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Chapter 1

Interactive exploration

environments

“Computers are useless. They can only give you answers.”

Pablo Picasso (1881-1973).

1.1 Introduction

The increase in availability of computational resources, both storage capacity and
processing speed, have allowed researchers in industrial and scientific areas to inves-
tigate increasingly large and complex time dependent problems. As a result, the data
sets that are generated by these applications grow larger and more complex. Fur-
thermore, many of the industrial and scientific applications are typically simulations
of complex systems. In general these problems are intractable and NP complete so
that the only available option to obtain insight in these problems is through explicit
simulation. As in this class of problems the parameter space is typically extremely
large, it is not feasible to simulate every point in the parameter space. Optimization
algorithms that perform a guided search through the problem’s parameter space have
been used to avoid this [221], still, as these parameter spaces grow larger, the time
that is required to find a satisfactory solution is unacceptable.
In many cases, the automated analysis of these data spaces is difficult, either because
no techniques are available to extract the features of interest or otherwise simply be-
cause it is unknown what information is present in the data beforehand. Interactive
exploration may be one of the few options to analyse this data in order to obtain fur-
ther insight in these data spaces.

1.2 Interactive exploration

Often, the only alternative to obtain insight in large, complex data sets in cases where
the automatic analysis of data spaces is impossible is through human inspection.
Here, a human being takes on the role of analyst who uses his knowledge to analyse
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the data. Unfortunately, the increase in computing capacity is not paralleled by an
equivalent increase in human capacity. Hardly ever will the analyst resolve to inspec-
tion methods where he scrutinizes piles of numbers in search of important clues since
this is cumbersome, prone to subjective errors and not in the least, mind numbing.
Instead, the data is converted into a representation that allows the analyst to “ex-
plore” the data and perceive patterns that will help him find structure. If performed
correctly, the analyst’s senses, cognitive abilities and experience together will help
him in forming a mental picture that leads to a better understanding of the data. The
primary goal of exploration therefore is to increase the bandwidth to the brain.
The challenges in creating an environment that is suitable for this type of exploration
are many. First, the environment should be able to represent data in a correct, clear
and informative manner. The conversion of data into another representation leads
to the risk of introducing patterns in data that really are not there, so care must be
taken in which methods are used. Indeed, it is often a good idea to provide multiple
methods so that the user has the ability to interactively choose between different
representations of the same data. Second; the conversion of data into another rep-
resentation inevitably takes time. The amount of time should be minimized in order
to obtain an environment that is responsive to user interaction. Third; exploration
environments will only be effective if the explorer does not feel restricted by the en-
vironment during his work. The user should be allowed to interact with the different
aspects of his experiment in an intuitive manner. In addition, the environment should
provide clear and rapid feedback in response to user interaction.

Unfortunately, we will see that these different problems are hard to solve all at once.
As each design choice has its implications on the performance of another we will
see that compromises are often necessary. In this work we distinguish two types of
environments; static and dynamic exploration environments.

1.2.1 Static environments

In Interactive Static Exploration Environments (ISEE), the data presented to the
user is time invariant. The data that is to be explored is generated by an external
process, such as a computer simulation or a data acquisition device. Once the data
is loaded into the environment, the user is presented with a representation of this
data and provided with interaction methods to change the representation parameters
interactively to obtain the best “view” required to gain more understanding. Each
change of a parameter results in an update of the presentation. The data itself, how-
ever, does not change (see Figure 1.1).
Example areas where ISEEs are applied are plentiful. They can be found in medicine
for the visualization of data obtained from medical scanners such as Computed To-
mography (CT) and Magnetic Resonance Imaging (MRI) [41, 166, 274]. Here a radi-
ologist decides on the proper settings of a visualization environment for the visual-
ization of a medical scan that aids a surgeon in assessing a diagnosis for a particular
patient. In molecular biology, visual exploration environments are used to obtain a
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Figure 1.1: Schematic representation of an Interactive Static Exploration Environ-

ment (ISEE).

better understanding of the spatial structure of complex molecules [5, 92, 144]. In
architecture, these environments can help in assessing the aesthetics of a building
before it is built [150].

Data presentation and interaction

An important step towards a successful ISEE is to involve the researcher into the
presentation as much as possible, thereby increasing the researcher’s level of aware-
ness [29]. To achieve this, an exploration system needs the following, mostly interde-
pendent capabilities:

• Informative presentation – The most commonly used method to provide an in-
sightful representation of complex data sets is by visualization. Here the ab-
stract data are rendered as visual constructs that represent quantitative and re-
lational aspects to the observer in an intuitive manner. This is the area of scien-
tific visualization [27,157,170,209] and information visualization [39,222,238].
Many visualization environments are available that provide means to efficiently
achieve this [103, 106, 172, 242]. Although visualization is a very powerful and
well understood method for data representation, other sensory modalities such
as sound, touch and even smell, or combinations of different modalities may in
some cases lead to better results.

• Persistence – The time that is needed to generate a rendering from start to finish
can often not be easily dismissed. In the case of visual renderings, persistence
(the rate at which consecutive frames are perceived as continuous motion) is
obtained when at least 25 frames are rendered per second. Sound waves are
perceived as tones from around 20 cycles per second and up. Humans can feel
temporal frequencies starting from around 1 kHz and therefore rendering rates
for haptic displays must be in the order of kilohertz. Update time is often depen-
dent on the “level of detail” (LOD) in the presentation. In these cases a balance
between the LOD in a presentation and the maximum allowed update time is
necessary (the aim should be to employ “minimal means for maximum effect”).

• Intuitive interaction – A prerequisite for effective exploration is that a suffi-
ciently rich set of interaction methods is provided that allows a user to modify
the parameters that control the presentation in order to be able to extract both
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qualitative and quantitative information from the underlying data sets. An un-
fortunate side effect of increasingly richer sets of interactive methods is that
user-friendliness is often compromised, so careful consideration is required dur-
ing user-interface design. The ground rule for interaction capabilities is that in-
teraction should be as intuitive as possible: intuitive interaction methods should
require no explanation [171,204].

• Rapid response – Some delay will always occur between the moment a user
interacts with a presentation and the moment that the results are visible. This
could be caused by many factors, including low tracking rates of input devices,
communication delays and temporary reduced availability of computational or
network resources. To attain accurate control over the environment and to avoid
confusion with the user, the amount of lag should be minimized. In general, real-
time interaction encourages exploration [29].

Provided these capabilities are carefully considered, these environments are well
suited for the exploration of static multi dimensional data sets [13]. The design issues
in the construction of an ISEE will be described in more detail in Chapter 2.

1.2.2 Dynamic environments

Interactive Dynamic Exploration Environments (IDEE) extend the previously de-
scribed static model in that the information provided to the user is regenerated pe-
riodically. Again, the data originates from an external process which in this case is
an active member of the exploration environment. The external process repeatedly
generates new data, either autonomously (without user intervention), on-demand (as
a result of user intervention) or both. In addition to the capabilities described for
the static environment, the dynamic environment is expected to provide (1) a reliable
and consistent representation of the results of the external process at that moment
and (2) interaction mechanisms that enable the user to change parameters of the ex-
ternal process and of the presentation. Again, each change of a parameter in the
external process or the presentation results in an update of the environment. New
data generated by the external process results in an update of the presentation (see
Figure 1.2).
While interaction in an ISEE influences the presentation only, in dynamic environ-
ments interaction influences both the presentation and the external process. On an
implementational level this requires additional processing code to service interaction.
On an operational level this change may influence the prerequisites described in this
and the previous subsection. These design issues will be described in more detail in
Chapter 5.
Interactive systems such as the ones described here allow for live experimentation
by a researcher. These systems are called by many names; computational steering
environments (CSE) [178, 245], user-steered calculation [100], problem solving envi-
ronments (PSE) [84], human-in-the-loop (HITL) [235] computing, virtual laborato-
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Figure 1.2: Schematic representation of an Interactive Dynamic Exploration Environ-

ment (IDEE).

ries [3] and even man-computer symbiosis [147]. In this thesis we will keep referring
to “interactive exploration systems”.

1.3 Scientific visualization

The key method to present data for the purpose of exploration in use today is visu-
alization. The main reason for this is that the human visual system is thought to
be the most important of the human senses; it has high bandwidth and allows natu-
ral communication as the human visual sensory system is capable of understanding
complex shaped image renderings with relative ease. When visualization is applied
to the representation of scientific data we speak of scientific visualization. A report of
the National Science Foundation (NSF) in 1987 described scientific visualization as
“the integration of computer graphics, image processing and vision, computer-aided
design, signal processing, and user interface studies” [157]. As such, scientific visu-
alization would not only entail the visual representation of scientific data but also
image synthesis using computer graphics techniques, data analysis, engineering and
human perception. This definition is too broad for our purposes. Here we will limit
ourselves to a narrower interpretation in a scientific computing context, viz. the gen-
eration of visual representations from the results of scientific applications.

The basic objective of scientific visualization is to create a mapping of data structures
to geometric primitives that can be rendered using computer graphics techniques (of-
ten points, lines, triangles, squares or polygons). Although this basic principle is
easy enough, the real challenge in scientific visualization is to create a mapping that
creates a representation that is understandable, correct and complete. Scientific vi-
sualization is applied in many different research and industrial areas. Often these
applications involve the visualization of processes that are difficult to observe directly
by the human visual and/or cognitive system. Phenomena of interest to the scientific
and industrial community often include topics that can not, or not easily be studied
directly because they are too small (molecules, atoms, etc.), too big (planetary sys-
tems, galaxies, etc.), too dangerous (nuclear explosions, combat situations), too slow
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(colliding galaxies, stock rates), too quick (quantum processes), too concealed (organs
in the human body), etc. Instead, methods are used to acquire and record data from
the event of interest, the results of which are then visualized. In all cases it is im-
portant to realize that the visualization of these applications provide a representation

of the underlying real world phenomena. This should always be kept in mind while
interpreting the visualization as it could lead to misinterpretation.

1.3.1 Display techniques

In its earliest form, the visualization of scientific data was performed on systems
that produced 2D vector representations. With the introduction of powerful raster
displays and new algorithms, more complex graphics techniques came into reach of
the scientist which included the calculation of 2D projected rasterizations of 3D scenes
[79] and of lighting models such as smooth shading of polygonal surfaces [89, 183].
The dramatic increase in performance of graphics hardware over the last years allows
these methods to be used for the rendering of complex 3D scenes in real-time. Thanks
to the personal computer (PC) gaming industry, the cost of this graphics hardware
has dropped dramatically as well, allowing scientists to create advanced scientific
visualizations on cheap and commonly available hardware.

Scene Display

pixel processing

Clipping Scan conversionTransformation

geometry processing

Figure 1.3: Simplified representation of a rendering pipeline.

