fig. 4.19(a), tinee-averaged drag coefficients

2Note that in the present stuReandStare based on the maximum flow velocity of the parabolic inflow
profile and that a redefinition based on the mean velocity tvobinge the comparison with the free stream
case.
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in this Rerange are plotted for the three Finite-Volume computatiorise Cy(Re) curve
has a local minimum aRe= 150. Up toRe~ 100— 150, good agreement is achieved on
the three different grids. However, for largee theCy values on the coarsest grid deviate
strongly from the data on the two finer grids, which are thdwesein close agreement.
This discrepancy is clearly caused by the insufficient rdgmh of the cylinder vicinity
for the coarse grid, which plays a dominant role especiallthe Rerange at which sep-
aration moves from the trailing to the leading edge of thenddr. Fig. 4.19(b) shows
a comparison of the Lattice-Boltzmann and Finite-Volumsutes both obtained on the
finest grid level. The agreement between the Lattice-Batamand Finite-Volume data is
satisfactory up tdRex 100. Above this value, the drag coefficients computed byideatt
Boltzmann are systematically higher. Comparison of Fig9¢) and (b) shows that the
Lattice-Boltzmann data on the finest grid are in close agezgnvith the Finite-Volume on
the coarsest grid. Therefore, the deviations betweendeaBbltzmann and Finite-Volume
results on the finest grids are expected, again, to be art effatsufficient resolution for
Lattice-Boltzmann, especially in the vicinity of the cydier.
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Figure 4.19: Computed time-averaged drag coeffiocignvs. Reynolds numbdrefor unsteady
flow. (left:a) Comparison of different Finite-Volume resl(right:b) comparison of Finite-Volume
and Lattice-Boltzmann results on finest grids.

No experimental or other numerical data for comparison vieued in the literature for
the same inflow conditions and blockage ratio. However, astl¢he computations of
Franke [120, 128] for a square cylinder under free streanditions confirm our finding of
a localCy minimum approximately at the Reynolds number where separat initiated at
the leading edge.

Finally, in Fig. 4.20 the variation of the drag coefficiemaXCq) — min(Cq)) and the lift
coefficient (maxC) — min(C)) are plotted for the Finite-Volume computations. The am-
plitudes of theC, oscillations are approximately one order of magnitudedatfpan the
corresponding drag values. The drag variation increaseggssively over the entilee
range, whereas for the lift variation a degressive incréasbserved up tke~ 150 fol-
lowed by an inflexion point. The results on the two finer gridsia close agreement. No
reasonable results are obtained on the coarse grid abowefldgy@on point owing to the
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resolution problem discussed previously. No data weredonrhe literature for the vari-
ation of drag and lift of confined square cylinders. Only tharkwof Franke [128] reports a
similar curve for the amplitude of the lift coefficient, butrffree stream conditions, which
make a direct comparison impossible.
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Figure 4.20: Variation of force coefficient vs. Reynolds tnenfor Finite-Volume results. (left:a)
Drag variationmaxCy) — min(Cy); (right:b) lift variation,maxC;) — min(C).

4.3.5 Conclusion

The lack of accurate and detailed data found in the liteedftur confined laminar flow past
a square cylinder initiated the present work. In order toegate reliable numerical re-
sults, two different approaches were applied to investitjad two-dimensional flow past a
square cylinder inside a channBl£ 1/8) for the Reynolds number rangeb®< Re< 300.
For both methods (a Lattice-Boltzmann implementation tged for equidistant orthog-
onal lattices and a general-purpose Finite-Volume metigod) independence of the re-
sults was first investigated. For steady floRe(< 60) excellent agreement between the
Lattice-Boltzmann and Finite-Volume results was foundtfe length of the recirculation
region. Small deviations were detected for the drag coefiisi in the loweRerange.
The unsteady flow computations impressively demonstragec#ipability of the Lattice-
Boltzmann method to deal with instantaneous flows. Velqmitfiles at different locations
in the flow field Re= 100) were evaluated and compared with the Finite-Voluma,dat
showing very good agreement. Strouhal numbers were detedior the entire Reynolds
number range. Both methods provide a local maximunSoét Re~ 150. Compared
with the scattered data in the literature, the deviationwéen the Lattice-Boltzmann and
Finite-Volume results are almost negligible. Finally, gl@efficients were computed and
compared. As is known from the literature for square cylisde free stream, the drag co-
efficient of a confined cylinder also shows a local minimurRet= 150. In conclusion, the
study presented in this section provides reliable and ateuesults for confined cylinder
flow which were not previously available.
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4.4 Numerical Analysis of the Pressure Drop in
Porous Media Flow'?

The final flow study in this chapter brings a comparison oficattBoltzmann simulations
to experimental results in the very domain of Lattice-Bwlénn: the simulation of low-
Reynolds complex geometry flow.

The Lattice-Boltzmann method is used in this study for aitketanvestigation of the ori-

gins of the pressure drop in porous media flow. In agreemdhttive experimental results
[14] it is shown that the elongation and contraction of fluieneents is an important fac-
tor for the pressure loss in porous media flow and that a sogmifierror is made when
only shear forces are taken into account. To obtain the gegiméormation of the porous

media for our simulations, we used the 3D computer tomogrégthnique.

As shown in the previous chapters, one advantage of theckaBibltzmann method is its
specific way of handling large computational meshes regasdbf the complexity of the
geometry. The detailed discretisation of the porous gegnadiows the exact simulation
of the transport of mass and momentum without any of the Uyidgrsemi-empirical ho-
mogenisation models, generally used in engineering agijpics. Thus, on one hand, they
allow for investigations of the transport phenomena in penmedia and improvements of
the basic understanding, e.g. of the high viscous presssses in these flows. On the other
hand, valuable information entering in the formulation ohfogenisation models can be
obtained from these data. In this respect, the LatticezZzBwinn method may be consid-
ered to replace standard experiments to determine quesitich as the permeability, with
the additional advantage that more information about lfioal properties can be obtained
than usually possible in experiments.

Quantitatively accurate Lattice-Boltzmann simulatioosthe specific case of fibrous me-
dia have been carried out by Kandhai and Koponen et al. [48). 14 these studies, the
permeability was measured as a function of porosity and #téde-Boltzmann method

was shown to deliver accurate results over a wide range ofsgi@s for sufficient discreti-

sations, taking into account finite-size effects. It is wanbting that for high porosities

the simulations showed a tendency to over-estimate thgdisse effects when compared
to theoretical values. A possible explanation (in additiorihe one given in the quoted
literature) might well be found in the analysis presentethinithis section.

The standard homogenisation approaches usually appliédrive-Volume simulations in
complex geometries are based on the assumption of a linepragiratic relationship be-
tween the pressure gradient and the mean velocity (DarcgrehReimer law, see e.g. [149,
150, 151, 152]). Usually, a proportionality is assumed waittonstant permeability. This
parameter has to be estimated from experiments or frometiearconsiderations, such as

13The research work presented in this section was performe8E¥ Erlangen (Germany) under super-
vision of G.Brenner and F.Durst. It was presented at the ¥k on Scientific Computing in Chemical
Engineering Il (Hamburg, Germany, 1999), the Internati@yanposium on the Discrete Simulation of Fluid
Dynamics - LGA'99 (Tokyo, Japan, 1999) and the First Intéoral Conference on Computational Fluid
Dynamics - ICCFD (Kyoto, Japan, 2000), published in [14%,1¥7, 57]. The author would like to thank
the Hattinger Pruf- und Entwicklungs- GmbH (HAPEG) for piding the computer tomography data. This
project was founded by the Deutsche Forschungsgemeiri¢Binajf Nr. Br 1864/1).



4.4 Numerical Analysis of the Pressure Drop in Porous Medaw 73

the Kozeny-Darcy equation (see, e.g. [153]). In this theibrig assumed that the porous
media can be modelled as a bundle of capillaric tubes. Ordarsforces in a laminar
Poiseuille-like flow are taken into account and any forces tuelongation and contrac-
tion of fluid elements are neglected. Durst [14] demonsir#itat this approach leads to
an underestimation of the momentum loss by a factor of 2.5aasignificant discrepancy
from experimental results for specific geometries. Therdjzancy between the pressure
loss predicted by such capillaric models and the experiateesults is usually explained
by the introduction of another fitting parameter, the ‘togity factor’. While in some mod-
els the tortuosity is assumed to be just a numerical pararteef# the experimental data,
other approaches link it to the effect of additional lendtthe channels due to the complex
tortuous structure of the flow paths.

In this last section, the results of detailed numerical $athons are used to investigate
guantitatively the effect of elongational forces and tleeintribution to the pressure loss in
porous media flows.

In the next section, we summarise the basic idea of the aapiheory in comparison to
some experimental results and present two simulations mfysomedia flow. In the last
part, the results of these two simulations are evaluatddnegard to shear and elongational
forces and their contribution to the pressure drop.

4.4.1 Analytical Models for the Pressure Drop

In general, the idea behind analytically estimating a visqoorous media flow is to define
a relation which describes the pressure drop as a functitimeofjeometry (e.g. porosity,
specific surface), fluid parameters (density, viscosity)) ffow parameters (velocity).

oxP = f(geometryfluid, flow) (4.17)

Kozeny-Darcy Equation

The most common models which address this problem can be atisgd under the term
‘capillaric theories’, where the porous media flow is beingdaled as a flow through a
bundle of channels with weakly changing cross-sections.eBoh of these channels, the
Navier-Stokes equation can be solved, and the relatiorsHipe mean flow velocityJy
and the pressure drop for a single channel results in:

- 1 /dP
Uy = o (&) R (4.18)

whereP is the pressurgy the fluid viscosity ana the mean flow coordinate. The hydraulic
radiusRy, which is defined as the ratio of fluid volume and wetted s@faan be derived
from the radiusR of the pipe by:

14For a detailed discussion of the various definitions of wsity see e.g. [154].
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(4.19)

m? R
Rn 2

:ﬁR:

Now, assuming a bundle of tubes with an average hydrauliusdg, and a length.,
(Egn. 4.18) can be rewritten as:

~ 1 AP ~

Uy = 201 DL (4.20)
Neglecting the underlying channel-geometry, one can tyst this formula as a general
expression for calculating the pressure drop in other tgbgeometries, assuming that the
average hydraulic radius is known or can be derived. For gi@roonsider a porous media
built up of spheres of an average diamdf@r R, can be written as a function dﬁp and
its porositye:

~

Ry =

£

~p
TReT (4.21)

Inserting this expression into Eqgn. 4.20 yields:

-1 1 APD,” &2

Ux=g% =35 AL 36 1—e)2

(4.22)

whereUg is the so called ‘effective velocity’ inside the porous needi
Egn. 4.22 can be rewritten in so called Ergun coordinates €sg. [153]),

(4.23)

AL pUE (1-¢)] [u(1—¢)

Introducing the dimensionless quantities Reynolds nurRssand friction factorf as de-
fined by

AP D, &3
=——F 4.24
AL pUZ (1—¢) (4.24)
Re= — P 4.25
p(l—ce) (4.29)

the advantage of using the Ergun coordinates becomes ah\beaause Eqgn. 4.23 can be
written in the compact form

AT

f=Re

(4.26)

with the ‘theoretical’ friction coefficient\y, = 72.
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4.4.2 Experimental Results

The friction coefficient was experimentally measured by dDit4] for a packed bed of
spheres with different diameters with a wide range of Reymaumbers (see Fig. 4.21).
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Figure 4.21: Friction coefficient versus Reynolds numbectien from [14]).