A useful way to describe the method to create raster scanned images from 3D scenes is
through a rendering pipeline [79]. A simplified form of a rendering pipeline is shown
in Figure 1.3. The rendering pipeline is split into two parts: the geometry process-

ing and the pixel processing phase. In the geometry processing phase, each primitive
in the scene is traversed and transformed (translated, scaled, rotated) from model
coordinates to world coordinates using a linear transformation matrix. Next, a view-
ing transformation is applied based on the location of the viewer and all primitives
outside the view frustum are clipped. In the pixel processing phase, the clipped prim-
itives are scanned into screen pixels (including lighting, shading, depth calculation
and texture mapping). Finally, the resulting image is stored and composited (includ-
ing alpha-blending and depth-buffering) and converted to an analog video signal by a
digital-to-analog converter (DAC) for display on a monitor or projector.
Later and still ongoing research has resulted in ways to increase the performance
of the graphics pipeline through multiprocessing and dedicated hardware techniques
[4]. A major player in the success of computer generated 3D graphics in this respect
was Silicon Graphics, Inc. (SGI), founded by Jim Clark in 1982 after having spent
four years at Stanford University with the expressed purpose of developing hardware
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technology that was called a “geometry engine”. The geometry engine contained func-
tionality that was able to almost instantaneously perform the complex geometrical
mathematics required for 3D graphics that would otherwise have required thousands
of lines of program code. It was not until 1985 that SGI put its first workstation on
the market, but from that time on they continued to market systems with a graphical
performance that was unsurpassed by other companies for many years to come. SGI’s
encounter with the Hollywood film industry in the early 1990s resulted in a huge ex-
posure of Computer Generated Imagery (CGI), amongst which were blockbusters like
Terminator II (1991), Jurassic Park (1993) and Toy Story (1995).

1.3.2 The visualization pipeline

The accepted approach to visualize data structures is through an extension of the
graphics pipeline described in section 1.3.1. This “visualization pipeline” is, as the
name suggests, a first-in-first-out (FIFO) structure where each stage accepts data at
its input as soon as it is presented, transforms the data and provides its output to the
next stage (see Figure 1.4). The “source” at the start of the pipeline reads or generates
the data that is to be visualized. This data is transformed by one or more “filters” into
a representation that is suitable for graphical rendering. A “mapper” transforms this
representation into geometric primitives that can be drawn by the rendering engine.
Finally, at the end of the pipeline the renderer takes the geometric primitives for
transformation into pixelated images.

data flow direction
update flow direction

RendererFilter(s)

graphics model

Source Mapper

visualization model

Figure 1.4: Simplified representation of a visualization pipeline.

Although some stages may be able to come up with reasonable defaults to perform
their function, most stages in a visualization pipeline have to be configured in order
to produce the results the user is looking for. To do so, each stage is configured using a
set of parameters. A modification of parameters in a stage requires that at least this
stage and all stages “downstream” are updated. To achieve this, the visualization
environment checks the pipeline in the direction opposite to the data flow direction
and instructs the first modified stage that it encounters to update itself. Once the
modified stage is updated it produces new data, thus forcing subsequent stages to
execute as well. In doing so, only part of the pipeline needs to execute which reduces
computational overhead while maintaining consistency.
One example of a visualization environment that uses the pipeline architecture de-
scribed here is the Visualization Toolkit (Vtk) [106,209]. Vtk is an open source, freely
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available collection of classes with contributions by a lively user group from all over
the world. The types of functions in Vtk can be classified into graphics, image pro-
cessing and visualization. The Vtk visualization pipeline is similar to that shown in
1.4 and will be described in more detail in section 4.2.

1.3.3 Interactive Scientific Visualization

The performance increase in computing and graphics hardware allow the long-term
wish of many scientists to closely interact with their models. The NSF Scientific Vi-
sualization report envisioned a situation where large scale computations would be
carried out on high performance computers while rendering and interaction would
take place on a visualization workstation. The two would be connected by high-speed
networks to cope with the high volumes of data that would have to be transfered. It
would allow a researcher to connect to a running application, inspect its data struc-
tures and change values in order to understand its behaviour. This prospect would
support a scenario that was considered not only possible but essential in the scientific
discovery process.

With the increase in performance of computers, the possibility for researchers to per-
form larger and more complex simulations increases as well and, as a result, the
demands posed on visualization workstations. To enable interactive exploration, the
workstations would have to be able to do interactive rendering. At the same time,
the complexity of the simulation models requires advanced visualization methods in
order to represent the models and the simulation results in a comprehensive manner.
This added functionality will reflect itself in additional complexity regarding the use
of these environments, so improved user interfaces would be required to permit the
operator to interact with the applications.

1.4 Virtual Reality

As noted in the previous sections, one way to support the scientific discovery process
is by allowing the researcher to actively explore the processes that take place in his
models. By increasing his involvement, the researcher would be able to gain a better
understanding of the underlying models. A way to achieve this is to represent the data
or processes in such a way that they can be “experienced” using the human senses.
In general, as more of the human senses are stimulated by the events that take place
around them, the more involved they get with the experience. The promise made by
advocates of Virtual Reality is that computer technology facilitates the construction
of devices that provide sensory stimuli to as many of our senses as possible in order
to create the ultimate reality experience.
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1.4.1 Historical background

There is no exact definition of what Virtual Reality (VR) precisely is. This is in part
because of its historical association with a colourful diversity of social cultures, vary-
ing from game developers [141], arts movements [110], lyricists [11], visionaries that
saw VR as the alternative drug [143] and other popularity writers [203]. Advocates
have for some time even been reluctant to associate themselves with the term and
have used alternatives such as “Artificial Reality” [137], “Cyberspace” [87] and later
the most commonly used “Virtual Worlds” and “Virtual Environments”. In this thesis
we will use the name Virtual Reality (VR) for systems that are capable of generating
interactive artificial worlds. We will use the term Virtual Environment (VE) for the
environments created by VR devices.
Man has always looked for ways to escape reality and engage into other, more fantas-
tic experiences. Some feel the origins of VR go way back to the time when primitive
man painted pictures on the walls of caves [195]. Since the beginning of the written
word, book and story-writers have recorded the figment of their imagination for the
enjoyment by others. Playwrights left less to the imagination of their audience by en-
acting stories on stage with the sole purpose to provoke strong emotional responses.
With the invention of the moving picture and television, cinematographers and televi-
sion program makers captured the imagination of millions. Their stories became even
more realistic over the years with the introduction of new technology that made the
experience more compelling and breathtaking, such as the introduction of (surround)
sound, larger screens, special effects and stereo projection techniques. However, when
we compare them to the real world, all these alternative worlds have two major short-
comings before we may truly call them “reality experiences”. First; we experience the
world around us through our senses - our eyes, ears, nose, skin and tongue - yet,
just a few of these are used to persuade us into believing we are “elsewhere”. Sec-
ond; few of them allow the viewer to influence the sequence of events that have been
preprogrammed by the storytellers. They are all, essentially, non-interactive.

Virtual Reality pioneers

In 1956 Morton Heilig, a Hollywood based cinematographer, proposed that the next
evolutionary phase after the cinema theatre would be an environment where the
viewer experiences not only images and sounds but also odors and touch. Heilig be-
lieved that by doing so the barrier between the viewer and the theatre would dissolve,
creating a total illusion which he called the “experience theatre”. Heilig’s work led to
“Sensorama”, a device he designed and patented in 1962 (see Figure 1.5). Sensorama
was the first multisensory arcade game where the viewer would sit on a type of motor-
cycle. As the “passenger” was looking at three dimensional images of the Californian
sand dunes through a binocular display, the motorcycle handhelds would tremble in
sync with the images while breezes and odors were released from small grilles around
the nose and ears. Although Sensorama was called a “game”, the experience was pre-
recorded and played back for the user; the experience could not be controlled by the
viewer and was therefore not interactive. Sensorama was no cash success but Heilig’s
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Figure 1.5: Morton Heilig’s “Senso-

rama” (1962).

Figure 1.6: Ivan Sutherland’s “Sword of

Damocles” (1968).

use of multisensory stimulation testified of great vision nevertheless.

In 1965 Ivan Sutherland at the University of Utah proposed what he called the “Ul-
timate Display” [230]. This display would enable a person to experience a synthetic
computer rendered “Virtual World” as if it were real. In 1968 Sutherland realized a
binocular display which he called a “head-mounted display” (HMD) [231]. This device
consisted of two cathode-ray tube (CRT) displays mounted on a helmet that projected
images into the eyes giving the user a three-dimensional, stereoscopic view of the
generated images. The helmet was connected to a contraption, aptly named “Sword
of Damocles”, which was suspended from the ceiling and could track the position of
the wearer’s head (see Figure 1.6). When the user moved his head, a computer would
recompute the images rendered on the displays so that the user would get the impres-
sion that the virtual objects were stationary as the user moved around. Sutherland
did not pursue the development of wearable displays because the technology available
to him at that time was too primitive. Instead, he turned to work on the fundamen-
tals of computer graphics hardware and software design. In 1968 Ivan Sutherland
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together with David Evans founded “Evans & Sutherland” (E&S), a company that
received high credits in the development of advanced graphics systems that were
used in aviation and military simulators. Sutherland received the 1988 ACM Turing

Award for his numerous contributions to computer graphics and the 1998 IEEE John

von Neumann Medal for “pioneering contributions to computer graphics and micro-
electronic design and leadership in the support of computer science and engineering
research”.
The work by Sutherland inspired many scientists in different research areas. One of
them was Frederick Brooks, Jr. who in 1971 used scientific visualization techniques
and a force feedback device for the representation of large molecules [28]. Around that
time, VR technology had also slowly progressed to a state where large industries were
seeing its potential [150]. During the Apollo missions of the late sixties, NASA used
simulators that were used to simulate docking procedures of the Lunar Excursion
Module (LEM) and the command module (CM). Another application of VR technology
emerged in the aviation industry in the form of flight simulators. Flight simulators
are used to train pilots of aircrafts before embarking on their first actual flight. These
devices would use graphic displays, sound systems and motion platforms that could
realistically reproduce the behaviour of an aircraft during all stages of air travel,
from take-off to landing, from normal situations to the most dangerous scenarios.
The defense industry used simulators to train soldiers before missions in “war game”
systems that were connected to a distributed virtual environment called SIMNET,
linked in real time, involving armored tank simulations [154, 220]. These combat
simulations systems were used in the preparation of “Operation Desert Storm”. Other
research areas where VR technology is deemed to have great potential is in training
and education [158].

1.4.2 A taxonomy of VR systems

Exactly what may be called a VR system remains a topic of debate. Some feel that a
VR system should be able to generate an environment that is indistinguishable from
the real world. Some even go the lengths of developing an extension of the Turing test
to this end [10]. Others say that a VR system should be able to immerse the viewer
into an artificial, yet convincingly real environment. These systems would have to
obscure the real world and at least have to track the head’s position and orientation.
Still others say that a VR system must track the user’s head but may use a desktop
display. From a marketing standpoint, just about any system that displays animated
3D graphics seems to merit the VR label. The following types of VR systems can be
distinguished (based on a taxonomy by Jerry Isdale [108]):

• Desktop VR - These systems are also sometimes called “Window on World” sys-
tems (WoW). In these systems, the conventional desktop monitor is considered
as a window onto the virtual world. More realism can be obtained through
stereoscopic images, often produced through liquid crystal display (LCD) shutter
glasses, which make images “pop out” of the screen. The term “Fish Tank VR”
is used when these systems are augmented with a head tracker [250]. The head
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tracker is used to change the view on the virtual world based on the position
of the wearer. The resulting effect, called “motion parallax”, gives the viewer
powerful clues as to the relative distance and size of the objects in the virtual
world.

• Video Mapping - In these systems a video input signal of the user in the real
world is mixed with the virtual world. The user watches a monitor or a projec-
tion on a large screen that displays the silhouette of his body interacting with
the virtual world. The most famous example of this type of VR was the “Man-
dala” system [150]. Because the viewer looks at himself interacting with the
virtual world on the display, this type of VR is also called “world centered” or
“second person” VR.

• Immersive Systems - Immersive systems immerse the viewpoint of the user in-
side the virtual world. To accomplish this they often use display technology
that engulf the viewer as much as possible, such as HMD devices or multiple
large projection screens, in an effort to overwhelm the viewer with a view on the
virtual world and distract him from the real world. HMDs in this respect are
sometimes said to provide an “out of body experience” since the user will not be
able to see his own physical appearance, or any other physical object in the real
world for that matter. As the viewer in an immersive VR system experiences
the virtual world almost directly, this type of VR is also called “user centered” or
“first person” VR.

• Telepresence - In telepresence, the virtual world is not necessarily artificial.
Instead, remote sensors, such as video cameras, are used to act as “extension
cords”, linked to the human senses to create a on-location view of a real world
experience. Examples of where these systems are in use is with firefighters and
bomb squads where remote controlled robots are equipped with cameras and
robotic actuators to assist during hazardous situations.

• Augmented Reality (AR) - In these systems the user’s view of the real world is
enhanced or augmented with additional information generated from a computer
model. This type of VR is also called “Mixed Reality” or “see-through VR”. Dis-
play devices that are used in these systems are called heads-up displays (HUD);
they often consist of semi-transparent material that allows the viewer to watch
the real world while computer generated images are overlaid providing addi-
tional information. Examples are systems used by fighter pilots where the dis-
plays provide cockpit information on the inside of the pilot’s helmet.

In this work we focus our discussions on the use of immersive VR systems, such as
the SARA CAVE that will be described in section 1.5, although we will in some cases
address the use of desktop systems as well, such as the UvA-DRIVE system described
in Chapter 3 [14].
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1.4.3 Components in a VR system

Any interactive VR system consist of three components [265]. The first is the ren-
dering component which transforms abstract data into a representation that can be
perceived by one or more of the human senses. The display component converts these
renderings into sensory stimulations for the human perceptory senses. The last is the
interaction component which is responsible for determining the position and gestures
of the viewer to which the environment should react.

3D computer graphics

Most of today’s high performance graphics workstations contain dedicated hardware
components that accelerate the various stages of graphics rendering in the pipeline
such as those depicted in Figure 1.3. The hardware architectures vary from vendor
to vendor but most use dedicated memories (for textures, depth buffers and frame
buffers) and processing units (for transformation and lighting, shading, antialiasing,
z-buffering, image composition and texture mapping) that interact in parallel. These
dedicated graphics systems relieve the main central processing units (CPU) for doing
other tasks. One of the main vendors of computer graphics chips today, nVidia, has
coined the term Graphics Processor Unit (GPU) for these devices.
The industry standard Application Programming Interface (API) to take advantage of
these graphics devices is OpenGL [16,189,261]. The OpenGL standard was specified
in order to encapsulate device-dependent code and thus to promote program portabil-
ity to other operating systems. The interaction between the application and OpenGL
takes place on the level of polygons, light sources and linear transformations to spec-
ify 3D scenes. On a higher level, frameworks such as OpenInventor, World Toolkit
and Performer allow the user to specify high-level 3D scenes using object-oriented
methods [190, 212, 236]. These frameworks encapsulate many of the more intricate
complexities associated with increasing rendering performance (such as scene culling)
and interaction with 3D scenes (such as object intersection).

Stereoscopic display technology

VR display technology can be subdivided in two categories: head mounted displays
(HMD) and head tracked displays (HTD). The difference between the two is that with
HMD systems the display is connected to the viewer’s head, for example in the form
of a helmet, so that wherever the viewer’s head moves, the display moves. In HTD
systems the display is stationary, as with desktop monitors or projection screens.
In both cases the display must portray a stereoscopic pair of images to the viewer so
that he sees the virtual objects as if they float in front or behind the display. The
common method used to achieve this is to generate stereo image pairs, one for the
left eye and one for the right eye, that are displaced in the same way as when a real
object is floating in front of the viewer. In stereoscopic HMD systems, these stereo
pairs are displayed on two separate displays, using either cathode-ray tubes (CRT) or
liquid crystal displays (LCD), mounted in front of each eye. Based on the position and
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orientation of the viewer’s head, the left and right projections of the VE are calculated
and rendered onto their respective displays.

In HTD systems the stereo image pairs are rendered onto one and the same display.
Here the viewer wears a device that separates the left and right eye images into the
correct eye. This separation must be performed accurately. If not, images intended for
one eye may “bleed through” to the other which makes it difficult for the human brain
to fuse the image pairs into one stereoscopic image. The most common methods to
separate image pairs into the correct eye are through bichromatic image pairs, time
sequential frames or image polarisation. In bichromatic stereo, the left and right eye
views are each rendered in a different colour (often blue/red or green/red) while the
viewer wears glasses with the same coloured filters in front of each eye. The filters
absorb light of the same colour while passing the other. A major disadvantage of this
technique is that all colour information in the images is lost. Time sequential systems
render left and right eye views in rapid succession after each other in time while
“shutter glasses” block the image for one eye and allow it to pass for the other. As
long as the frequency at which this takes place is higher than 50 cycles per second, the
viewer will see a flicker free stereoscopic image. Yet another technique is to use filters
that change the polarization direction of the light emitted by the display differently
for each image. The most common system use linear polarization filters placed in an
orthogonal configuration (for example; up/down for the left eye and left/right for the
right eye). In this case, the viewer wears polarized filters that only pass light that is
polarized in the same direction as the filter. An advantage of this technique is that
these (passive) polarized glasses are relatively cheap compared to (active) shutter
glasses and that the images are flicker free. A disadvantage is that the viewer should
always keep his head in line with the polarization direction of the emitted light. If
the viewer tilts his head, images intended for one eye will bleed through to the other,
destroying the stereo effect. Circular polarization filters do not have this problem, but
unfortunately these filters are more expensive than linear polarization filters while
projection screens that do not distort circular polarization are even costlier. Note that
the techniques described here all block half of the light emitted by the displays. As
a result, the viewer always perceives an image that is half as bright compared to the
original.

The decision on which type of display is “best” for a specific application depends
mainly on the indirect consequences of the categories. HMD devices isolate the viewer
from the real world, in particular the types that are completely closed. The viewer will
not be able to see his office, his colleagues, or even his own hands. In HTD systems,
the viewer is still able to see objects in the physical world which make them more
suitable in collaborative applications. If more than one person should be able to take
part in the virtual experience, a HMD based setup requires that each viewer wears a
display, possibly with its own graphics system. In HTD systems more than one person
can share the same display space and make use of relatively cheap glasses. HMD sys-
tems require less space than HTD systems but HMD system can also be quite heavy
to wear. Also, HMD systems suffer more from the effect of delays in the system than
HTD systems. As there is always some delay between the moment the viewer moves
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his head and the moment the newly calculated image appears, HMD systems often
suffer from “lag”. This lag is caused by delays in obtaining information on the head’s
new position and orientation and the recalculation of the new images. Depending
on the length of these delays, the viewer can feel disorientated or even nauseated,
a phenomenon that resembles see-sickness but in the context of VR research it is
sometimes referred to as “cyber sickness”.

A recent development in VR display technology are autostereoscopic displays. These
devices are based on LCD displays, overlayed with an optical prism sheet that is
aligned in such a way so that a given column of pixels is only seen by one eye, and
not the other. The obvious benefit of these displays is that the viewer does not need to
wear any eye-wear. However, as a result of the technique, the effective resolution is
greatly diminished. Also, the displays often require the viewer to remain within the
frustum in which the stereoscopic effect can be seen.

VR interaction technology

A vital ingredient in the development of interactive VR are the input devices that
sense position, posture and gestures of the user. Tracking sensors form an integral
part of many VR systems developed over the years and are most often used to track
the position and orientation of the user’s head and hand at the least. An important
step in the development of unencumbering devices that could track the position and
orientation of a physical object was taken in 1979 by Raab et al. with the develop-
ment of an electromagnetic sensor known as the “Polhemus” [192]. These sensors are
capable of measuring position and orientation at six degrees of freedom (DOF), three
translational and three rotational, with reasonable accuracy.

Electromagnetic tracking systems use a transmitter that contains three orthogonal
coils that are energized sequentially first for the x axis, then y, then z. The currents
through the coils generate a magnetic field that generates a current in the receiver
which also contains three orthogonal coils. When each transmitter coil is energized,
the current through all three receiver coils is measured. This results in 3 receiver
values for each of the 3 transmitter coils. The result is a system of linear equations
that have enough unknowns to resolve the position as well as the orientation of the
receiver relative to the transmitter.

Today, there are still mainly two companies that produce magnetic tracker prod-
ucts: Polhemus and Ascension, a company founded by Ernie Blood who was a for-
mer employee of Polhemus (both companies are located in Vermont) [253, 257]. The
main difference between the two types is their sensitivity to the vicinity of metal
objects. The trackers developed by Ascension use a direct current (DC) to energize
the transmitter coils rather than an alternating current (AC) as used in the Polhe-
mus trackers. A DC current will, after an initial spike, generate no current in any
surrounding metal instead of a constantly changing current with AC systems. Also,
the Ascension devices turn the transmitter off between measurement cycles to take
an additional set of readings to compensate for ambient electromagnetic fields. This
combination makes the Ascension devices more accurate in environments with metal
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objects. Tracking devices developed by other companies like InterSense [255] use
different techniques, such as ultrasound, inertia, images obtained from cameras or
hybrid techniques that use combinations of these. Critical specifications of tracking
sensors are [128,129,160,192] (see also Table 1.1):

• Resolution: the smallest displacement that can be measured by a sensor. In
tracking systems where the position and orientation of a sensor is determined
relative to a source, the resolution frequently depends on the distance of the
sensor to the source.

• Accuracy: the deviation from the reported position and orientation of a sensor
to its actual position and orientation. In tracking systems where the position
and orientation of a sensor are determined relative to a source, the accuracy
frequently depends on the distance of the sensor to the source.

• Update frequency: the number of updates the sensor is able to provide per sec-
ond. In some cases the update frequency decreases as more sensors are used
simultaneously in the same setup.

• Latency: the time lapse between a displacement of the sensor and the moment
this is available at its output. The latency often depends on the type of interface
between the tracking and the computing system (i.e. serial connection, ethernet,
etc.).

• Jitter: the amount of reported displacement changes when the sensor is held
still.

• Range: the volume in which the sensor can be used accurately. Note that some
systems use technology that requires a line-of-sight between the source and the
sensor.

• Drift: the accumulating error, over time, of the reported position and orientation
of a sensor to its actual position and orientation. To compensate, sensors must
either be recalibrated after a longer period of use or, otherwise, be augmented
by other types of sensors.

1.5 The Cave Automated Virtual Environment

The Cave Automated Virtual Environment (CAVE) developed by DeFanti et al. at
the Electronic Visualization Laboratory (EVL, University of Illinois at Chicago) is
a fully-immersive, projection based VR device that was first presented at the ACM
SIGGRAPH conference in 1992 [52, 53]. The CAVE installed at SARA in 1997 by
Silicon Graphics and Pyramid Systems consists of the following components [205].
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Magnetic Ultrasound Optical Inertial Mechanical GPS

DOF 6 6 3/6 3 (orientation) 6 3 (location)
Resolution: 0.5 mm at 30.5 cm 0.5 cm 0.2 - 7 mm N.A. 0.5 mm 5 m
position ±50 cm at 3 m
Resolution: 0.1◦ at 30.5 cm 5◦ 0.01◦ 0.02◦ 0.1◦ N.A.
orientation ±17◦ at 3 m
Accuracy: 1.8 mm 5 cm 0.4 mm N.A. 1 mm 2 m
position

Accuracy: 0.5◦ 5◦ 0.02◦ 3◦ 0.5◦ N.A.
orientation

Update frequency 120 Hz 20-50 Hz 60 - 600 Hz 180-500 Hz 70 Hz 1 Hz
Latency 4-20ms 60 ms 1 - 60 ms 2 ms 1 ms 2 s
Jitter low high low-medium low low-medium medium-high
Range 3 m 10 m 0.5 - 3 m 360◦ all axes 1-2 m outdoors
Drift medium medium low high low-medium low
Cost $6000 $500 $1k - $50k $1000 $1500 - $95k $500

Table 1.1: Typical specifications of different types of tracking systems [1,128,129,160,

192,253–257].