For Reynolds numbers beloRe= 1, the experimentally determined friction coefficient
appears to be constant witkexp = 182. This value is about 2.5 times higher than the
theoretical one derived within the capillaric theory.

To explain this additional pressure loss, it is usually adyuhat the capillaric theories do
not take into account the complex paths, the fluid normally teago through a porous
media. When only the effects of longer flow paths comparetdetige length of a porous
media are considered, the tortuosity factor is introdueibiows (see, e.g. [153]°

_lengthof flow paths
"~ macroscopiclengthscale

(4.27)

It might be doubted that a tortuosity factorof= 2 — 3 only caused by the additional length
of the flow paths is a realistic assumption, because thisdvioaply that the length of the
fluid channels is up to three times larger than the length@ptirous media®

In the following section, by applying the Lattice-Boltzrmamethod for a detailed investi-
gation of complex geometry flow, we will show that there exiahother, by the capillaric
theories, not recognised physical effect causing presiogein porous media flow.

15As Koponen [154] remarks that “it is evident that, as a phglsguantity, tortuosity is not uniquely
defined”.

18Direct measurements of the tortuosity for 2D samples of eamly placed rectangles were carried out
by Koponen [154]. A relation between porosity and tortupsias established, resulting in a maximum
tortuosity oft < 1.6 for the lowest porosities.
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4.4.3 Numerical Simulation of Porous Media Flow

The flow field produced by a Lattice-Boltzmann flow simulattbrough a packed bed of
spheres was analysed with respect to the elongationaketewhich can produce addi-
tional pressure losses.

Boundary Conditions

A parabolic velocity inlet profile and fixed pressure at théletuvere chosen for all test
cases. This was achieved by introducing the equilibriunsigdistribution at the first and
last lattice column computed with an upstream extrapolptegsure and a downstream ex-
trapolated flow velocity for the inlet and outlet respedijvé@ he inlet and outlet region was
chosen to be long enough to prohibit any errors introducethisymethod from affecting
the measured quantities.

To ensure a fix position of the solid surface with the standbaahce-back wall boundary
condition applied here (see the discussion in Chap. 2. th&Yyelaxation parametes was
only allowed to vary in a very small range after calibratig.

Validation

To produce quantitatively reliable CFD-data, it is necessa ensure the grid indepen-
dence of the numerical results. This is usually done by dis®ing the same geometry
with meshes of increasing sizes and observing the conveeggfithe results with increas-
ing mesh refinement. When applying the marker-and-cell gaagr, a discretisation of
spherical objects with rectangular elements makes it sacgso carefully investigate the
discretisation error.

As a validation test case, the pressure drop for low Reynolosber flow through an
orthorhombic package of spheres was simulated. The donmes were chosen to be
Ix*lyx 1z =120+ 20% 20 lattice nodes for the 82 x 2 spheres with a diameter Df, = 10
for the coarsest resolution amxi+ ly x|z = 480+ 80+ 80 lattice nodes witlD, = 40 for
the finest resolution. Periodic boundary conditions wemgdia@d normal to the main flow
direction to make this test case similar to the experimesgalp of Durst et.al. [14].

Good convergence of the numerically achieved friction ficieht to the experimental val-
ues (see Fig. 4.21) can be observed in Fig. 4.23. A sphereetgamfD, = 20 is sufficient
to approach the convergence result to withiB%. This is consistent with results by Kand-
hai and Koponen et al. [45, 148] on fibrous media, who foundaanédter of 15-20 lattice
nodes for the fibre diameter sufficient to achieve resoltitim@pendent results.

In order to use realistic geometries for further pressuop ditudies, two porous media
from engineering applications were chosen: one spon@esi€ matrix, and one catalytic
converter consisting of a tube filled with spheres.

17At the time of the publication the author believed that anitioiohl relaxation step on the wall boundary
nodes helped further to improve that scheme. Alas, thisnag8an was never systematically investigated.
See also Chap. 6.5.1 ‘If I did it today ...".
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Figure 4.22: Packed bed of spheres, surface shaded by s®upge
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Figure 4.23: Friction coefficient versus particle diameter

Geometry Pre-Processing

For both samples, the geometry was digitised using 3D coanggamography (3D-CT).
The tomography data were mapped on an equidistant orthbgasé for the lattice Boltz-
mann simulation [51, 145].
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Case 1. Catalytic Converter

A cylindrical porous probe with a height of 110 mm and diamefe80 mm was scanned
using 3D-CT with an average resolution of 0.9 mm. This leads tiscretisation of
Ixxlyx 1z =123+ 90% 90 voxel. The complex geometry data were centred inside an
Ixxlyxlz=250%99% 99 sized channel (see Fig. 4.24), and a flow with a Reynold$eum

of approximatelyRe~ 0.1 was simulated using velocity inlet and pressure outlehdauy

conditions.
\*/x

100

60 v 250

Figure 4.24: Computer tomography data as input for the ¢exfioltzmann simulation: catalytic
converter.

The simulation was performed on one processor of a VPP 70@dtdibniz-Rechenzen-
trum in Munich; 50,000 iterations were necessary for thisuge which took about 25,200
CPU seconds and 850 MBYTE of computer memory were necessatlyd storage of the
~ 2.45% 10° voxel.

Figure 4.25: Pressure field for the flow through a catalytioveoter (x-z plane).
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Case 2: SiC Matrix

A cylindrical porous probe with a height of 30 mm and a diamefe82 mm was scanned
using 3D-CT with an average resolution of 0.5 mm. This leads Wiscretisation of
Ixxly*xlz= 44+ 147« 147 voxel (see Fig. 4.26). The average diameter of the flom-cha
nels is large enough with this resolution to produce regmidindependent results. The
complex geometry data were centered insidéxany 1z = 100« 149x 149 sized channel,
and a flow for a Reynolds number of abd&te~ 0.1 was simulated using velocity inlet and
pressure outlet boundary conditions.

Figure 4.26: Computer tomography data as input for the ¢effioltzmann simulation: SiC matrix
(right: section).

The simulation was performed on one processor of a VPP 70@ agtibniz-Rechenzentrum
in Munich; 10,000 iterations were necessary for this setwipch took about 5760 CPU
second®® and 800 MBYTE of computer memory were necessary for the geod the
~ 2.2x10° voxel. The pressure distribution in a cross-section andéfhecity iso-surface
(isotache) can be seen in Fig. 4.27.

Analysis of the Pressure Drop from Experimental Data

As argued above, the tortuosity is obviously not the onlgoedor the higher pressure drop
observed in experiments and numerical simulations wherpeoad to the results derived
from the capillaric theories.

The total dissipation in the flow when passing through a p®roadia can be expressed by:

®= (4.28)

_Tij 0)('

18This simulation was repeated with the current sparse imgteation on one CPU of the NEC SX-8
vector computer in less then 500 seconds.
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Figure 4.27: Pressure field for the flow through a porous Si@ix@eft: x-z plane, right: iso-
surface of the flow velocity (isotache), shaded by the pre$su

with
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for incompressible fluid.
Eqn. 4.28 can be rewritten as
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The dissipation can thus be expressed as a sum of two patdisgipation caused by shear
forces®s and the dissipation caused by elongational stdain

An evaluation of the detailed flow fields produced by the nuca¢isimulation with the
fraction, @/ Ps, yields:
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Example 1 (Catalytic Converter):

Friction coefficient N=2176
Dissipation (elongation) ®e=2.111x10"°?
Dissipation (shear) bg = 2.854% 1092
elongation / shear Pe/Ps=0.74

Example 2 (SiC matrix):

Friction coefficient N=3424
Dissipation (elongation) ~ ®e = 3.853x« 10 %
Dissipation (shear) bs = 6.486x 1094
elongation / shear Pe/Ps = 0.59

In both examples, the friction coefficientis much larger than predicted by the capillaric
theory. A considerable amount of the pressure drop is caus#te elongational straide,
what can be clearly observed from the relatibgy ®s.

Similar to the case of a packed bed of spheres presented prdli®us section, an expla-
nation of the tortuosity only by the increased length of tbe/fthannels is not correct.

It shall be noted that for both examples the friction coedintiis higher than that of the

previous test case. For the catalytic converter, possitdyconfining tube and a different
(denser) packing of the spheres is responsible for the asere Also the resolution of

the spheres with a diameter bf, ~ 10— 15 is slightly too coarse, resulting in a too high
friction coefficient (see Fig. 4.23). Due to its completeifjetent surface structure, a direct
comparison of the friction coefficient of this geometry wiitie data measured by Durst for
a packed bed of spheres is not reasonable.

Case 3: Randomly Distributed Cubes

Geometry and Boundary Conditions For a refined test, five samples with a porosity of
€ = 0.75 were generated by randomly distributing cubes of edggtda= 10 lattice units
inside aly x ly x1, = 100x 50+ 50 domain. Overlapping of the cubes was not allowed in
order to control the shape and specific surface of this aatifforous media?®

The whole set was centred insidéya ly 1, = 200+ 50% 50 sized channel and periodic
flow boundary conditions were applied orthogonal to the nfeandirection. At the inlet,
a constant velocity profile was applied, and at the outleptieesure was fixed.

Simulation Parameters For each of the five samples, six simulations with Reynolds
Numbers in the range.01 < Re< 100 were performed on a SGI Enterprise 2000 with
an 270 MHZ 1P27 Processor. 180 MBYTE of memory were used fera®0,000 lattice
nodes, and for 20,000 iterations 45,000 s of CPU-time wenswmed.

19The use of randomly distributed square shapes for Latt@e-8mulations was first suggested by
Kohring [43].
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Simulation Results The friction factor can be derived from the flow field with thedhof

the above mentioned equations. It is known from experim@mtastigations, that the fric-
tion factor is a constant fdRe< 1 and increases linearly with the Reynolds number. As can
be seen in Fig. 4.28 (left), the experimental results by Detral. [14] predicting a relation

N\ = 182+ 1.75x Refor the Reynolds number dependent friction factor are apprated
very well by the simulation results.
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Figure 4.28: Left: friction factor as a function of Reynolismber, right: relation of elongation and
shear, both for five different geometries and six differeayiblds numbers.

The dissipation caused by shear and elongation can be dee&srfnom the flow field by
evaluating Egn. 4.30. As expressed by Egn. 4.31, these tri® gam up to the total dissi-
pation and must therefore be directly related to the frictactor. This was investigated in
detail for the five simulation results Re~x 0.22. As can be seen from the plot on the right
hand side of Fig. 4.29p is strongly related ta@\.