1.5.1 Computing and graphics hardware

The stereoscopic images in the CAVE are generated by an SGI Onyx2 RealityMonster
[217]. The machine at SARA was one of the first delivered by SGI and, at the time
of installation in 1997, the InfiniteReality hardware was among the most powerful
general purpose graphics systems available. SARA’s CAVE configuration consists of
the following computing and graphics components:

• 8 MIPS R10000 processors, each running at 195 MHz clock speed, each with 4
MB second level cache,

• 8 × 128 MB memory configured into 1 GB main memory using a cache-coherent
Non Uniform Memory Access (ccNUMA) architecture,

• 4 InfiniteReality2 graphics pipes, each consisting of 4 Geometry Engines, 2
Raster Managers with 16 MB texture memory and a Display Generator,

• over 100 GB home file system on a dedicated O200 fileserver,

• HIPPI High speed network interface (800 Mbit/s),

• 8 channel digital audio system (ADAT). The CAVE uses four audio channels
which allows front/back and left/right positioning of sounds.

The hardware architecture of the InfiniteReality2 graphics interfaces is configured
into a pipeline. Each pipe can be subdivided into multiple channels (up to a maxi-
mum) where each channel is handled sequentially within one pipe. The performance
of a channel is therefore roughly the performance of one pipe divided by the number
of channels. The “Geometry Engines” provide the main interface to the main CPUs.
They perform object transformation (scaling, translation, rotation), subdivide poly-
gons into triangles and perform the projection of 3D world coordinates to 2D screen
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coordinates. The “Raster Managers” convert the projected triangles into pixel repre-
sentation using a scan conversion technique. Finally, the “Display Generators” con-
vert the digital pixel streams into an analog video signal that can be displayed by a
monitor or projector.

1.5.2 Projection system

In order to fit the SARA CAVE on the available floorspace, foil mirrors are used to
reflect the images onto the CAVE’s projection screens (see Figure 1.7). The projectors
used in the SARA CAVE are Electrohome Marquee 8500 which are capable of han-
dling resolutions up to a maximum of 1280 by 1024 pixels at 120 Hz. The CAVE uses
an active system to produce stereo images. The graphics pipelines alternately gen-
erate the images for the left and right eye while the Stereographics CrystalEyes [49]
liquid crystal shutter glasses that the viewers wear open and close synchronized with
the images on the screen. This synchronization signal comes from a number of in-
frared emitters placed around the CAVE.

Figure 1.7: Projectors, mirrors and screens setup of the CAVE used at SARA.

Projection based VR systems have several advantages over “classical” HMD systems.
First; projection based systems allow more than one person to share the same VE at
minimal cost. In practice there are practical limits to the maximum number of people,
which are often caused by the physical dimensions and placement of the projection
screens. For example, although the floor area in the CAVE is 9 m2, more than 5
people in the CAVE at the same time will quickly get in each other’s way. Of course,
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when multiple HMDs are properly connected together they could also be used to allow
multiple persons to share the same environment, but the cost in additional hardware
would be far greater than that of the additional shutter glasses in a projection system.
Moreover, projection based systems do not obscure a human’s peripheral vision as
HMD systems do. The user will therefore be able to see physical objects as well,
most importantly his own limbs and fellow researchers, but also objects that can be
useful while exploring the VE. This feature, however, also points us at a hindrance
of projection based systems; virtual objects will be obscured from view by real objects
if these are in the line of sight from the viewer to the projection of the virtual object
on screen, even if the real object was really behind the virtual object. This can make
interaction with VEs cumbersome in some situations. Also; the images in the CAVE
are drawn in correct perspective only from the tracked user’s viewpoint. People next
to this user see the same perspective, as if they were standing at the exact same
location (see Figure 1.8). Since they are not, a user pointing his finger at a virtual
object will seem to point at something completely different from a guest’s viewpoint
[200]. To resolve both of these issues, a virtual pointer is often used, represented
in the same virtual space. It therefore suffers from the same change in perspective
as all other virtual objects. The stereoscopic representation of the virtual pointer,
together with other depth cues such as partial occlusion caused by the intersection of
the virtual pointer with the objects under investigation provide a sufficient solution
to these problems.

guest
viewerviewer

tracked

object location as seen
by tracked viewer

object location as seen
by guest viewer

right eye imageleft eye image

projection screen

Figure 1.8: Difference in perceived location of a virtual object as seen by the tracked

viewer and a guest viewer.
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1.5.3 Interaction devices

To be able to generate the correct perspective view, the computer needs the position
and orientation of the user’s eyes. To measure this the CAVE uses an Ascension
Technologies Flock of Birds (Extended Range) electromagnetic tracking system [45],
with one of the sensors attached to the user’s shutter glasses. A second sensor is
attached to a “wand”, a hand-held device with 3 buttons and a small joystick that
is used to navigate through and interact with the virtual environment. Additional
tracking sensors are available for application specific purposes.
Other input devices that are in use (or have been used) in the SARA CAVE include a
15 sensor Ascension MotionStar Wireless full-body motion capture setup [46], a pair
of CyberGloves [48], PC-joystick interfaces (joysticks, gamepads, etc.) that can be
used via an Unwinder box [184] and a wireless microphone that can be used for audio-
conferencing or in conjunction with SARA’s speech recognition software (CAVETalk)
which is based on IBM’s ViaVoice package [47].

1.5.4 Writing CAVE applications

The software environment of choice for the development of CAVE applications is the
“CAVE library” (CAVELib) [249]. CAVELib provides an application programming in-
terface (API) that abstracts from the VR hardware and allows VR applications to run
on systems ranging from HMDs to multi-walled projection based displays with little
to no changes to the program. More information on the structure of CAVELib ap-
plications and an analysis of some of its design problems are provided in Appendix
A. Other APIs that support CAVE-like environments include the WorldToolkit [212],
Bamboo [251] and Avocado [237]. Open source and research initiatives (some of which
include support for CAVE environments) include VRJuggler [241], FreeVR [216],
DIVE [40], MAVERIK [101], PVR [244], and VIRPI [86].

1.6 Overview of this work

This thesis describes the technological, application and scientific issues involved in
the design of environments for the purpose of interactive exploration in virtual envi-
ronments.
Chapter 2 begins with an analysis of the situations in which virtual environments can
provide significant benefits over traditional exploratory data analysis and describes
the issues involved in the design and implementation of interactive exploration en-
vironments for use in virtual environments. These issues are illustrated by the de-
scription of a number of test cases.
Chapter 3 describes the design and construction of a low-cost virtual reality system,
the Universiteit van Amsterdam Distributed Real-time Interactive Virtual Environ-

ment (UvA-DRIVE), built out of inexpensive, off-the-shelf hardware, and shows how
this system can be used for interactive exploration at a fraction of the cost of similar
commercially available systems.
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Chapter 4 describes interaction methods for use in virtual environments to support
scientific exploration. Interaction is at the center of any type of exploration. We
describe several techniques that facilitate the construction of information-rich and
highly interactive virtual environments.
Chapter 5 enhances the static design concepts towards the design of Interactive Dy-
namic Exploration Environments (IDEE). We will see that the design of these systems
benefits from a distributed architecture where the various components execute on
different systems and describe how these systems can be used for human-in-the-loop
experimentation.
Chapter 6 describes an IDEE which was built as a test case to validate the ideas
described in the previous chapters. This environment combines distributed simula-
tion, interactive dynamic exploration and virtual reality technology into an interac-
tive simulated vascular reconstruction operating theatre that allows pre-operative
studies of abdominal vascular reconstruction procedures.
In Chapter 7 we recapitulate all issues addressed in this thesis and reflect on the de-
sign decisions that have been taken in the progress of this work. Directions for future
research are described as well as recent scientific and technological developments
that are relevant to this work.
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Chapter 2

Design considerations for

interactive exploration

environments∗

“Good design comes from experience, experience comes

from bad design.”

Frederick P. Brooks, Jr.

2.1 Introduction

In this chapter we investigate the different issues that are involved in the develop-
ment of an exploration environment that allows interactive exploration of large data
and parameter spaces. We distinguish three different aspects in such a system: the
available technology, the applications and the scientific issues.

2.1.1 Technological issues

The technological aspects are mainly concerned with the computational hardware
that is used for the exploration system. The increase in capabilities of modern com-
puter systems has been impressive, in some cases even allowing both the computation
and presentation tasks to be executed on the same machine. However, a performance
increase may be attained by running these tasks on dedicated machinery. For ex-
ample, many simulation applications perform better on dedicated hardware such as
vector processors, massively parallel platforms or other high performance comput-
ing systems. Also, state-of-the-art graphical systems are now available that are well
suited for the presentation tasks. When the simulation and presentation tasks are

∗Parts of this chapter have been published in R.G. Belleman, J.A. Kaandorp and P.M.A. Sloot. “A

virtual environment for the exploration of diffusion and flow phenomena in complex geometries”, Future
Generation Computer Systems, 14(3-4):209–214, 1998.
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distributed over different systems, some means of communication is required between
the two.
An important goal towards a successful exploration environment is to involve the re-
searcher in the presentation as much as possible, thereby increasing the researcher’s
level of awareness [29]. To achieve this, an exploration system needs the following,
often conflicting capabilities:

• Quality of presentation – The most common method to provide insight in simu-
lated phenomena is to represent the abstract data as visual geometric constructs
that present quantitative and relational aspects to the observer in an intuitive
manner. Many scientific visualization techniques are now available that pro-
vide means of efficiently achieving this [209, 242]. However, for some applica-
tions mere visual exploration will not always be sufficient. These applications
can benefit from the integration of additional sensory modalities to increase the
user’s field of perception. Additional modalities applied in previous research in-
clude the use of sound [68,93,141], touch to provide “haptic feedback” or “tactile
feedback” [28,33,36,65,66,91,109,153,224] and even smell [125,138].

• Rapid frame rate – While the capabilities of modern graphical workstations
allow the construction of high quality and complex images with relative ease,
the level of detail in the presentation should be minimized to avoid information
clutter and to achieve high frame rates (the aim should be to employ “minimal
means for maximum effect”). For a usable exploration environment the visual
frame rate should be at least 10 frames per second. Insufficiently high frame
rates can lead to disorientation and even nausea, a phenomenon which is often
called “cybersickness” in the context of virtual environments and is akin to mo-
tion sickness [131,156]. Note the difference between “frame rate” and a display’s
“refresh rate” which is the frequency at which a display device redraws an image
on screen. It is generally accepted that a display refresh rate of more than 60 Hz
results in a stable, flicker free image. Also note that a frame rate that is higher
than a display’s refresh rate results in wasted computing power.

• Intuitive interaction – Some level of interaction with a presentation is manda-
tory. Unlike the standard interaction metaphors used in windowing systems
on workstations, no standard user interaction metaphors yet exist for virtual
environments. Most notably in the “living simulation model”, the increase in
functionality expected from an exploration environment demands a well consid-
ered user interface.

• Real-time feedback – Some delay will always occur between the moment a user
interacts with a presentation and the moment that a response is available. This
is caused by low tracking rates of input devices, communication delay between
the exploration and the simulation system and temporary reduced availability of
computational or network resources. To attain accurate control over a running
application, the total amount of lag should not exceed a couple of seconds. If
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longer, users tend to think that their interaction was not recognized and should
be repeated or that the system is defective [171].