This result is in good agreement with the observation mattesitwo previous studies with
a catalytic converter and a SiC structure, presented inrdagqus section.
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Figure 4.29: Left: dissipation by shear, elongation and,sight: total dissipation.

Comparing the tortuosity for the five different geometriegy( 4.30 left) with the total
dissipation (Fig. 4.29 right), one can see that these twatifies are not related to each
other and that the average tortuosityx 1.12, measured by integrating the average length
of streamlines) is much too small to explain the gap betwaeillaric theory and numerical
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Figure 4.30: Correlation between left: tortuosity, rigretationship of elongation and shear.

simulation. Comparing Fig. 4.30 (left) and Fig. 4.30 (righhere is a strong indication
that the tortuosity is related to the relation of dissipat@aused by elongation and the
dissipation caused by shear. Thus, this relationghif®s is, as is the tortuosity, directly
related to the geometry for low Reynolds number flow. Thidss andicated by the almost
constantd/®s over six orders of magnitude for the Reynolds number (F28 4right).

4.4.4 Conclusion

Applying the Lattice-Boltzmann technique for low-Reyneftbw simulations through reg-
ularly packed beds of spheres, a digitised SiC matrix andawnly generated geometries,
we were able to determine the friction coefficient, the tosity and the dissipation caused
by shear and elongation of the fluid.

It could be shown by tha posteriorianalysis of the simulated flow fields, that elongational
strain gives an important contribution to the pressure droperefore, the derivation of
a tortuosity factor from pressure drop measurements migityce a considerable error,
when neglecting the dissipation due to elongational strdine hypothesis of elongated
flow paths cannot explain the gap between the friction faptedicted by the capillaric
theory and experimental or numerical results.

We believe that the above study, validating almost 20 yelt®xperimental results ob-
tained by Durst®is a very good example to exemplify the power of the LatticdtBnann
method for quantitatively accurate simulations, paraclylfor complex flows.

20Due to their obvious contradiction to the widely acceptetiimsity hypothesis, these experimental re-
sults were highly criticised at the time of publication.
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Chapter 5

Multi-Physics Extensions

After investigating, in the previous chapter, a variety ofmplex flow problems with the
Lattice-Boltzmann method, the aim of this chapter is toeava few extensions towards
multi-physics applications. We speak of multi-physicsgwhmore than ‘just flow’ has to
be considered within the simulation.

Studies carried out by Kaandorp on coral growth [41, 42] aaddport and erosion pro-
cesses by Chopard, Masselot and Dupuis [155, 156, 157] speiimg examples of multi-

physics extensions of the Lattice-Boltzmann method. Timepdexity of simulation results

achieved with these models are in fascinating contrastgio ittherent simplicity.

We will demonstrate in the following that the Lattice-Battann method is particularly
suited for integrating a variety of concepts for modellingltaphysics. It is the locality
of the method and the option of simple geometry represemtaty the marker-and-cell ap-
proach, which makes it possible to define and implement effiehodels for the simulation
of complex, heterogeneous processes which interact watkréimsient fluid phase.

In this chapter, heterogeneous chemical reaction, adsorphd resorption in complex
geometries and milk/blood clotting simulations are préseén

5.1 Chemical Reaction Modelling

In chemical engineering, diffusion and mass transport ataynportant role. The interplay

of mass transport and chemical reactions is of particulgomance. An investigation of

the coupling of these transport phenomena is only possihEnvgimultaneously solving

the Navier-Stokes equations and the convection-diffusgattion equation. With usual

engineering approaches, both equations are often treapedagely on a global, or at least
homogenised, scale.

1The research work presented in this section was perforntbe &&C Research Laboratories, NEC Eu-
rope Ltd. (St.Augustin, Germany). It was presented at th&t Fiternational Symposium on Advanced Fluid
Information - AFI-2001 (Sendai, Japan, 2001) and the Rar@lbmputational Fluid Dynamics - ParCFD
2002 (Kansai Science City, Japan, 2002), published in [9B, Bxtensions of the reasearch presented here
was performed by T.Zeiser in co-operation with the autharpublished in [158, 159, 160, 161].



86 Multi-Physics Extensions

Here we use the Lattice-Boltzmann method for calculating dbe flow of the carrier fluid
and the transport of the passive-scalar reacting chenpedliess simultaneously, using a
real digitised 3D geometry. For the carrier fluid and eacltigse a separate particle den-
sity distribution function with different relaxation timékinematic viscosity or molecular
diffusion coefficients) is used based on the algorithm okkby [162]. All density dis-
tribution functions are coupled via the flow velocity whichdetermined from the carrier
fluid. Feedback of the species distributions on the flow figldaglected, so only passive
scalar transport is considered. This scheme is a good appaitbgn for many applications,
e.g. environmental processes such as pollutant transpground-water flow.

As an example (see Fig. 5.1), we consider a generic surfaiedytic heterogeneous chem-
ical reaction between two specidsandB, of the type

A+B=C (5.1)

with a reaction rate proportional to the concentratiof&| and[B] of the species

which takes place only on the surface of the porous geoneefrgction of a digitised SiC
matrix structure.

4,00e-04

Figure 5.1: Snapshot from a time dependent visualisatioth@fchemical reactio+B=C
(shown are the geometry and iso-surface of the product atration [C]).

Due to the locality of the Lattice-Boltzmann method, thectem coefficientk is simply
made a space-dependent variable to model the heterogeoatalgtic reaction. Local
deactivation of the catalyst can also be implemented inwlaig. The source term due
to the chemical reactions is implemented as an additionalipahe Lattice-Boltzmann
equation which, accordingly to the differential equatiod, 3nodifies the local distribution
functions after the relaxation process.
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5.2 Nonlinear Adsorption / Desorptior?

Adsorption/desorption models describe the transfer ofaesbfrom the fluid into the solid
phase (adsorption) or from the solid into the fluid phasedg#sn). In most approaches,
details of this process which involves the micro-scaleudifin inside the solid-phase are
modelled in a simplified way by a rate equation.

This idea can be realised with a Lattice-Boltzmann mullygbs extension by applying
a local rule describing the temporal change of the adsarptite ds/dt on the solvent
concentratiort and the adsorbed mas§.e. the immobile mass deposited per unit volume
of the porous media matrix) [163]:

Js

3= r(kpcP — %) (5.3)
with parametersc, > 0 and exponentg,q fulfilling p/q < 1. At equilibrium, i.e. for
ds/ot = 0, this model reduces to a Freundlich isotherm

s=kc" (5.4)

with k = kp¥/9 andn = p/q.

Such a relationship betwearandc frequently describes the adsorption of substances like
pesticides, polycyclic aromatic hydrocarbons and heavialmén soil and aquifer sedi-
ments (see e.g. [164],[165], [166]) over several orders afmitude in concentrations.

5.2.1 Lattice-Boltzmann Extension: Adsorption Model

Using a passive-scalar diffusion scheme for the solvegt (based on the algorithm de-
scribed by Flekkay [162]), adsorption is simulated withie Lattice-Boltzmann code by
introducing arrays for the adsorbed species concentrgtitink-wise on the surface of the
solid phase (see Fig. 5.2).

Each time step, the concentrations of the adsorbed spgcéesl the solvent are locally
updated by applying Eqn. 5.3 to calculate the amount of aunaton to be transferred
from the fluid to the solid phase.

5.2.2 Simulation Results

For (effectively) one-dimensional media, Grundy [167] dadkel [168] showed by asymp-
totic analysis that in the quasi-equilibrium case, aftdsguype injection, the concentra-
tions at a fixed position (breakthrough curves) should aggrg@ower laws in time:

2The research work presented in this section was perforngadher with U.Jaekel at the C&C Research
Laboratories, NEC Europe Ltd. (St.Augustin, Germany). diswpresented at the Parallel Computational
Fluid Dynamics - ParCFD 2002 (Kansai Science City, Japad2pand the 1Vth IMACS Seminar on Monte
Carlo Methods - MCM-2003 (Berlin, Germany, 2003), publdli@[99]. A later version submitted (but not
presented) at the the Third International Conference onpiational Science - ICCS 2003 was published
in [100].
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Figure 5.2: Link-wise concentration of the adsorbed spesgjet the solid surface, and solvent
concentratiort in the fluid phase.

c Ot ¢
s O tP (5.5)

where the exponents = 1/(1—n) andf3 = n/(1—n) are determined by the Freundlich
exponentn alone. This is in contrast to the exponential decay of breakigh curves
observed for chemically inert substances without adsampti

For the rate equation (Eqn. 5.3), the concentrations caalnatys approach quasi-equili-
brium. However, asymptotic analysis predicts that the gegsilibrium asymptote holds
for the case = 1 [163].

For our simulations we exploited Eqn. 5.3 with factors: 0.1 andk, = 0.001. We per-
formed simulations for the exponents= p = 0.5 andn = p = 0.8 for a porous media
generated from a 3D-CT scan of a SiC-matrix (see Fig. 5.1).

After establishing steady laminar flow, for a short time akaraount of the solvent species
was introduced near the inlet and transported downstreamndh the porous media by
advection-diffusion.

After the peak of the concentration passed the porous medader of 16 more itera-
tions were necessary to achieve asymptotic behaviourhibimk several CPU-hours on a
single-CPU NEC SX-6i vector-computer.

Fig. 5.3 shows the first 45,000 iterations of the time evolutf the solvent concentration
and the adsorbed mass at a surface point inside the poroua medlinear plot for the
exponenn = p=0.8. It can be seen that the the solvent concentration reaghesianum
earlier and decays faster than the adsorbed mass.

Figs. 5.4 show the long term behavior of the two exponantsp = 0.5 (left) andn= p =
0.8 (right). In both cases, one observes an approach towaedsother laws predicted in
Egn. 5.5. More detailed simulations with more iterations @ecessary to investigate the
long term behaviour and show whether power law behaviourashgeved.

Keeping this in mind, with a regression in the linear partrae last 200,000 iterations
the slopes were determined totbe 1.03 (adsorbed species) ang 2.05 (solvent species)
for the exponenh = p = 0.5 as well ag = 4.36 (adsorbed species) ahe 5.45 (solvent
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Figure 5.3: Linear plot of the time evolution (first 45,006rdtions) of the concentration of the
adsorbed and dissolved fractions for an expomeatp = 0.8.
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Figure 5.4: Logarithmic plot of the time evolution of the cemtration of the adsorbed and dissolved
fractions for the exponents= p = 0.5 (left) andn = p = 0.8 (right).

species) for the exponent= p = 0.8. These are in good agreement with the predicted
t = 1.0 (adsorbed) antl= 2.0 (solvent) for the exponemt= p = 0.5 and of the correct
order for the exponent = p = 0.8, where the predicted slopes dre- 4.0 andt = 5.0
respectively. Due to the slower decay resulting from theoeeptn = p = 0.8, one should
expect the result to approach the theoretical value morerataty when more than the
actual 16 iterations are performed.

5.2.3 Visualisation

Using the previously described coupling of our LatticetBaiann code with the RVSLIB
routines (see Chap. 3.4.1), we were able to produce movies\plovide a detailed insight
in the time dependent concentrations of the adsorbed audrgapecies.