2.1.2 Application issues

Each application has different execution characteristics with respect to the update
frequency, the point in the application where interaction may occur and at what mo-
ment, and the amount of data that changes in between each update and thus needs
to be communicated to the presentation system.

The relative importance of each of these capabilities depends primarily on the charac-
teristics of the simulation application and the limits imposed by the available infras-
tructure. It is our intention to develop a conceptual model with which we can describe
the behaviour of an exploration system. To obtain an accurate representation of the
behaviour of the system as a whole, this model should include the temporal character-
istics of the application, the presentation software, the interconnection between the
two, and the hardware each runs on.

2.1.3 Scientific issues

The key issue towards a successful exploration environment is real-time interac-
tion [29]. One way to achieve this is through a trade-off between speed and accuracy
of the exploration by allowing “short-cuts” to be made in a guided search by an inter-
active feedback mechanism between the application and the exploration system. The
scientific question we want to address is concerned with the implications of making
these “short cuts”.

The guided search algorithms that are used to search a problem’s parameter space are
often based on methods that stem from mathematical, biological or physical models
at a macroscopic level. To be able to perform computer simulations, these macroscopic
models must first be converted into a computable algorithm. At this microscopic level,
it is expected that the computable algorithm provides a sufficiently accurate abstrac-
tion from the macroscopic model such that it achieves the desired result. However,
the process of making “short cuts” on a microscopic level may have severe implica-
tions on the model that is being simulated. Indeed, the resulting simulation may well
be totally different from that described at the macroscopic level.

2.1.4 Test cases

As an initial assessment of the available technology and to obtain a better under-
standing of the application and scientific issues involved in interactive exploration
systems, we built a number of static environments for applications from different
research areas.
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2.2 Car crash simulation playback

The PAM-CRASH package developed by the ESI Group is a numerical simulation
package for prototyping and manufacturing processes that take into account the tem-
poral mechanics of car crashes at high accuracy [75]. The ESI Group’s product port-
folio provides a virtual engineering solution known as the “Virtual Try-Out Space”
(VTOS). This solution allows reduced costs and development lead times by progres-
sively eliminating the need for physical prototypes. The PAM-CRASH software is
based on a Finite Element simulation model. Depending on the desired accuracy,
simulations can take days to complete on even the most powerful computer. In the
ESPRIT “CAMAS” project the Section Computational Science of the University of
Amsterdam investigated typical data dependencies in order to parallelize the PAM-
CRASH code [58]. PAM-CRASH was also used as a test-bed in the Esprit project
“Dynamite” where it was investigated how to use computing cycles on idle worksta-
tions in an organization through dynamic load balancing [44,243].
When a simulation run is complete, the data is visualized on a desktop computer
system for inspection. The ESI Group was interested in knowing whether a VR device
like the SARA CAVE would give additional benefits to the visualization of simulation
results compared to desktop methods.

2.2.1 Implementation

A number of PAM-CRASH simulation runs were performed by the ESI Group and
the resulting data files were gathered for visualization in the SARA CAVE. Each data
set consists of multiple files, one for each time step, with the number of time steps
varying between tens to close to one hundred. Each file contains a description of
the simulated object stored as quadrilateral patches consisting of four vertices and a
normal vector for each vertex. We designed and implemented a program that allows
the simulation results to be played back in a virtual environment (see also Figure 2.1).
The program is implemented in C [126], uses CAVELib [249] for control over the VR
equipment (in this case the displays and interaction devices in the SARA CAVE) and
OpenGL for graphics rendering [16, 189, 261]. In this case, OpenGL uses the vertex
and normal information to render the object under simulation as a smooth shaded
surface. To allow for interactive playback of the simulation results, all time steps are
read in at program startup and compiled into OpenGL “display lists” [261]. A display
list consists of one or more OpenGL commands that are compiled into a format that
can be executed more efficiently by the OpenGL rendering engine. In general, the
time required to execute a display list is significantly lower than the sum over the
execution time of its constituents. Therefore, the use of display lists increases frame
rate which in turn increases responsiveness of the system as a whole. This design
choice means that some time is spent between program startup and the moment the
user can start using the program but since this time never exceeds approximately one
minute, even for the largest data sets, this was considered acceptable.
After initialization, the VE represents the first time step of the simulation. In ad-
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Figure 2.1: Car crash simulation playback in the CAVE (see also colour reproduction

on the back cover).

dition, a virtual pointing stick is drawn from the front of the wand, represented by
a simple line, which can be used by the user to indicate points of interest to fellow
viewers. This simple mechanism turns out to be an adequate solution to resolve the
problem that exists in most stereoscopic projection based VR systems, namely that
the perceived location of a virtual object as seen by the tracked viewer differs from
that perceived by a guest viewer (as previously described in section 1.5.2 on page 19).

Using the three buttons on the CAVE wand, the user plays back the crash simulation
much in the same way as the “fast forward” and “rewind” buttons on a video cassette
recorder (VCR); while pressed, the right button plays the simulation forward in time,
the left button backwards in time. Pressing the middle button replays the simulation
from start to finish. The wand’s joystick is used to “navigate” through the VE. Navi-
gation provides users with methods to move beyond the confinements of the CAVE’s
physical dimensions. Objects beyond the CAVE walls come into reach by moving the
CAVE towards them. Note how this concept places the user of the VE in the center
of this type of interaction; the user is transported from one place to another while
the objects remain where they are. As shown in Figure 2.2, pressing the joystick
forward moves the user towards the direction in which the wand is pointing, pulling
the joystick backwards moves the user away from the direction in which the wand is
pointing. Pressing the joystick sideways rotates the view left or right.

2.2.2 Experiences

Although the information in the data sets only contains a description of the deforming
structure over time, the program can easily be extended to visualize any additional
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Figure 2.2: Interaction and navigation in the car crash application using the wand’s

buttons and joystick.

information that may have been calculated during the simulation, such as, for exam-
ple, stress analysis results.
From a qualitative standpoint, the motion parallax effect provides a very intuitive
way to inspect virtual objects. Where previously the user had to use an indirect inter-
action method (such as a mouse or keyboard) to orient the object on a desktop system,
in the VE the user simply moves his viewpoint by walking around the object or mov-
ing the head. The navigation methods, controlled by the wand’s joystick, are used to
manoeuvre the CAVE through the virtual world to a location of interest. After that,
the user simply walks around within the confinements of the CAVE for closer inspec-
tion. With some exercise, this interaction method is adequate for moving the viewer
to any location of interest in little time.
The interaction requirements for this application were very simple. The biggest short-
coming we found with this application is its lack of expressiveness. For example;
with the current implementation the “fast forward/rewind” type of interaction is not
a practical interaction method to wind the visualization to one particular time step.
The user needs to let go of the button precisely at the desired time step, which is eas-
ily missed if the animated playback is too fast. Of course, this could have been solved
by having the left and right wand buttons advance only one time step at each button
press, but that would then make it difficult to get a clearer idea on the behaviour of
the simulation over longer periods of time. Again this problem can be solved, possi-
bly by mapping short button presses to single time step advances and longer button
presses to animated time step advances, or perhaps combinations of buttons pressed
at the same time, etc., but imagine having to explain all this to the end-user. More-
over, the implementation of these interaction methods very quickly becomes far from
trivial.
Clearly the user would benefit from interaction methods that allow more expressive-
ness than provided by the wand’s buttons and joystick. The most obvious would be
to extend the application with something that is similar to the graphical user in-
terface (GUI) interaction methods we know well from desktop systems, i.e. menus,
buttons, sliders, etc. Unfortunately, very few GUI toolkits exist for VR applications
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and the ones that do exist are often very limited in their capabilities. Nevertheless,
the availability of such a GUI toolkit would be a powerful way to obtain user-friendly
and intuitive exploration environments. We will present a solution for this in section
4.3 (page 75), which describes a software architecture that allows existing 2D GUI
toolkits to be used in VEs.

2.3 The Virtual Radiology Explorer

The use of VR technology in medical applications has already shown great potential
in past studies [166, 197, 273, 274]. The applications developed in these studies have
allowed a better understanding of complex anatomical structures. This has helped in
areas such as clinical diagnosis, treatment planning, simulation and surgical inter-
vention. However, a larger scale introduction into the medical society has met with
resistance for various reasons. In this section we will look into the current meth-
ods that are used by radiology departments for the inspection of medical scans for
diagnostic purposes and will investigate the use of VR technology in this respect.

The Virtual Radiology Explorer (VRE) project† was initiated to provide radiologists
and physicians with a system that allows them to explore three-dimensional (3D)
medical data sets, such as computed tomography (CT) and magnetic resonance imag-
ing (MRI) scans, using VR techniques. One of the aims in this project is to provide
intuitive, responsive and suitable interaction techniques through which the end-users
will be able to efficiently perform diagnostic tasks.

2.3.1 The radiology department

To create an inventory of current methods that are used to interact with CT and MRI
data sets, two radiology departments were involved: one at the University Hospital
Utrecht (AZU, headed by prof. dr. P.F.G.M. van Waes), the other at Leiden University
Medical Center (LUMC, headed by prof. dr. J.L. Bloem). Over a period of several
days, both departments showed the current methods used to inspect CT and MRI
scans for clinical diagnostic purposes, their use of 3D imaging techniques, and shared
their ideas on future prospects in this regard. The radiology departments at AZU and
LUMC use both CT and MRI scanners as their primary diagnostic instruments in
cases where a correct diagnosis requires insight in 3D anatomy. The scans produced
by most scanners consist of two-dimensional “slices” that each contain 512 × 512 gray
scale pixels, each 16 bits in resolution. The number of slices made per scan depend
on the spacing between slices, the thickness of each slice and the size of the structure
of interest. Spatial resolution is measured by the maximum spatial frequency by
which two lines close to each other in a line-bar pattern can be distinguished and
is expressed as “line pairs per millimeter” (lp mm−1). The spatial resolution for CT

†Funded by the High Performance Computing in the Netherlands (HPCN) Platform under ICES-
KIS-2.
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Figure 2.3: Inspection of hardcopy films on lightboxes in the radiology department.

scanners is 1 lp mm−1, for MRI 0.5 lp mm−1 (1998). The spatial resolution of film
used in X ray radiographs is 100 lp mm−1 [77].

Both departments transfer the scans both to a hardcopy machine, where high res-
olution transparency films are printed, and to a cluster of networked workstations
(in both departments Philips EasyVision systems are used, running on Sun worksta-
tions). Along with other methods used for clinical diagnostics, a physician makes a
diagnosis and proposes a treatment for a patient based on the images produced from
these scans. Hardcopies of the scans on transparent film is the first and foremost
method used for inspection. The hardcopy films are inspected using lightboxes in
cases where one or two radiologists need to discuss a patient (see Figure 2.3). There
is talk in both hospitals to switch over to “filmless” radiology departments, i.e. to a
situation where only digital workstations are used for the storage and inspection of
medical scans.