Fig. 5.5 shows two screen snapshots taken from the movieoadlifferent time-steps. The
concentration of the solvent is displayed on a cut in the ap@, while the concentration
of the adsorbed species colours the surface of the porousimed
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Figure 5.5: Screen snapshot of the visualisation (flow frbenléft to the right). Displayed is the
concentration of the solvent (x-y plane) and the adsorbediep (on the surface of the porous
media) at two different time steps. One can observe the pmateatration of the solvent travelling
downstream through the porous media, followed by the penkartration of the adsorbed species.

The simulation was performed on a NEC SX-6i as a server and@RiverMate PC as a
client, both connected by a local area network.

5.2.4 Conclusion

For a non-linear adsorption/desorption model, the prelany simulation results were
found to indicate good agreement with the theoretical ptedipower law model.

Adsorption/desorption is an very good example of utilisihg special capabilities of the
Lattice-Boltzmann method to model multi-physics, nambbly éxplicit discretisation of the
geometry and the simplistic introduction of local rules.

5.3 Concurrent Numerical Simulation of Flow
and Clotting®

In this chapter, a novel approach for a concurrent numesicallation of the unsteady
flow within an idealised stenosed artery and a simplified wiitikting proces$,based on a

residence time model is presented. This model is presesi@firat step towards modelling
the significantly more complex process of blood clotting.

3The research work presented in this section is a first resuth the joint research of the C&C Re-
search Laboratories, NEC Europe Ltd. (St.Augustin, Gegnand S.E.Harrison (under the supervision
of P.V.Lawford and D.R.Hose) in the Academic Unit of Medi&dlysics, University of Sheffield (UK). It
was presented at the 11th International Conference onl€laaald Distributed Systems - ICPADS 2005
(Fukuoka, Japan, 2005), the Second International Cornderelr Mesoscopic Methods in Engineering and
Science - ICMMES 2005 (Hong Kong, China, 2005 - invited tadkid the 14th International Conference
on Discrete Simulation of Fluid Dynamics in Complex SysteniBSFD 2005 (Kyoto, Japan, 2005), pub-
lished in [75, 77, 169, 170, 171]. The simulation resultspreed in this section were mainly generated by
S.E.Harrison [15] under supervision of the author, who enptnted the solidification algorithm.

4Milk was used as blood analogue in the experiments perfolmgesinith [172], since it is considerably
cheaper and easier to handle than blood. After enzymaii@#ion, the clotting behaviour is comparable to
that of activated blood. For details see [172].

SMore recent results with advanced blood clotting modeléntainto account processes like platelet acti-
vation and enzyme reactions, were presented at the Thigdhiational Conference for Mesoscopic Methods



5.3 Concurrent Numerical Simulation of Flow and Clotting 91

The aim of this study was not to capture all the complex biergital details of the milk
clotting process itself, or discuss its relation to blooattbhg. This chapter is intended as
a ‘proof of concept’ for the general possibility and effiadgrio simulate clotting with the
Lattice-Boltzmann method.

In fact, it can be considered as a particularly well suitednegle of extending a Lattice-
Boltzmann flow solver with a multi-physics model to simulatamplex transient flow and
mass-transfer processes, which result in changing gepfhetr

Since the subject of medical physics has been the authoitr field of research during
the past three years, a brief introduction of the medicak@warind, which motivates the
clotting simulations, shall be given.

5.3.1 Medical Background

Cardiovascular disease annually claims the lives of apprately 17 million people world-
wide [175]. Atherosclerosisis one particular disease twhauses the formation of deposits
(plaque) on the inner lining of an artery. Plaque rupture neaylt in emboli, which in turn
may lead to myocardial infarction and ischaemic stroke. éoséary concern is that of
flow disturbances associated with disease related nargowfithe vessel lumen (vessel
stenosis, see Fig. 5.6).

Itis likely that areas of stagnant or recirculating flow vd#évelop downstream of a stenosed
artery and if activated blood remains in such a region foiodgmged period of time, throm-
bosis may occur.

Coagulation can be initiated by shear rates of sufficientrmtade to cause cell lysis and
release clotting factors [176, 177, 178, 179, 180]. Follaywctivation, the route to coag-
ulation involves a unique cascade of reactions. Seveeahgtis have been made to model
the relevant molecular pathways [181, 182, 183, 184, 185, 4@ these fail to consider re-
alistic flow fields and their development with the growth af thrombus. A comprehensive
understanding of thrombosis requires full consideratibthe three entities of Virchow’s
triad; blood chemistry, vessel wall properties and fluid haatcs.

In this first attempt to model blood clotting, we will not demith the complex pathway

to coagulation, but describe a model which covers the aspédtansient flow simulation

and clotting of activated blood based on a simple residenue model. This approach is
of course a very crude approximation of the highly complexchemical processes, but
it includes the interaction of a time-dependent flow-fieldrwthe varying geometry of a

growing clot, which has a major influence on the final shapaeftot itself.

in Engineering and Science - ICMMES 2006 (Hampton, VirgidiaA, 2006 - invited talk) and the 15th
Discrete Simulation of Fluid Dynamics conference - DSFD (@Geneva, Switzerland, 2006), published
in [173, 174] and accepted for publication in [76]. Since ¢hehor of this thesis is not the first author of
these recent publications, which are mainly part of the @apive research undertaken by S.E.Harrison in the
framework of her PhD-thesis [15] (which was partially sypged by the author), these results will not be
presented here.

5The author believes that the general approach explaindisithapter can be applied to model a whole
class of problems where the interaction of flow and masssteanfluences the solid fraction of the compu-
tational domain.
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Figure 5.6: Angiographic image of a stenosed coronaryyar@ameter of parent vessel is approx-
imately 3mm (image courtesy of Dr. Julian Gunn).

An extension of the passive-scalar diffusion model impletaé into a sparse Lattice-
Boltzmann solver described in Chap. 3.1 was used to estithateesidence time of a
fluid. By applying a residence-time based clotting moded,ititcrease of the solid fraction
(clotting) was simulated together with the flow field, whicidhto adapt to the constantly
changing boundary conditions.

5.3.2 Lattice-Boltzmann Extension: Aging Model

Assuming that clotting occurs after a certain elapsed desince the ‘activation’ of milk
or blood, the residence time of the activated fluid is the nrogtortant variable for the
clotting process because it indicates the likelihood of fdomation.

A passive scalar is used as a tracer to estimate the resitlereef activated fluid in our
model. This tracer is transported by advection-diffusiod @a small, constant quantity
is injected at every lattice node each time step. The locateotration of the tracer is
therefore proportional to the average ‘age’ of the fluid @olpwhich can be used as a
threshold parameter within the clotting model.

The diffusion coefficient relates to the amount of mixingvbetn different regions of a
fluid and is an important parameter that must be chosen digréfiRecirculation zones
with closed streamlines may be produced, for example, inmelgt downstream of the
stenosis and the only mechanism of transport between tleggens and the remaining
flow is diffusion.

For the carrier fluid and the tracer, separate particle teusstribution functions with
different relaxation times (relating to the kinematic wasity or molecular diffusion coeffi-

’In this preliminary study the diffusion coefficient was sestvalue which produces clots within a time
frame more or less comparable to the experiments. A mordetbstudy revealed that molecular diffusion
alone cannot be sufficient for the amount of mixing which wiaseasved in the experiments. More details to
this can be found in the thesis of S.E.Harrison [15].
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cient) are used, based on the algorithm of Flekkay [162]dAfisity distribution functions

are coupled via the flow velocity which is determined from tiaerier fluid. Feedback of

the species distributions on the flow field is neglected, dg passive scalar transport is
considered.

5.3.3 Lattice-Boltzmann Extension: Clotting Model

In this approach we assume that a fluid (milk or blood) is abl&dt after a certain elapsed
period post activation. The local age of the fluid is deterdiby the concentration of the
passive scalar tracer, as described in the previous section

When the local concentration of the tracer (which is comghatieeach time-step) reaches
a certain threshold, solidification takes place. Within tiagtice-Boltzmann framework
this means a fluid node becomes a solid node and the solicceustaundary condition is
applied (see Fig. 5.7).
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Figure 5.7: Clotting is modelled by increasing the solictfian when the concentration of the
tracer species reaches a threshmpld

During subsequent iterations the flow field and age distiobuadapt to the new geometry,
while further clotting on adjacent fluid nodes may occur. sTallows for the concurrent
simulation of solidification and flow, which is believed to bssential for capturing the
complex flow-related clot morphology.

5.3.4 Simulation Results

With our Lattice-Boltzmann implementation, all simulat® presented in this section
were performed on the NEC SX-6i vector computer which has ak gerformance of
8 GFLOPI/s. Our code always achieved a sustained perfornadmere than 50% of the
peak performance with about 25 MLUP/s for the flow simulatdone. Although these
figures indicate a very good vectorisation, the simulatib82®,000 iterations (2.75 s real
time) of the turbulenRe= 550 3D flow, to be presented here, required 40 CPU hours.

Flow through an Idealised Stenosis

Prior to simulations using the aging and clotting modelsfaguired verification that the
Lattice-Boltzmann flow solver accurately computes flow tlyio an idealised stenosis.
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The stenosis is 5mm long forming a square edged occlusiob%f 3y area, situated two
diameters downstream of the inlet (see Fig. 5.8).

100

50
1[:-%
o
o

Figure 5.8: Idealised 75% stenosis geometry.

Throughout these simulations we applied a steady paraballbcity profile at the inlet and
constant pressure at the outlet. The non-Newtonian betiagfdlood was neglecte?.

A simulation of laminar flow with a Reynolds nhumberRé&= 100 was performed which
gave a recirculation length of 29 mm.

For the purpose of validation, a perspex test section wastearted of identical geome-
try. Flow visualisation was accomplishedt Re= 100 by the injection of a dye stream
immediately upstream of the stenosis. This dye becameieattraear the wall within the

stenosis, therefore demarcating the boundary layer betwesgons of recirculation and
the central jet (Fig. 5.9). These results show similar disrams of the recirculation zone,
although exact determination of the reattachment poinbigossible.

The next challenge was simulating turbulent flow at a Reyswnldmber oRe= 550, which
is approximately the average Reynolds number within theofahrartery. Achieving turbu-
lent flow at such low Reynolds numbers is not trivial sinceftoe will tend to damp back
into the unsteady laminar regime.

It transpired that the slightly rough walls (generated mdi@nly varying the radius-1 lat-
tice node) we usedXxly 1z = 1214« 98x 98) in the three dimensional simulations were
sufficient to induce and maintain turbulence. After a lorapsient initial period where
complex vortices developed, laminar flow broke down andyftdirbulent flow was ob-
served (see Fig. 5.10), remaining stable until the end ddithelation (320,000 iterations).

Qualitatively comparing the computational flow solutionseixperimental results, good
agreement can be observed between the size and speed ofitliestores (see Fig. 5.11).

8For non-Newtonian blood flow simulation see e.g. [187], ar€au-Yasuda model was recently also
implemented into the sparse Lattice-Boltzmann solver efitternational Lattice Boltzmann Software De-
velopment ConsortiumFirst simulation results (briefly reviewed in Chap. 6.3)icate that under certain
circumstances the non-Newtonian behaviour of blood flownoahe neglected.

9The experiments were performed by Smith [172].
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Figure 5.9: Comparison of experimental (above, from [1@R[) numerical (below) results for flow
through a 75% stenosis Be= 100.

Stenosis

Figure 5.10: Snapshot of a velocity iso surface of fully deped turbulent flow through a 75%
stenosis aRe= 550.

Aging Simulation

For the previously described aging model the most simpliglaabn involves simulating
the age distribution of a laminar fluid in a 2D channel. Fosthurpose a channel of
Ixxly = 200« 42 lattice nodes was created and allowed to develop a stizawipar flow
profile. At each subsequent iteration, a small amount of teeipusly discussed passive-
scalar tracer was added to the local concentration at attégoints.

Flow velocity is maximum in the centre of the channel, faliparabolically to zero at the
walls. Therefore, after a certain time has elapsed, thertgest’ fluid will be found in the
centre at the inlet and the ‘oldest’ fluid will be found neag thutlet walls.
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Figure 5.11. Comparison of simulated (left) and experirakfright) flow through a 75% stenosis
atRe= 550 at four different times.

o

Figure 5.12: Tracer concentration (‘age’) for paraboli@amhel flow (dark colour is referring to
higher concentrations representing ‘elder’ fluid).

In previous milk clotting experiments carried out by SmitfY2], clot deposition was ob-
served to be maximal in regions distal to the stenosis. Opkaeation for this is that the
recirculation regions retain clottable fluid, allowingatage and adhere.

2D simulations of laminarRe= 100) and turbulentRe= 550) channel flow containing a
stenosis of 50% by diameter (equivalent to the 75% by aremsigin 3D) clearly indicate
that the regions with the highest concentration of the tya® hence the oldest fluid, are
similar in location to the clot depositions produced exmpemtally.

Clotting Simulation

For the 2D clotting simulation a lattice size bfxly = 532x 82 nodes was used and an
initial 200,000 iterations were performed to establishethdependent flow @e= 550.
Following this, the tracer was injected at a constant rate.

Defining a threshold for the tracer concentration, indiggtine age of the fluid, allows
us to implement the solidification process: all fluid lattitedes where a concentration
above this threshold is found are solidified and no furthessrteansport is allowed (see
Fig. 5.7). The threshold concentration was chosen to bel @naligh to allow clotting
within a reasonable simulation time and large enough tadesmlidification of many lattice
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nodes within a few iterations. Obstruction of the outlet ttuelot growing from the walls
must also be avoidety.

A further 300,000 iterations (equivalent to 11.7 s in reald) were performed to allow a
clot to grow (see Fig. 5.13).

growing clot
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Figure 5.13: Growing clot (black) downstream of a 2D stemasidifferent time steps t. The age of
the fluid is shown in grey, darker regions indicating oldeidflu

In this first approach we exploit the fact that a scale semara&ixists between the typical
rate at which clot forms and the frequency with which flow gats changé! This means
it is not necessary to adhere to the experimental time sedhese a clot grows within
several minutes. For the results presented here the tyioalscale associated with clot
growth is approximately two orders of magnitude greaten ttmat associated with vortex
shedding.

As can be seen in Fig. 5.13, clot growth initiates in the rdation domain downstream of
the stenosis. The size of the clot increases gradually wité, twhilst the flow field adapts
to the new geometry. Of particular interest is the downstreagration of the recirculation
region. Due to vortex shedding, a secondary vortex is astedd leading to a second

10within this preliminary study, the threshold parameter wasderived from physical considerations but
simply adjusted to qualitatively reproduce the experiraiybbserved phenomena.

1A more sophisticated approach making use of a scale sepacath be obtained within multi-scale mod-
els. Separated time and length-scales are identified one sz [188, 189] and dedicated software tools
for each scale are coupled to exchange the required infammeaBuch models are being investigated within
the European research project COAST, to which the authdribates with the sparse Lattice-Boltzmann
flow solver. A short overview will be given in Chap. 6.4.
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concentration maximum approximately one vortex diametevrestream of the clot (see
Fig. 5.14).

A secondary clot has been identified experimentally at tieigriglds numberRe= 550),
though the relation between this and a secondary vortex beusivestigated further.

A A

primary clot

secondary clot

y

Figure 5.14: Secondary milk clot (above) in the experimemnt secondary peak in the tracer con-
centration (below: numerical simulation, darker regiamdi¢ating older fluid.

The final asymmetric shape of the clot reflects the effect steady flow on the pattern
formation procedure, showing some qualitative similasitwith results of milk clotting
experiments [172] using comparable flows.

A comparison of a Lattice-Boltzmann clotting simulationthvexperimental results pro-
duced by Smith [172] show good qualitative agreement (sge3-15).

ey xS s e g
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Figure 5.15: Comparison of an experimentally produced roltk (above) with the Lattice-
Boltzmann simulation (below). The position of the stendsisdicated.
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To demonstrate that the computationally demanding exdartsi three dimensions is fea-
sible, a 3D clotting simulation &e= 100 was carried out within the stenosis geometry
(Fig. 5.8). The shape of the clot (see Fig. 5.16) looks simidahose from the milk clot-
ting experiments, and no artifacts, as e.g. a dependenoytfie lattice symmetry, were
observed.

Figure 5.16: 3D milk clot downstream of a stenosifRat= 100.

5.3.5 Conclusion

The above study presents a new approach for simulatingraising the Lattice-Boltz-
mann technique by using a passive scalar as a tracer of thefaggivated fluid. This
can be considered as a typical example of a multi-physicsneidn. The possibility of
locally modifying the geometry during the simulation allesvfor the interaction of flow
and clotting, which is believed to be the key for reprodudimgexperimental clot shapes.

This section has been restricted to briefly introducing trethmd. Recent studies (not
presented in this thesis) which have been performed at tlineldity of Sheffield in co-
operation with the author (for details see [173] and theih®&fsS.E.Harrison [15]) consider
more complex clotting algorithms for 3D simulations. Thérevas shown that taking
account of the vicinity of a growing clot and flow parametarsisas the wall shear stress
considerably affects the onset and development of clatting
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Chapter 6

Discussion, Vision and Outlook

In the previous chapters a selection of complex-flow appboa and multi-physics exten-
sions of the Lattice-Boltzmann method have been preseftedsidering these successful
applications of the method (and many more described in theature), the author believes
that Lattice-Boltzmann is not a tool which will one day coetely replace the Navier-
Stokes based Finite-Element or Finite-Volume technigheshas clear advantages if ap-
plied to suitable problems. The goal of comparing the déifeapproaches should not be to
identify ‘the best’ method, but to find out which method is msuitable for the underlying
class of problems.

Succi described in his book [13] four general classes coimugthe applicability of Lattice-
Boltzmann:

e Don’t Use: Problems which require strong compressibility and sultstimeat trans-
fer.

e Can Use: These are basically all standard-CFD problems. It is ofte&uestion
of taste which method to prefer. Alas, the orders of mageitieds person-years
invested so far in the development of Lattice-Boltzmantmégues (as turbulence
modelling and acceleration schemes) and software packegésding pre and post-
processing tools) often set practical limitations. ReagHull maturity is not a con-
ceptual problem per se, but just a matter of time and monesied in developments.

e Should Use:Succi identifies here single and multi-phase flows in complesme-
tries; we believe this was supported (for the single-phases) by the examples
given in Chap. 4.

e Must Use: This class was described by Succi as 'rather dilute’. In @sttto this
statement from the year 2002, we believe, by the examplengiv the previous
Chapters (4 and 5) that it became obvious that the 'Must Uas5acan be populated

Lt might well be argued that some classical CFD-benchmar&sL aittice-Boltzmann method was in-
volved in the past are not very suitable for showing the athganof the method. Even today there is a certain
tendency to apply the method in areas where conventiondllest@blished software packages have certain
advantages.
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by a variety of complex-flow multi-physics applications. rBimulating the inter-
action of complex fluid flow, mass transport and a related frezdion of the flow
domain, adequate modelling in the framework of traditiadavier-Stokes methods
would be incredibly complicated and numerically expensi/possible at all. The
specific way in which solid boundaries are handled withinltatice-Boltzmann al-
gorithm, together with the simplistic cellular automaiteeloption of implementing
simple local rules, from which complex physical phenomemamge on larger time
and spatial scales, is a clear advantage of this method.

Another new, and hardly explored area, where the focus idherfast simulation

of flow phenomena as opposed to precision of the resultsalgiree CFD simula-

tion on the computer’s graphics card (GPU) for computer gaaral other related
fields (see Chap. 3.3.2). A very recent impressive exampleisrarea is the MoXi-

code [90], a real-time simulation of ink dispersion in alsot paper on a GPU.
Using a digital pencil on a touch pad, the user can see thdlowing’ into the paper

when drawing his calligraphy.

To further populate th8hould UseandMust Useclass of Lattice-Boltzmann applications,
the author believes it is time for the Lattice-Boltzmann Inoet and its researchers to be-
come involved to do ‘the real thing'. That is, particularly:

¢ Identify further areas where application of the LatticetBmann method is benefi-
cial. Focus the research on producing quantitatively aadid results within compet-
itive simulation times, achieved by performance orientaglementations.

e Leave the small pond of the community, meeting twice a yednatCMMES and
DSFD international conference, and face the challenge eggmting the results at
established CFD-conferences.

e Learn from the two generations’ experience of classical Giid port suitable
schemes such as multi-gfidnd a variety of turbulence moda&ls

e Involve Lattice-Boltzmann in projects (industrial andeasch) where results are re-
quired in a reasonable time within a production environment

Considering these statements, the author hopes his res#aite past ten years was con-
tributing to the first two points. While point three shoulddballenged by those researchers
with a focus on theoretical work, the last point is more anderi®ecoming the focal point
of the author’s work. Lattice-Boltzmann, though beautifsiinot important enough to jus-
tify theoretical research accompanied by a few illusteaaypplications. The justification
of all research in this field, in the end, is a successful appibn. That is, the solution of
real-world problems.

20ne approach towards Lattice-Boltzmann multigrid was don&olke et al. [190].
3Subgrid models for Lattice-Boltzmann are meanwhile wethklished (see e.g. [132, 191, 192, 193,
110]). This is not (yet) the case f&r— € and other two-equation models.
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Guided by the paradigm of practicality, a short descriptibpossible application strategies
of the Lattice-Boltzmann method will be presented afterva éemments related to soft-
ware development. Arguments for both, the researchersalusiry, are given to illustrate
why an application of the method is of mutual benefit.

The final two sections briefly introduce two exciting reségrmjects in which the Lattice-

Boltzmann method provides the flow solver. An applicatiothiese areas — complex-flow
medical physics and multi-scale multi-physics — is celyamfield where the method is

suitable. We are confident the future will prove that thesel&iof applications are located
somewhere between thHéhould Use’and’Must Use’class.