Beside the scanned image, the films contain information on the parameter settings of
the scanner (including acquisition parameters), patient name, scan date, slice index
and annotations that provide a reference for the radiologist on the orientation of the
slices. AZU also uses overhead camera systems that enlarge specific regions of the
hardcopy onto a television screen so that more people can see and discuss the images
at the same time. Results of the inspection are voice recorded on quick-access mini
audio tapes that are filed with the hardcopies into patient dossiers. These tapes are
then sent to a department were they are converted into written text by typists or, in
some cases, by speech recognition systems. For additional annotation, radiologists
use red pencils to highlight regions directly on the film. Another method used for
annotation is spoken-word-to-tape to refer to specific slices by index numbers and
names of anatomical structures contained therein. The lightboxes often contain more
than one set of films pertaining a certain patient. The material that is to be discussed
is prepared by assistants on separate frames of the lightbox. These are brought into
view by the radiologist by keying in a frame number on a keypad.
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2.3.2 Desktop visualization

In cases where a side-by-side display of scanned slices is not adequate, Philips’
EasyVision workstations provide a so-called “cine-loop” capability which allows ra-
diologists and physicians to “flip” through a scan using a slider, as if it were a deck
of cards. The slices can be displayed in one of three orthogonal orientations: sagit-
tal (any vertical plane that divides the body into left and right parts), frontal (any
vertical plane that divides the body into anterior [front] and posterior [back] parts)
or transversal (any horizontal plane that divides the body into superior [towards
the head] and inferior [towards the foot] parts). A user-defined oblique orientation
is obtained by drawing lines on the slices to denote the position and orientation of
intersection planes. Beside this cine-loop functionality, the scans can be displayed
side-by-side as on the hardcopy films. In this case the number of slides in a row is set
interactively, allowing the slices to be viewed at different magnification, as well as
with user settable contrast and brightness of the displayed images. The EasyVision

workstations are not used for annotation or reporting purposes. The cine-loop feature
of the EasyVision workstation is the most often used function. Although the software
provides 3D rendering (see Figure 2.4), both volume and surface rendering, these
capabilities are used sparsely because radiologists find them too complicated to use
and, as a consequence, feel it takes too much time to produce useful results. At AZU,
3D rendering is often delegated to the local imaging research group (which has much
experience with 3D visualization), while at LUMC EasyVision is used more for this
purpose.

The EasyVision system provides several tools to process a scan before it is visualized
in 3D. One such tool allows irregularly shaped areas in a stack of slices to be discarded

Figure 2.4: Philips Medical Systems’ EasyVision
showing an example of 2D and 3D visualization.

Figure 2.5: Philips Medical Sys-

tems’ 3D EndoView. This exam-

ple shows an 8 mm polyp located

in the ascending colon [199].
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from the 3D rendering so that specific anatomical structures can be highlighted. In
addition, Philips provides several extensions for the EasyVision system that provide
virtual “walkthrough” capabilities (for example, see Figure 2.5).

2.3.3 VRE objectives

Clearly, three-dimensional representations of medical scans are not common practice
in present day radiology departments, despite the fact that CT and MRI scans are
inherently volumetric. There is a number of reasons for this. First; the technology
to reconstruct these data sets to 3D representations in a timely fashion, of sufficient
quality that can also be manipulated interactively has just recently become available
at an affordable price. Indeed, both departments have desktop workstations that al-
low them to create 3D representations of anatomical structures. Little use is made of
this, however, mostly because the radiologists do not know how to use the worksta-
tions and because it takes too much time to obtain acceptable results. However, there
is a strong interest to use the 3D information that is available, as (for example) illus-
trated by liver surgeon Rory McCloy in Nature, March 2002: “I spend my life looking
at 60 slices of salami. [...] I’m trying to do a 3D operation with 2D images” [180].
More important, however, is that the two-dimensional diagnostic methods that are
currently used work and therefore there is little desire with the radiologists to use
new methods that have not yet proven their value. Therefore, if a paradigm shift
such as proposed by VRE is to succeed, the transition for its users should be made as
easy as possible. Interaction should therefore be a key concept in its design.

2.3.4 Visualization and interaction methods in VRE

The visualization and interaction methods for VRE should make the transition for
physicians and radiologists from their conventional diagnostic methods to a virtual
environment as comfortable as possible. The interaction mechanisms described here
are primarily intended for use in immersive projection based VR systems such as the
CAVE and ImmersaDesk. However, most of the methods described here should still
be applicable to other types of VR systems. Additional comments on differences and
potential problems are explicitly noted where appropriate. To make the transition for
users of VRE as simple as possible, different levels of functionality should be offered,
ranging from the “conventional” and “well known” methods that are currently in use,
to new methods as proposed by the VRE project. As a basic functionality, VRE should
therefore offer radiologists functions that mimic the lightbox and cine-loop as are
used in daily clinical diagnostic tasks. Beside that, the new functions that VRE can
offer are 3D techniques with new capabilities such as stereoscopic rendering, virtual
endoscopy, virtual colonoscopy and others.
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Volume visualization

Visualization methods for the representation of 3D scalar lattice volumes are usually
separated into two groups: (direct) volume rendering and isosurface modeling [69,72].
Volume rendering is a technique that is based on ray casting [79]. All scalar values in
the 3D lattices are traversed and treated as volumetric elements that contribute both
colour and opacity to a virtual ray of light that travels through the data set towards
the viewer’s eyes [146,240]. The contribution of colour and opacity is defined through
a transfer table that maps a scalar value onto a colour and opacity value. Using this
table, structures that are not of interest to the user can be made transparent by map-
ping its associated scalar values to translucent opacity values. Likewise, interesting
structures can be emphasized by mapping the associated scalar values to brighter
colours. The definition of a transfer table that yields good visual results can be time
consuming, or worse; close to impossible. In most cases, the transfer table is used to
define a colour and opacity gradient over a range of scalar values. The assumption is
that structures of interest consist of scalar elements that have neighbouring values.
In the case of medical data sets, however, this assumption depends on the data ac-
quisition method that was used in obtaining the data set. For example; in CT scans
the scalar values (or “Hounsfield units” as they are called in the case of CT) are a
representation of the attenuation of an X ray beam through the human body [77]. As
this value varies with the density of the tissue (the denser the tissue, the higher the
value), similar tissue structures will yield similar values. Defining a transfer table
that accentuates the different types of tissue is, in this case, relatively trivial. In MRI
scans, however, the scalar values represent the radiofrequency (RF) energy emitted
by the nuclei of hydrogen atoms (free or attached to other molecules) in a strong mag-
netic field after excitation by a microwave radio signal [182]. As most parts of the
human body consist of fat and varying concentrations of water (and because these
molecules contain hydrogen atoms), the scalar values in the data set are mainly a
representation of concentrations of hydrogen. Similar concentrations of hydrogen are
not always part of the same physiological structure. This makes the definition of a
transfer table far more difficult.

In isosurface modeling, an intermediate representation is first computed that consists
of geometric primitives; usually triangles [151]. These triangles represent surface
patches through lattice elements of the same value, resulting in a constant value
contour surface. As with volume rendering, the definition of this constant, so-called
“threshold” value relies on the property that scalar elements that are part of the same
structure are of approximately the same value. Because isosurfaces only represent
structures at the same scalar value, it can in some cases be difficult to relate the
isosurfaces to the structure as a whole. To compensate, multiple isosurface models
are often computed at different threshold levels that are then rendered together in
the same scene, with different colour characteristics to be able to tell them apart and
different opacity settings to reveal otherwise occluded structures.
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Interactive volume visualization

Additional challenges in successfully applying these visualization methods in an in-
teractive virtual environment are that (1) the time required to compute the visualiza-
tion is small enough that the user can change parameters of the visualization method
and see the results quickly, and (2) the time required to render the resulting visual-
ization is fast enough to allow interactive exploration in a VE. The first challenge is
most apparent with isosurface modeling where an intermediate triangle representa-
tion needs to be calculated before this representation can be rendered. The second
challenge is determined by the performance characteristics of the graphics hardware.

In the case of volume rendering, the 3D lattice structure has to be completely tra-
versed each time the position or orientation of the user changes and/or when the
user changes the transfer table. Various implementations of specialized software and
hardware have been developed that allow volume rendering to be used in virtual en-
vironments at interactive speeds [37,102,133,191]. Most of these methods use 2D or
3D texture mapping and transfer table lookup techniques that are often accelerated
in hardware. Using these techniques, the resulting images can be rendered directly
based on the current position and orientation of the user and the defined transfer
table. A limiting factor on rendering performance is the “fill rate” of the graphics
hardware; the rate at which pixels can be drawn into screen memory. Fill rate is usu-
ally measured in millions of pixels per second (Mpixels/s) and is directly dependent
on the hardware architecture (i.e. the bandwidth of the memory bus and the ability
of the graphics hardware to saturate this bandwidth). In particular in the case of
volume rendering, fill rate limits the frame rate when the area that is covered by the
resulting image on screen increases.

The intermediate triangle representation used in isosurface rendering is independent
of the position of the user and therefore only needs to be calculated once when the
threshold value has been set or changed. The triangle representation must then be
rerendered for the current position and orientation of the user. However, the time
required to render a new frame is directly related to the number of triangles in the
isosurface. The number of triangles that a hardware graphics interface is capable of
rendering in one second is a popular (but inconclusive) measure to characterize its
performance. For example; the InfiniteReality2 graphics pipeline used in the SARA
CAVE is capable of rendering 11 million triangles per second [217]. Suppose the
virtual environment needs to maintain a frame rate of at least 20 stereoscopic frames
per second for a particular application. This means there is only 1

40th of a second
to render each frame which in turn implies there should be no more than 275,000
triangles in the complete scene. Although this may seem like much, consider that it
may often be necessary to visualize multiple isosurfaces, at different threshold levels,
so that anatomical structures can be viewed in relation to others. In these cases it may
be necessary to reduce the number of triangles in an isosurface but only if the original
geometry can be maintained. Decimation is one technique to reduce the number of
triangles in an isosurface triangle mesh while preserving the original topology and
forming a good approximation to the original geometry [210].
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Figure 2.6: Architecture of the VRE application.

Although decimation helps in obtaining an isosurface contour that can be rendered at
interactive speeds, the additional time required to compute the isosurface can be sub-
stantial. Considering that the calculation of an intermediate triangle representation
for isosurface rendering operates on neighbouring lattice sites, the total execution
time can be decreased by decomposing the 3D lattice into subdomains and perform
the isosurface extraction in parallel, on multiple processors [202].

2.3.5 Implementation

The architecture of the VRE application is shown in Figure 2.6. VRE is implemented
in C++ [227] and runs on all Unix operating systems that support CAVELib and
OpenGL. CAVELib is used to hide the intrinsic details of the display technology (such
as the placement of the projection displays) and interaction devices (wand, joystick
and buttons) [249]. OpenGL is used as the graphical rendering library [261]. For
volume rendering we use Silicon Graphics’ OpenGL|Volumizer, a specialized library
that supports hardware accelerated volume rendering on Silicon Graphics hardware‡

[191]. Surface modeling is performed by the Visualization Toolkit (Vtk) [106, 209].
The volume and surface representations can be individually clipped to hide parts of

‡This limits the use of volume rendering to Silicon Graphics systems only. The remaining functions
can still be used on other systems. “CAVORE”, a CAVE volume rendering package developed by Anton
Koning (SARA) for the VRE project, can be used on all systems that support 3D texture mapping [133].
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the renderings. This allows hybrid representations that consist partly of a volume
rendering and for the other part of a surface rendering.
A simple networked database interface has been implemented that emulates a Pic-
ture Archiving and Communication System (PACS) as is used in most radiology de-
partments to interface medical scanners to visualization front-ends. The database
contains patient data, stored on a remote IBM SP2 system located at SARA, which
is accessed by a user interface from within VRE. VRE and the PACS server commu-
nicate using PVM [229]. Beside a database function, the PACS component is also
equipped with a computing function that is capable of performing parallel isosurface
modeling, which will be described below. If the user wishes to visualize an isosurface
representation of a specific dataset, the data set identifier and the desired threshold
level are sent to the computing engine which then extracts the isosurface contour and
sends the results back to the VRE application in the form of a geometrical represen-
tation.