6.1 Software Development

In contrast to the rapid development in theoretical and ateclresearch, unfortunateso
far there is only one commercial Lattice-Gas/Boltzmann saféwaackage, PowerFLOW
by EXA Corporation (founded in 1991 by Kim Molvig). EXA hasdrevery successful
particularly in automobile aerodynamics, although the pany is active in a range of
industries, including automotive, aerospace, engingearchitectural, environmental, and
government. EXA currently has 100 employees worldwide, isidustomer list contains
Audi, BMW, DaimlerChrysler, Dodge Motorsports, Fiat, Fpkyundai, Jaguar, Nissan,
Paccar, Porsche, Renault, Toyota, Volkswagen and manysdthe

What made the EXA code so successful? It is debatable whietlias really the superior-
ity of their specific approach in Lattice-Gas/Boltzmannrvaditional CFD. Certainly, it
was EXAs clear understanding of providing the user withrape and robust method, an
easy to handle user interface which makes tedious meshimgcassary and an integrated
post-processing solution. It was the understanding of th& Eanagers that the develop-
ment of a new commercial CFD software requires sufficiergstment in manpower.

Aside from EXA, not a single company or investor was bold eytoto spend sufficient
money for a strong team of developers. There are a few exteptivhere one or two
researchers are paid by industry for carrying out specifield@ments with some good
success$,but in general the method is still an academic research teiticlittle impact on
the market.

Besides the the most popular ‘one (PhD) student one codebapp, a few promising
initiatives for sustained software development have epterg

e The ParPac-code developed at ITWM Kaiserslautern is cdupith the MAGMA-
SOFT package [195], the standard simulation and visuaisabftware for casting
processes. The code is able to capture free surface flow andesantly extended
with a Bingham-model.

4Information taken from Exa’s homepage [194].
5The author is only aware of Shell Research, the ITWM Kaisettsirn and the IT Research Division of
the NEC Laboratories Europe.
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e The OpenLB-software, established as an open-source purjder the GPL by J.Latt
(University of Geneva), V.Heuveline and M.Krause (Supamputing center, Uni-
versity of Karlsruhe). The software is implemented in C++ @ome basic flow
studies (flow past a cylinder and backward facing step) aesgnted on the project
home-page [196].

e Thelnternational Lattice-Boltzmann Software Development€totium a ‘restricted
open-source’ project initiated by the author and suppdrtethe NEC Laboratories
Europe. The focus of this consortium is to develop a higtigoerance oriented
Lattice-Boltzmann software package for advanced reseandhproduction simula-
tions. The recent MPI implementation achieved an updageafe® 7« 10° lattice site
updates per second on 128 CPUs of the NEC SX-8 vector-supprger at HLRS
Stuttgart for a medical flow problem (see Chap. 3.2).

The Deutsche Forschungsgemeinschaft (DFG) financed aésngproject called ‘Lattice-
Boltzmann Arbeitsgruppe’ with the aim to perform benchnsask Lattice-Boltzmann and
Navier-Stokes solvers.

Recently the European Commission decided to support thelamwent of the method
and its integration into a complex tool-chain in the area @dmal physics in the two
projects COAST and @neurIST (see Chap. 6.3 and 6.4), wherautinor has the pleasure
to contribute.

Software engineering and maintenance, even of large @seaproduction codes, is still
often considered as a task that students can do withoufigpaaiication and support along-
side their research work.

The author can confirm from his own experience in co-ordipthe development of two
large Lattice-Boltzmann packageBEST and since 2003, the software developed in the
framework of thdnternational Lattice-Boltzmann Software Developmemg£autium that
performing a sustained development — starting form thectsdtware design, implemen-
tation and benchmarking of prototypes to co-ordinating stemady input of various re-
searchers to a rapidly growing code —is an art on its own, kvigquires a variety of skills
and lots of experiencand time

Real progress in the area of Lattice-Boltzmann can — witlanggto the currently avail-

able advanced techniques — only be achieved, if teachingpplication of the required

software engineering skills is conducted with the sameriyias the method development
itself, preferably in a team providing knowledge transfemi senior developers to the
younger students.
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6.2 Perspectives of the Lattice Boltzmann Method for In-
dustrial Applications®

6.2.1 Application Strategies

The reduction of turn-around times in the design cycle ismapartant aspect of product
development in many different industries. New tools forogdint numerical simulation on
HPC systems therefore play an increasingly important rokaé simulation of fluid- and

aerodynamics, e.g., in the areas of automobile design amdichl engineering.

The Lattice-Boltzmann method has two outstanding featundgen compared to other
conventional CFD methods, which make it particularly sulggfor addressing these chal-
lenges:

e \ery high performance (usually more than 50 % of the peakoperdnce) and nearly
ideal scalability on high performance vector-parallel poners (see Chap. 3.1).

e \ery efficient handling of the equidistant Cartesian mesivsch are generated by
the semi-automatic discretisation of arbitrarily compggometries (conversion of
digital images, 3D CT data or CAD data, see Chap. 2.2.4).

During the first ten years of its development, the LatticéeBoann method was almost
exclusively applied for academic research purposes, bugrafisant tendency towards
industrial applications can now be observed.

In the following, we will discuss the advantages of an indakapplication of the Lattice-
Boltzmann method for the two parties potentially involvedindustry, the LB methods are
not yet widely known as a potential alternative to class€&D methods, whereas some
LB researchers apparently do not yet see the advantagesrafusirial application of their
research work.

6.2.2 Benefits of Industrial Simulations for the Lattice-Bdtzmann
Community . ..

A fact which is sometimes ignored by purely academic re$eas; is the possible im-
provement of their numerical method and software, inidaierequired by the application
in production environments. The feedback of the qualityhaf simulation results, based
on the extensive experience and/or databases compileddbgtiral engineers, is a good
indicator of the reliability of the method. Time-constr&irtoncerning the availability of
expensive hardware and tight schedules require an effigrehtobust implementation.

Driven by the demand of continuous improvement, suggestionfurther developments
can be given by the industrial engineers. This can lead tai#ul cooperation with a

5The concept behind this section was developed at the C&CaReséaboratories, NEC Europe Ltd.
(St.Augustin, Germany). It was presented at the Parall@hiidational Fluid Dynamics - ParCFD 2000
(Trondheim, Norway, 2000) and published in [197].
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mutual exchange of experience, resulting in a fast and effficdevelopment of the method
or its implementation.

Usually in industry, different numerical codes are in usemder investigation. Participa-
tion in such an evaluation program is a good opportunity fadifig out the advantages and
disadvantages of the Lattice-Boltzmann method when coedpaith other commercial
Navier-Stokes based codes.

6.2.3 ...and for the Industry

In companies where HPC platforms are already installegelacale simulations need to be
performed with software making optimal use of these expenand powerful machines.
As demonstrated in Chap. 3.1, Lattice-Boltzmann codes eamplemented almost opti-
mally for high end vector-parallel platforms.

Lattice-Boltzmann codes are typically characterised ®jatively easy integration of com-
plex boundaries. The underlying scheme for geometry diseteon allows a straight-
forward integration of arbitrary complex geometries, whan either be derived from
CAD data by special software, or by 3D CT (see Chap. 2.2.4)pMyiding a user inter-
face, it is not necessary to have a highly specialised CFRrexenerating the mesh and
running the simulation, a procedure which might easily tsdeeral weeks for complicated
geometries. The relative simplicity of conducting simigdas with the Lattice-Boltzmann
method can lead to a significant cost reduction during thestréal design process, and the
simulation results are usually available within short time

Areas where CFD normally fails, due to the impossibility @ifagent mesh generation for
complex geometries, or the complexity of the physics to beetied (e.g., simulation of
heterogeneous catalytic reactions in chemical engingeaire also potential candidates for
the Lattice-Boltzmann method. The simple marker and cedr@gch, or more advanced
schemes, in combination with 3D CT allow the discretisatbalmost every geometry and
the simulation of domains containing severaf Iitice nodes on HPC platforms.

6.3 Blood Flow Simulation in Cerebral Aneurysms:
A Lattice-Boltzmann Medical Physics Application
within the @neurIST Project’

Computer simulations play an increasingly important rol¢hie area of medical physics,
from fundamental research to patient specific treatmeminitg. A potential application

"The research work presented in this section is performeetheg with D.Wang and G.Berti at the IT
Research Division of the NEC Laboratories Europe, NEC Eeitdd. (St.Augustin, Germany) and was pre-
sented at the 4th International Intracranial Stent Meetl@p 2007 (Kyoto, Japan, 2007), the Fourth Interna-
tional Conference for Mesoscopic Methods in Engineerirdy@eience - ICMMES 2007 (Munich, Germany,
2007 - invited talk) and the Parallel Computational Fluidniaynics - ParCFD 2007 (Antalya, Turkey, 2007),
submitted for publication in [198, 199, 200]. Financial popt of the European project @neurlST (contract
no. IST-027703) is gratefully acknowledged. Public infation about the project can be found on the project
web-page [201].
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of numerical blood flow simulation is to aid decision makinggesses during treatment of
cardiovascular disease. One example of this is the treatoh@meurysms. Aneurysms are
extreme widenings of vessels which can be, if they ruptifeethreatening.

A large European project on rupture-risk assessment obcaraneurysm — @neurlST —is
funded by the European commission for a period of four yeResearchers from a variety
of fields collaborate to integrate data from medical studiessimulation tools into a large
framework, with the goal to provide clinicians with a deoisisupport tool on hand.

One particular application we address in the @neurlST freonle is the simulation of
blood flow in cerebral aneurysms in domains created from cagdinages. Our focus is
on the efficient implementation of the Lattice-Boltzmanntinoel for this type of medical
application as well as considering the correct blood rhgplo

Previous studies with medical geometries are reporteddg][2Artoli describes the tran-
sient flow reconstructed from an MRI data (further discussibthe background and liter-
ature can be found in his thesis [202, pp. 91 ff.]). Alas, tbe-Newtonian blood rheology
is not considered in this particular simulation.

Beronov [203] applied the concept developed by Artoli fonflsimulation in a cerebral

aneurysm. The simulations are performed directly on thehrfresn the MRI device, and

no reconstruction of the surface mesh or fit of the resolutiothe requirements of the
numerical tool, was accomplished. Also, rheological atpace neglected, and only a
steady inflow with a very low Reynolds number is considered.

6.3.1 Medical Background

One method of treatment of cerebral aneurysms involvestinaef a metal frame known
as a stent, to divert flow from the aneurysm. An alternativie isack the aneurysm with
wire; a procedure known as coiling. The resulting modifmabf the flow field triggers the
process of blood clotting (see Chap. 5.3) inside the aneusysd in future, the flow-field
following treatment can be predicted by computer simufatibhis may ultimately give an
insight into the success of the treatment and long-termnueig.In vivo measurements of
specific flow properties are possible, but usually not peeersough to predict for example,
wall shear stress or pressure distribution with a sufficspattial resolution. Since invasive
treatments of the brain can be problematic, a pre-surgekyagsessment for the likelihood
of rupture of the aneurysm in question is a challenging goal.

To achieve this goal, necessary steps for an accurate rcah&mulation of flow properties
within an untreated aneurysm together with preliminarybtsswill be briefly introduced
in the following.
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6.3.2 Image Segmentatich

Discretising the geometry for flow simulations from CT or MRtd is a challenging task.

Depending on the applied method, the resulting geometryaan and advanced methods
must be applied to generate suitable meshes. This may mohadhipulations of the trian-

gulated surface mesh representing the geometry (Fig. ) 1Usually, from these data, in

the case of Lattice-Boltzmann, a voxel mesh with adequatdugon is generated (Fig. 6.1
right).

Figure 6.1: Left: Tetrahedral mesh of a cerebral aneurysmar{esy of the @neurlST Project).
Right: voxel mesh of the Lattice-Boltzmann simulation.

6.3.3 Non-Newtonian Model

The literature on blood rheology gives a strong indicatiwett the non-Newtonian effects
of blood flow may not be neglected for a variety of geometrge®( e.g. [204, 205, 206]).
Particularly when estimating the rupture-risk within denad aneurysms, the precise knowl-
edge of quantities such as pressure distribution and walrsktress are expected to be
crucial.

Normally, the Casson’s model, the power law model and theg@arYasuda (C-Y) model

are used to simulate shear thinning blood flow [207]. Howeher Casson’s model is only
valid over a small range of shear rates and the determinatigield stress in the equation
is questionable, while the disadvantages of the power ladetare the high gradient and
potentially infinite viscosity. The C-Y model can overconhege shortcomings and can
therefore be considered as the most suitable. It is written a

e = Y 6.1)

8The surface mesh of the cerebral aneurysm was generatedMigrza (University of Sheffield) and
A.Radaelli (Universitat Pompeu Fabra, Barcelona). TheeVoxesh for the Lattice-Boltzmann simulation
was produced by G.Berti (NEC Laboratories Europe).

9The Carreau-Yasuda model was implemented by D.Wang, stggpby the author. Further support of
P.Lammers (HLRS) for improving the implementation is ghaltg acknowledged.
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wherepp and U, are the dynamic viscosities at zero and infinite shear ratgexively,y
is the shear rate andis a characteristic viscoelastic time of the fluid. At theical shear
rate /A the viscosity begins to decrease. The power law index pasasgandn can
be determined from experimental data. In our simulationsapg@y the following set of
parameters for a blood analogue fluid [204}:= 0.022 Pa sy = 0.0022 Pasa= 0.644,
n=0.392,A =0.110s.

6.3.4 Flow Simulation

The MRI patient data were segmented and post-processed oangular mesh (see
Fig. 6.1 left). From these data, a Lattice-Boltzmann voxekm(see Fig. 6.1 right) of
sizelxxlyx1z= 160« 120« 100 was generated, which is of sufficient resolution to obtai
mesh-converged simulation. The computational domainasositl.58 million fluid nodes.

10,000 iterations were performed to reach a convergedtreshich required 88s CPU-
time on one CPU of CCRLE’s NEC SX-8 vector-computer. Thigggiealent to an update
rate of 39 MLUP/s.

Flow Parameters

For a preliminary simulation, flow at a low Reynolds numbeRef= 20 was considered,
and a direct comparison of Newtonian and non-Newtonian fl@as performed. In order
to investigate the influence of the Reynolds number on theNwmtonian effect, a second
simulation comparing the wall shear stress for two diffefReynolds number&e= 1 and
Re= 120 was performed.

The parameters of the C-Y model were chosen to allow the nemtdhian blood rheology
to be captured. Since a definition of Reynolds number is difffor non-Newtonian flow, it
was ensured that the total pressure loss was equivalerdttoftthe Newtonian simulation
for the same average cross-section velocity.

At the inlet, a constant flow velocity was applied and the gues at the outlet was kept
constant. Bounce-back wall boundaries were applied iiaguh zero flow velocity at the
wall.

6.3.5 Simulation Results

The streamlines in Fig. 6.2 reveal a complex flow patterniwithe aneurysm. It can also
be seen that only a small portion of the flow enters the aneuryghile the majority of
trajectories directly follow the main branch (this is duethe specific geometry and the
very low Reynolds number dRe= 20). The vortex-like structure inside the aneurysm
triggered by the main flow in the artery can be clearly idegxifi

As can be seen by direct comparison of Newtonian and non-dieart simulation results in

Fig. 6.3, the shear stress distribution plotted at a cupiage inside the aneurysm differs
significantly: the non-Newtonian simulation produces @darregion with higher shear
rates inside the aneurysm.



110 Discussion, Vision and Outlook

Figure 6.3: Shear stress distribution at an x-z cutting elamside the cerebral aneurysm.
Left: Newtonian, right: non-Newtonian.

For both models, Fig. 6.4 compares the peak of the wall shiegsssdistribution near the
neck of the aneurysm. It can be observed that the maximune valunderestimated, if
non-Newtonian effects are not taken into account.

Similar to the previous study &e= 20, also for the even lower Reynolds numBa= 1
the wall shear stress at the neck of the aneurysm is muchrhigten the non-Newtonian
model is applied (see Fig. 6.5).

These preliminary results indicate that non-Newtoniaectf might have a significant con-
tribution for low-Reynolds number flow through cerebral arysm.

In a next step, the comparison between the Newtonian and\lesrienian model was
performed for higher Reynolds numbers. From Egn. 6.1 canobeladed, that for the
higher shear rates present at higher Reynolds numbers,igbesity u approaches the
upper limit of L. In this case, the difference between a Newtonian and a rewtdwian
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Figure 6.4: Wall shear stress distribution near the neck of
the aneurysm (darker colours indicate higher shear stress)
Left: Newtonian, right: non-Newtonian.

simulation will vanish. This assumption is confirmed by thewdation results (see Fig. 6.6)
when increasing the Reynolds number to a valuRe# 120.

Figure 6.5: Wall shear stress distributionRe= 1 (darker colours indicate higher shear stress).
Left: Newtonian, right: nhon-Newtonian.

Since Reynolds numbers in intra-cranial arteries can begiisdsRe= 600— 700 [208],
the above results indicate that within the cardiac cycle ftegimes are reached where
the non-Newtonian effect vanishes. Currently, it is an ope@stion whether or not non-
Newtonian effects have to be taken into account for the bftowd simulation within cere-
bral aneurysms.

A critical indicator for the growth process and rupture rifka cerebral aneurysm is the
oscillatory wall shear stress [209]. Within this ongoingdst we will analyse to which ex-
tent the differences of the wall shear stress observed &r|B®ynolds numbers contribute
to the oscillatory wall shear stress within a full cardiacley This will help to answer
the question if non-Newtonian models are required for blfboa simulations in cerebral
aneurysm.
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Figure 6.6: Wall shear stress distribution Be = 120 (darker colours indicate higher
shear stress, a different colour scale compared to the aboweges was used).
Left: Newtonian, right: non-Newtonian.

6.4 Multi-Scale Multi-Science Simulation:
A Lattice-Boltzmann Medical Physics Application
within the COAST Project*°

Much smaller than the Integrated Project (IP) @neurlST ésltiiormation Society Tech-
nologies (IST) project COAST. Five groups with expertisth@mareas of Cellular-Automata,
Lattice-Boltzmann, High-Performance-Computing and roaldphysics combine forces to
develop a new framework for multi-scale, multi-sciencewdations. The COAST applica-
tion is the modelling of a specific complication which may wcduring the treatment of
coronary artery diseases, the so called in-stent re-gtenos

The use of a stent together with balloon angioplasty is a commethod of re-opening a
stenosed vessel lumen and modelling can be used to predipb#t-treatment blood flow
field. However, the stent material can induce blood clotéing lead to in-stent re-stenosis,
which is an unwanted post-treatment narrowing of the végs®dn. Specially coated stents
can help prevent this effect. In terms of CFD, this is a comyfllew, multi-physics problem
with chemical/biological processes on a variety of time kemgjth-scales.

A complex scheme in terms of a scalable hierarchical ag¢joegaf Cellular-Automata
and agent-based models with appropriate couplings hasitagdemented to address this
problem. Simply said, the idea behind this approach is nebtee all scales of the prob-
lem (reaching from milliseconds to months and micrometenniéters) within one piece
of software, but to identify time and space disjoint ensitrehich can be addressed by spe-
cific implementations. These entities then have to be caoufgeinformation exchange
in a suitable way. A selection of multi-scale Lattice-Batt@nn simulations are described
in [188].

10The research work presented in this section is performeetheg with D.Wang at the IT Research Di-
vision of the NEC Laboratories Europe, NEC Europe Ltd. (8géstin, Germany). Financial support of the
European project COAST (contract no. 033664) is gratefatiynowledged. Public information about the
project can be found on the project web-page [210].
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This ambitious project took off in September 2006 with th&rdgon of a scale-map (see
Fig. 6.7) to identify the disjoint time and space scales bifedévant processes involved in
in-stent re-stenosis.
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Figure 6.7: Scale-map for in-stent re-stenosis, imagentioen [189].

The sparse Lattice-Boltzmann flow solver developed witlie International Lattice-
Boltzmann Software Development Consortiith be applied to solve the bulk-flow. The
challenge in the framework of this project is two-fold: fiygstkknown methods for local
mesh refinement and higher order boundary conditions halse tmplemented in a high
performance production code. Secondly, the coupling testivare addressing the time
and length-scale of species transport to the endothelitin ftst layer of cells of the
artery wall which is in contact with the fluid), most likely ampicle-based method taking
explicitly into account the shape and movement of individed blood cells, has to be
achieved.

6.5 Concluding Remarks

This thesis is a retrospective view on ten years of researthei areas of fluid dynamics,
chemical engineering and medical physics. The researctiqunébehind this work, high-
lighting the Lattice-Boltzmann method as a powerful tooatldress complex-flow multi-
physics problems, was answered by a selection of mostlytijaively validated studies.
These studies spawned from classical CFD problems via addamodelling of adsorp-
tion until very recent applications of blood-flow and clogjisimulations, which required
the development of several new extensions to the standavddtver.

6.5.1 IfIdidit Today ...

Although all these results are still valid today, the nummarimethod which was used to
produce them experienced a considerable developmentginithe past ten years, thanks
to the very active Lattice-Boltzmann community.
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Several simulations presented in this thesis, performéuwhat was at their time a state of
the art implementation, can nowadays be accomplished inra afficient or more elegant

way. It is beyond the scope of this thesis to reproduce altekalts presented in Chap. 4
and 5 with the latest version of our cotfe.Instead, it shall be briefly sketched which
methods can and should be applied, if these simulations pegfermed today.

Channel Flow in Increasingly Complex Geometry (Chap. 4.1)

This study, using a geometry made up of an increasing nunflsgjuare boxes with a long
inlet and outlet region, could significantly benefit fromabmesh refinement, providing a
finer resolution around the square shape obstacles and seaasolution in the inlet and
outlet region. Also a sparse implementation (see Chapl)3wlould help to safe memory
which was allocated also for the occupied lattice nodes.