Parallel isosurface modeling

The parallel isosurface modeling has been implemented using Vtk. The visualiza-
tion pipeline is shown in Figure 2.7 and works as follows. The input data set is
decomposed over the available processors using “standard” domain decomposition;
each processor p0≤i<P reads bN/Pc slices (where N is the number of slices in the input
data, P the number of processors and P ≤ N), unless N mod P 6= 0 in which case pro-
cessors pi<N mod P read bN/Pc+1 slices. Note that we assume with this decomposition
method that the workload for each processor will be the same when they are given
equal shares of slices. As this assumption depends largely on the data contents and
the threshold value selected for the isosurface, the decomposition method used here
will not always result in equal workloads.

relaxation filter
triangle strip

filter

data set
reader contour filter decimation filter

data set
reader contour filter decimation filter

data

Figure 2.7: Visualization pipeline used for parallel isosurface modeling.

Each processor proceeds by modeling an isosurface for its local domain using a march-
ing cubes contour filter [151]. The number of primitives in the resulting triangle
representation is then reduced using a decimation filter and concatenated to form a
complete isosurface [210]. If the concatenated isosurface produced at this point would
be used for rendering by OpenGL, an unfortunate side effect of the distribution over
multiple processes can result, as illustrated in Figure 2.8. If the local isosurfaces at
the boundaries of neighbouring local domains are curved differently, the isosurface
patches will be shaded incorrectly. The shading method used in OpenGL is Gouraud
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Figure 2.8: Parallel isosurface extraction; domain decomposition (top left); for each

subdomain, an isosurface is extracted and the resulting triangle mesh is decimated

(top right); lighting artefacts appear on curved domain boundaries caused by ill-

defined normal vectors (bottom left); relaxation of the triangle mesh corrects these

artefacts (bottom right). The two bottom images have been colour-enhanced to show

detail.

shading which requires that a normal vector is defined for each vertex in a surface
patch [89]. The normal vector in each vertex is determined by first determining all
faces that share the vertex. The normals of all adjacent faces are then averaged to get
the vertex normal. At local domains, the normals of adjacent faces on neighbouring
domains are not available and the vertex normal is averaged over locally adjacent
faces only. The result is an ill-defined normal vector which is most conspicuous on
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strong curved boundaries. In our implementation, this problem is solved through a
relaxation filter on the concatenated isosurface, implemented as an additional deci-
mation step that is set to only merge co-planar surface patches and recalculate vertex
normals. The resulting isosurface will have correctly defined vertex normals and, at
the same time, the number of triangles is reduced even further.

Finally, a triangle strip filter is used to convert the isosurface into a representation
that requires less space to store and that can be rendered at higher efficiency by
OpenGL [261]. The end result is transfered to VRE for rendering.

Interaction methods

Interaction in VRE is done primarily with the wand, including its buttons and joy-
stick. In addition, a simple but effective menu system has been built that provides
access to all of VRE’s functionality. Options on the menu are selected by pointing
at one of the items and clicking a wand button. A virtual pointer is rendered from
the front of the wand to provide visual feedback; seeing the pointer intersect with
the menu as well as the highlighting of the selected menu items aids in the menu
selection process. Again; the virtual pointer also helps in unambiguously identifying
interesting structures to other users as described in section 1.5.2 (page 19). The menu
provides access to the patient data sets stored in the PACS database, enables/disables
visualization options and allows various visualization options to be set interactively,
including object scaling, rotation, translation, the desired isosurface modeling thresh-
old, the sampling rate used for volume rendering and storing/retrieving transfer ta-
bles.

The joystick on the wand is used in two modes, as selected from the menu. In the
first mode, the wand is used as in most CAVE applications; it moves the position of
the CAVE towards the direction where the front of the wand is pointing, at a velocity
proportional to the amount the joystick is pressed forward or backward. Sideways
pressure on the joystick is used to rotate around the center of the CAVE, around the y-
axis (which in the CAVE points upwards) (see also Figure 2.2, page 28). Although this
so-called “navigation” takes some getting used to at first, this method of navigation
quickly becomes “natural”. In the second mode, the wand is used to transform the
visualized objects: it can be used to scale, translate or rotate the object as specified by
a selected transformation in a menu option. For purposes such as virtual endoscopy,
the user can use the scaling transformation to “blow up” isosurfaces of structures
until they are large enough to inspect the insides of the structure. This scaling is
mandatory for this feature: although it is possible to view the insides of rendered
object merely by “sticking ones head in”, this can be a most unpleasant strain on
the eyes as they have to accommodate on structures that are too close [99]. Note
that volume rendering is not suitable for this type of interaction due to the nature of
the direct rendering algorithm; the resulting images show up as big blobs of pixels
from which no structure can be discerned. Also, on most of today’s hardware, scaling
up the volume would quickly reach the fill rate limitations of the graphics hardware
resulting in low frame rates and sluggish responsiveness.
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Clipping is the VRE equivalent of the cine-loop capability used on medical worksta-
tions. It allows the user to cut away sections of a visual object (isosurface, volume or
both individually) using a plane that reveals the inner parts of a dataset that would
otherwise be obscured. Once activated via the menu, the clipping plane is attached
orthogonally to the forward-pointing wand, at a constant distance, and follows the po-
sition and orientation of the wand. Interaction is very intuitive: the user only needs
to move the wand into the visual representation of the scan to inspect its interior.
Clipping is implemented using OpenGL’s standard clipping mechanism and is fully
hardware accelerated.

Figure 2.9: Transfer table editor used in VRE. Scalar values on the horizontal axes

are mapped to colour properties on the vertical axes. The editor supports interactive

definition of separate mappings for red (R), green (G), blue (B), opacity (OPAC) and

luminance-alpha (L-A). Shown here is a luminance-alpha mapping with one addi-

tional control point.

The interactive definition of the transfer tables for volume rendering is done using the
editor shown in Figure 2.9. The rectangular buttons on the left allow separate trans-
fer tables to be defined for red, green, blue, opacity (or alpha) and luminance-alpha.
Luminance-alpha can be regarded as a mapping where red, green, blue and opac-
ity values are identical, resulting in dark/transparent colours for low scalar values
to luminous/opaque colours for high scalar values. The buttons marked with arrows
on the right and at the bottom allow the transfer tables to be shift and scaled. By
default, a linear “luminous-alpha” mapping is defined from dark/transparent for low
values (shown by a square in the lower left corner) to luminous/opaque for high val-
ues (shown by a square in the upper right corner). The linear mapping between these
values is shown by a diagonal line between the two. This mapping can be altered by
introducing new control points anywhere on the diagonal line and moving the control
points over the window.

2.3.6 Experiences

We organized two proof-of-concept demonstrations for a number of radiologists and
physicians from the hospital; one took place in the CAVE at SARA, Amsterdam, the
other in the radiology department of the Leiden University Medical Center (LUMC,
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Figure 2.10: Surface rendering of the abdomi-

nal aorta. GEOPROVE (see section 4.5) is used

to measure the angle of the bifurcation (see also

colour reproduction on the back cover).

Figure 2.11: Interactive oblique

clipping of a volume rendering of a

human head MRI scan (image cre-

ated by Anton Koning, SARA).

Leiden). For the latter we installed an IDesk projection system in the department
with a Silicon Graphics Octane as the computing and graphics hardware. The data
sets used in the demonstrations included patient scans provided by the radiologists
as well as scans obtained from other sources, such as the Visible Human data sets
[2, 174, 223]. The VRE application showed how patient data stored in a database on
the IBM SP2 at SARA could be loaded via a network connection and visualized using
volume and surface rendering techniques (see Figures 2.10 and 2.11). In addition,
the system demonstrated how isosurface modeling could be executed on the IBM SP2,
the results of which would then be transfered back to the visualization front-end for
rendering.

During an evaluation meeting it became clear that the radiologists and physicians re-
garded the VRE environment as a useful instrument for educational, demonstration
and communication purposes. However, they agreed that the quality of the visual
representations are insufficient for diagnostic purposes unless applied to very spe-
cific situations in which the visual analysis of three-dimensional structures would
be required. The foremost problem was the lack of texture and detail in the visual
constructs generated by VRE. The most important reason for this is a hardware limi-
tation of the graphics pipelines that were used, both in the Onyx2 of the CAVE and in
the Octane; most of the data sets used for the demonstrations had to be downsampled
and reduced in scalar resolution to fit in the available texture memory. Further-
more, some of the interaction mechanism provided were regarded as difficult to use,
most specifically the definition of colour transfer tables in volume rendering (which
in some cases could be solved by providing presets), determining proper isocontour
levels for surface rendering (which in some cases could be solved by providing image
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Figure 2.12: Execution time (in seconds), speedup and efficiency of the parallel isosur-

face engine on a high resolution version of the data set shown in Figure 2.8.

histograms) and the techniques for the manipulation of the presented constructs (i.e.
rotation, scaling, translation versus navigation in the VE).
In addition to this, there are also practical reasons why radiologists will not adopt
this kind of technology right away. Radiology departments do not have the funds,
manpower or space to house and maintain a CAVE installation. Nor will they be will-
ing to spend time to travel to a CAVE installation elsewhere. Smaller systems like
the IDesk come a little closer to a solution as these can be used in the radiology de-
partment. Still, these systems are too expensive. In Chapter 3 (page 51) we describe
the construction of low-cost VR systems based on off-the-shelf computing hardware.
An addition to the VRE system that would make the system more useful was found to
be a capability that allows measurements to be taken from the visual presentations.
Physicians often need information on the size of certain anatomy and/or pathology in
order to prepare a surgical procedure. Obtaining measurements from visual repre-
sentations in a VE is an area in which very little research has been done. We took
up that challenge and present an architecture to do measurements in VEs, called
GEOPROVE, in section 4.5 (page 86).
Figure 2.12 shows the performance characteristics of the parallel isosurface engine
while modeling the isosurface of the skin from a CT scan data set of 256 × 256 pix-
els per slice, 94 slices, 16 bits per pixel (this is a high resolution version of the data
set shown in Figure 2.8 and with the same threshold value). This figure shows that
the extraction of isosurfaces on multiple processors does result in a reduced execution
time but that the efficiency of the parallelization is far from optimal. As already noted
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earlier, this is caused by the domain decomposition method that was used. Indeed,
performance measurements of the same algorithm on uniform data, resulting in an
equal workload on all subdomains, show an almost linear speedup (data not shown).
To increase efficiency of the program, methods should be introduced to balance the
workload over the available processors. Because the performance of the current im-
plementation was considered acceptable for our purposes we have not pursued these
methods. Various methods could be used to improve the workload balance to obtain
better efficiency such as alternative data decomposition methods or through farming
of the data in small portions over the available processors.

2.4 Diffusion and flow limited biological growth

In our research group there is a strong interest in the study of biological systems
[111–121]. Computational simulation models play a fundamental role in the study
into the behaviour of these systems. What is frequently missing are methods to anal-
yse the results of these simulation models that help in their validation. Frequently,
automated analysis of the simulation results is difficult due to the unavailability of
suitable algorithms or, in cases where algorithms do exist, the computational require-
ments are too high to perform an effective analysis. In the following case study, we
address a computational model for the study of marine sessile organisms, such as
sponges and stony corals. We describe an immersive visualization environment that
is used for the interactive visual analysis of simulation results.