Decay of Turbulence (Chap. 4.2)

In this study, the time evolution of a vortex and the decayrofsatropic field of turbu-
lence was investigated. A problem here was the initialisatf the density distribution
function from the given velocity field. In our approach, wdialised with an equilibrium
distribution function and let the system develop for a fesvations before taking the first
measurement as referencd at 0. This does not lead to wrong results, but to accomplish
a start from exactly the given velocity field, it would be atbetdea to follow a suggestion
from Luo [211] and keep the velocity fixed while letting thesssm develop for a short
time.

Plain Channel Flow around a Square Cylinder (Chap. 4.3)

The transient flow around a square obstacle mounted in a ehaas investigated in this
section. As in the above example from Chap. 4, local meshemi@mt and a sparse imple-
mentation would help to significantly improve the perform@aand save computer memory.
Since the process of vortex shedding is critically influehlog the details of the develop-
ment of the vortices on the surface of the square obstacdia, meesh refinement is expected
to be particularly beneficial, because it allows a very firmhation of this region, while
keeping the overall number of grid points small. A sufficigratccurate capturing of the
vortex shedding process has influence on the accuracy ofumeghgquantities as Strouhal
number as well as lift and drag. Discrepancies between thigeFVolume and Lattice-
Boltzmann results concerning lift and drag at higher Regsolumbers can be explained
by an insufficient resolution of the equidistant LatticekBmann mesh around the square
obstacle, which could be cured by applying local mesh refergm

1Which would not change the results, but only help to prodbheetwith less computational effort.
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Numerical Analysis of the Pressure Drop in Porous Media Flow(Chap. 4.4)

Porous media flow is one of the domains where the LatticezBwhn method is partic-
ularly advantageous. The problem that the wall positiontiier BGK scheme in combi-
nation with standard bounce-back wall boundary conditgaritically dependent on the
relaxation parameter was discussed in Chap. 2.2.3. Fudheapproximation of curved
surfaces by the voxel mesh might lead to additional errors.

In the porous media flow studies presented in Chap. 4.4 wettiavoid these problems by
first measuring the accuracy of approximating a circulapshaith square obstacles and
then calibrating the correct relaxation parameter, whiebk #ept fixed throughout the sim-
ulations. Although a tedious procedure requiring a higloltggon for the curved objects

and giving away the option of freely adjusting the viscosity the relaxation parameter,
correct results could be produced with the applied LatBodzmann scheme.

Recent (not yet published) studies investigating the flomubh porous structures for
Diesel particle filters? proved the advantage of the new TRT and MRT schemes (instead
of BGK), which keep the position of the solid-fluid interfafieed over a wide range of
relaxation parameters.

The additional use of improved wall boundary conditionstfa study on spherical obsta-
cles could further help to reduce the required resolutiantigularly in combination with
local mesh refinement.

Similar to the previous studies containing a certain amodisolid fraction, a sparse im-
plementation would help to save memory.

Nonlinear Adsorption / Desorption (Chap. 5.2)

In this chapter an approach for nonlinear adsorption andrgégen modelling was pre-
sented. Although the model was relatively simple and sttéogward to implement, results
in good agreement with the theory could be achieved.

A major drawback, aside from a missing local mesh refinemenéduce the number of
grid points in the inlet and outlet regions, was the specifiy @iffusion was modelled as
a passive scalar. More advanced models are available tsdaye(g. [212, 213]) which
avoid stability problems and allow to reach lower diffusmonstants.

Concurrent Numerical Simulation of Flow and Clotting (Chap. 5.3)

In this chapter, a model to simulate milk clotting based oasadence time approach was
applied. This very first numerical approach to the much moreplex process of blood
clotting'® allowed to produce results which were in good qualitativeeament with the
experiments. Although a highly performance optimised sparattice-Boltzmann code
was used, simulating a few seconds of the clotting procegsned days on a NEC SX-8

?These studies were carried out by the author in the framewfoakjoint research with a Japanese auto-
motive company, a presentation at the JSAE conference ipdliskplanned for December 2007.

13The further progress towards modelling of blood clottind &g application to simulate thrombosis are
not presented in this thesis, related publications to wttiehauthor contributed are [15, 173, 174].
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vector computer. A significant drawback was again the lichggbility of the diffusion
model, which resulted in a far too high lower limit of the di$ion constant. As in the
previous example, more advanced diffusion models could toeimprove the situation.

The transient flow through an idealised stenosis (Chap4bpgssibly suffered from the
insufficient approximation of the geometry by the voxel megipplying improved wall
boundary conditions for a better representation of theitnear boundary might have an
influence on the flow patterns particularly in the vicinitytbe stenosis, where the flow
structures seem to be aligned with the mesh.

6.5.2 Things Ididnotdo...

Many fields of the current research within the very activeticatBoltzmann community
have not been mentioned in this thesis: multi-phase flow,[215, 216, 217, 218, 219,
220, 221, 222], fluid-structure interaction [223, 224], tmde transport [225, 226, 227,
228, 229, 230, 231, 232, 233] and shallow water and free cidanulation [234, 235],

just to mention the most prominent. Also this work was regtd to implementations of the
BGK relaxation operator, standard bounce-back wall bopndanditions, omitting local

mesh refinement and turbulence modelling [132, 191, 236, PX).

A detailed analysis of all possible extensions and impramis of these basic models
would justify a thesis on its own, this restriction theref@eemed necessary to keep the
scope of this work within reasonable limits. By partialljaing to research results pub-
lished years ago, when these models were emerging, this firesides a very conservative
estimation of the applicability of the Lattice-Boltzmanrmthod. Particularly with parallel
sparse-matrix HPC implementations providing the MRT rateon scheme in combina-
tion with improved wall boundary conditions and local mesfirement, a new class of
problems could be addressed.

Although a state-of-the-art Lattice-Boltzmann flow solgbaould offer a few of the above
mentioned new functionalities, the majority of the curhgnised implementations are
based on a simple bounce-back BGK scheme. The results peds@nthis work have
relevance also for the planning of future studies, sincg thearly demonstrate the power
and some limitations of this basic, but very efficient apploaWhile the BGK scheme
can, and should, be replaced by the more advanced TRT or MBXat@n operators [31],
or in the future even with the new cascaded model [238], cediéssimple bounce-back
wall boundary conditions not offering local mesh refinemeiik persist in the future, at
least for multi-physics modelling.

As a final conclusion, the author would like to express hisigrde for the opportunity to
contribute to two exciting research projects aiming forrapriovement of human health —
a very satisfying experience for a researcher active atdhadboline of Fluid Dynamics and
Computer Science.
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Samenvatting

Dit proefschrift bevat in retrospect tien jaar onderzoekhep gebied van de vioeistofdy-
namica, chemische techniek en medische fysica. Door edr gesscheidenscheid aan
voorbeelden uit het onderzoek van de auteur te besprekgeyaerd binnen verschillende
samenwerkingsverbanden, wordt de nadruk in dit proeféaglegd op: ten eerste, een
bijdrage aan het onderzoek in de vloeistofmechanica en-fiyalta modellen, waarbij de
Rooster Boltzmannmethode werd gebruikt als een krachtigegischap voor het uitvoeren
van numerieke simulaties; en ten tweede, een demonsteatibet gebruik van de rooster
Boltzmannmethode als een competatieve vioeistofsinamtegthode, zowel in termen van
rekenprestaties als in termen van gebruik in realististioensngsproblemen.

Voor die toepassingen waar de traditionele CFD (Naviek&tp aanpak problemen on-
dervindt ten gevolge van complexe of variérende randetgerofevolgde van de noodzaak
om de simulaties uit te breiden voor multi-fysica problemearden de voordelen van de
rooster Boltzmannmethode aangetoond.

De keuze van de methode en de details van de implementatéeewén dit onderzoek
bepaald door de specifieke toepassing. Bepaalde eigemsshap hardware specifieke
optimalisaties werden slechts dan geimplementeerd veardeze nodig waren om een
probleem op te lossen, en niet omdat ze mogelijk waren.

De rooster Boltzmannmethode wordt in hoofdstuk twee gediiceerd, inclusief een korte

historie van de ontwikkeling van de methode en, om diddeéisedenen, een uitleg van de
roostergas benadering. De stap van roostergas naar r8adtamann en de afleiding van

de rooster Boltzmann-methode uit de Boltzmann vergeljkiaéindigen dit hoofdstuk. De

intentie van dit tweede hoofstuk is om lezers \artende CFD - en rooster Boltzmann

gemeenschap een begrip van de methode te geven.

In hoofdstuk drie worden de basisconcepten voor een effieiénplementatie van de
rooster Boltzmannmethode besproken. De noodzaak om geesme algoritmen en
datastructuren te gebruiken, teneinde de benodigde regstafpies te halen om realistische
problemen aan te kunnen pakken, wordt geillustreerd daogedetailleerde prestatieanal-
yse, waarin een volle-matrix en een ijle-matrix roostertBolann code worden vergeleken.
Het punt van MPI parrallelisatie wordt kort besproken, en ie¢roductie in de specifieke
aanpak voor de visualisatie van HPC simulaties beéindigubofdstuk.

Hoofdstuk vier bevat gedetailleerde quantitatieve ssdaar de vloeistofstroming in com-
plexe geometrieén. Na een initieéle validatie van de ouhdoor een vergelijking met
analytische oplossingen en andere numerieke resultatémtiprobleem van drukverlies
in complexe geometrieén geanaliseerd. Gedetailleendelaiies van stroming in poreuze
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media hebben aangetoond dat turtuositeit wordt oversolig gebruikelijke capilaire the-
orieén, en de vervorming van vloeistofelementen is gdifieeerd als een tweede bron van
dissipatie, die in deze capillaire theorieén meestal weedvaarloosd.

Naast een bijdrage aan het onderzoek in de vloeistofmezharas het de intentie van dit
hoofdstuk om de rooster Boltzmannmethode te promoten alsféeiente en competatieve
methode voor simulaties van complexe stromingen.

In hoofdstuk vijf worden uitbreidingen aan de stromingsiator besproken, bedoeld voor
het modeleren van multi-fysica fenomenen. Door relatieveadige uitbreidingen van de
lokale regels (gebruikmakend van de cellulaire automaattstur van de rooster Boltz-
mannmethode) wordt aangetoond dat verrassend complexéusen kunnen ontstaan op
de macroschaal. Dit hoofdstuk illustreert de kracht varodster Boltzmannmethode voor
simulaties van complexe stromingen en multi-fysica tosjpgen, via qualitatieve en quan-
titatieve simulaties van verschillende onderzoeksveldeals heterogene catalitische reac-
ties, adsorptie en melk - en bloedstolling.

Het laatste hoofdstuk zes bevat een samenvatting van deerdstzmmann software on-
twikkeling en geeft een aantal argumenten voor industriereferzoekers om realistische
problemen met de rooster Boltzmannmethode aan te pakkenkdtge omschrijving van
het huidige onderzoek van de auteur binnen een tweetal Esegurojecten op het gebied
van medische fysica besluit dit proefschrift.
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