2.4.1 Background

In the development of many biological systems, the distribution of chemical agents
and nutrients plays a fundamental role. For filter-feeding marine sessile organisms,
such as stony-corals, the growth process is affected by the distribution of suspended
material in the external environment. From the biological literature it is well-known
that water movement may have a strong impact on the shape of stony-corals. It
is often possible to correlate growth forms of stony-corals with the amount of wa-
ter movement. Compact growth forms are generally found under conditions with a
large exposure to water movement, while the growth form changes gradually into a
branching shape when the amount of water movement decreases. Figures 2.13 and
2.14 show two growth forms of the stony-coral species Pocillopora damicornis. The
compact form in Figure 2.13 originates from an exposed site and the thin-branching
form in Figure 2.14 was collected from a sheltered site.
Our research group has studied the effect of hydrodynamics on a very simple type of
growth process, viz. growth by aggregation. In this model, aggregation proceeds by
the accumulation of a “nutrient”. The nutrient distribution is modeled using a Lattice
Boltzmann model of transport. The aggregate absorbs the nutrient and the amount
absorbed determines the local growth probability. We have carried out simulations of
growth processes (aggregation processes) in which an aggregate consumes nutrients



2.4 Diffusion and flow limited biological growth 43

Figure 2.13: Growth form of the stony-

coral Pocillopora damicornis originat-

ing from an exposed (to water move-

ment) site.

Figure 2.14: Growth form of the stony-

coral Pocillopora damicornis originat-

ing from a sheltered (to water move-

ment) site.

from its environment and where nutrients are dispersed by a combined process of
flow and diffusion [121]. The effect on the aggregate caused by different rates of fluid
flow and nutrient dispersion is investigated.

2.4.2 Analysis of simulation results

The data resulting from these simulations includes the growth of the aggregate over
time, the dispersion of nutrients around the aggregate, the absorption of nutrients on
the surface of the aggregate and the velocity of flow around the aggregate. Growth
in the data is encoded as a three dimensional volume of grid nodes V (x,y,z) where
V (x,y,z) = t denotes that the grid node at (x,y,z) was aggregated at time step t (and
V (x,y,z) = 0 in grid nodes where no aggregation took place). Originally, the only
method to obtain insight in the results of the simulation was through visualization of
the generated data sets and visually comparing these with existing coral structures.
A special purpose software package was implemented to obtain surface models of the
generated structures at each growth step T by extracting an interpolated isosurface
from the volume through all grid nodes where V (x,y,z) = T , which were then visual-
ized on a graphical workstation. This resulted in a 3D surface representing the shape
of the aggregate. However, the complexity of the aggregates was such that the gen-
erated surface models were too big to allow interactive exploration. In such cases it
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was often necessary to generate animations on video which took well over a week to
produce. In addition, the end results were inherently non-interactive which impedes
exhaustive exploration.

2.4.3 Interactive exploration in Virtual Reality

To allow the simulation data to be explored interactively, we have built an environ-
ment that allows the simulation data sets to be explored inside a CAVE. This envi-
ronment supports interactive visualization of surface models of the aggregate at any
time step, animated playback of the development of the aggregate from start to finish,
surface models of the nutrient distribution around the aggregate and colouring of the
aggregates based on absorption.
For our initial experiments towards the development of an exploration environment
we have taken a simulation model for the investigation of diffusion and flow lim-
ited biological growth. We have used data sets resulting from simulations of growth
processes (aggregation processes) in which an aggregate consumes nutrients from its
environment and where nutrients are dispersed by a combined process of flow and dif-
fusion. Details about the simulation model are given elsewhere [121]. As an example,
the effect on the aggregate caused by different rates of fluid flow and nutrient disper-
sion is investigated. The data resulting from these simulations includes the growth
of the aggregate over time and the dispersion of nutrients around the aggregate. This
model has been used as a simple model for coral growth [121].
Our interest is to compare the simulated structures with structures found in nature,
the investigation of the complex geometry generated by the simulation and the flow
fields around it, the behaviour of tracer particles released in the flow field, the loca-
tion of nutrient absorption points, and the location of pressure fields causing hydro-
dynamical forces on obstacles. A crucial issue in the development of morphological
simulation of growth processes is the ability to compare simulated growth forms with
the actual objects. For this reason we have compared data sets of actual objects to the
simulated growth. The data on the actual objects were obtained from CT scans made
of some samples of the stony-coral Pocillopora damicornis. These CT scans consist
of slices that each contain 512 by 512 16-bit gray scale values, where the number of
slices depends on the length of the object and the number of rotations made by the
scanner. The model shown in Figure 2.15 was reconstructed from 30 CT slices from
which a surface contour was generated using an isosurface extraction algorithm in
the Visualization Toolkit [209]. The CT scanner used for this scan was a Philips To-
moscan SR7000. The relatively low number of slices results in a decreased resolution
in one of the principal axes which poses some problems in the reconstruction of a
model that should be accurate enough for quantitative comparison.
Although our exploration environment provides methods by which the data sets can
be explored visually, an important aspect in the development of any simulation model
is its verification against the system that is modeled. A major problem in the quan-
titative comparison of the simulation results with actual phenomena is that in many
cases there is no single discriminative feature by which they can be differentiated.
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Figure 2.15: Surface reconstruction of a CT scan of Pocillopora damicornis.

In our test-case for example, a property such as the fractal dimension [155] gives
some insight in the global resemblance of different structures but is inadequate in
describing the quality of the simulation model as only a limited aspect of the overall
morphology of an object is captured. Therefore, it is often more suitable to obtain
measurements on multiple properties in local areas of the data sets that together
form a discriminative measure.

In case of the growth model we wish to compare the shape of the resulting struc-
tures to those found in nature. In previous work it has been demonstrated that mor-
phological properties such as for example the thickness of branches and the short-
est distance between neighbouring branch points (“branch spacing”) provides rele-
vant biological information and can be used to compare simulated with actual growth
forms [118,119].

In addition, when comparing simulated coral objects with actual corals, the compari-
son procedure should be non-destructive to the real coral as most of these are valuable
and irreplaceable specimens. However, this makes many measurements difficult if
not impossible since the complex shape of these structures prohibits the use of instru-
ments that may damage the coral. One possible solution is to acquire a sufficiently ac-
curate three-dimensional scan of the coral. Since conventional photographic or laser
scanning techniques are only suitable for obtaining surface models of objects which
have no obstructing components, these devices are unsuitable for scanning complex
and irregularly structured objects such as corals. Fortunately, we have obtained dig-
ital 3D data sets of a number of corals which we can use for our purposes through
the assistance of the Radiology department of Leiden Academic Hospital, who have
graciously offered to scan the corals with a computed tomography (CT) scanner.

Although the properties we want to measure could be obtained automatically using
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Figure 2.16: CAVE application for the exploration of aggregation processes. (see also

colour reproduction on the back cover).

data analysis techniques, this often requires designing and implementing specialized
algorithms that are dedicated to the specific task. Quite often these techniques rely on
heuristic algorithms that are difficult to design, implement and control. An interac-
tive environment equipped with a system that allows measurements to be taken from
the visualizations that are rendered in the virtual environment can provide the tech-
niques needed to acquire quantitative properties from data sets which would have
been difficult to obtain otherwise. We have designed and implemented a system to
support this, called GEOPROVE which will be described in detail in section 4.5 (page
86).

2.4.4 Exploration in the CAVE

We have built an interactive exploration system that allows the data sets, generated
by the simulation, to be explored inside the CAVE located at SARA. Within this inter-
active exploration system, surface models were used for visualizing the growth of the
objects, a tracer distribution model for studying tracer distributions about complex
objects and for measuring the degree of absorption of tracers at the objects, methods
for visualizing the flow field around the objects, and methods for sectioning the objects
which enables us to study the addition of material during the growth process.
Figure 2.16 shows the result of a simulated aggregation process. The aggregate
emerges in an environment where nutrients are mainly dispersed by diffusion. In
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this case an irregular branching aggregate is formed. The colour of the object rep-
resents age; from dark red for “old” parts, to white for “young parts”. The nutrient
distribution around the aggregate is visualized using a blue-white gradient, where
blue indicates a high and white a low nutrient concentration. The exploration envi-
ronment facilitates the interactive inspection of these gradient planes by allowing the
plane to be moved through the simulated structure over all three principal axes.

2.4.5 Discussion

Using the developed exploration environment we have investigated simulated results
of various experiments in which the influence of hydrodynamics on the growth process
was varied. In addition, we have been able to compare these results with CT scans
of actual stony-corals. Using these CT scans, a more flexible comparison of the sim-
ulated structures to those found in nature is now possible. The qualitative compari-
son showed that both the simulated growth forms and the actual stony-corals show
a similar tendency: when the influence of hydrodynamics increases, both simulated
and actual forms exhibit an increase in compactness. This observation corresponds
to the observations reported in [121]. The exploration system has also shown differ-
ences which were not detected before: when comparing the CT scans to the simulated
results it was found that there is a difference in the branching patterns. Especially
in the compact aggregates branches tend to fuse (anastomosis) easily, while this phe-
nomenon was not detected in the CT scans. This observation indicates a difference
between the actual growth and the simulation model.
Our main finding is that the use of this exploration environments in the CAVE al-
lows us to study the effect of flow on the nutrient distribution far more easily than
was previously possible. The environment allows us to study the morphology of the
aggregates simply by walking around the presented object. Using the CAVE’s “wand”
we are able to explore the growth of the aggregate over time, and the dispersion of
nutrients around the aggregate.

2.5 Summary and conclusions

In this chapter we described three interactive exploration environments: one for the
exploration of car crash simulation results, one for the exploration of 3D medical data
sets and one for the exploration of simulation results of a diffusion and flow limited
biological growth modeling simulation. Our aim was to obtain a better understand-
ing of the different issues involved in the design, implementation and use of these
interactive exploration environments.
To obtain usable environments in terms of the requirements described at the start of
this chapter (i.e. quality of presentation, rapid frame rate, intuitive interaction and
real-time feedback), we had to make compromises. Some of these have resulted in
minor nuisances. For example; in the car crash environment, the use of display lists
increases application startup time but results in higher frame rates and increased



48 Design considerations for interactive exploration environments

responsiveness. Also, the parallel isosurface modelling method used in the VRE envi-
ronment results in models that can be displayed at high frame rates but at the cost of
increased response time. Other compromises are far more serious; the reduced image
quality as a result of both the down-sampling and the reduction of scalar resolution
of medical data sets (to compensate for hardware limitations), results in visual rep-
resentations that medical experts find insufficient for diagnostic purposes. Also, in
both the VRE and the biological growth environment, it is frequently impossible to
construct an acceptable quality isosurface model that, at the same time, consists of
sufficiently few triangles that they can be drawn at high frame rates. As a result,
users are often confronted with high quality isosurface models with which interac-
tion is almost impossible due to low frame rates, or with low quality models that can
be displayed at acceptable frame rates. Most of these problems are the direct result
of graphics and computing hardware limitations. Given time, the increase in perfor-
mance and capabilities of future hardware may allow at least some of these problems
to be overcome. However, as already noted in chapter 1 of this thesis, an increase in
computing performance is invariably accompanied with an increase in problem size
so that hardware limitations will always remain a problem.

Of all the experiences our users had with the environments, what had the most im-
pact was the acuteness of the immersive experience in the virtual environments. Al-
most instantly, the users of our environments were impressed with the fidelity of the
virtual objects floating in front them, which in some cases even made them want to
reach out and touch the virtual objects. This quality can be mostly attributed to the
combination of the surround-screen projection system of the CAVE, the stereoscopic
images and head motion parallax. Our environments have also been used in other
research projects, which in some cases resulted in the discovery of artifacts that had
not been noticed before. For example, the VRE environment has been used for the vi-
sualization of 3D confocal laser scanning microscopy (CLSM) data from the molecular
cell biology research group of the University of Amsterdam where they found spatial
configurations in the nucleus of biological cells that had not been detected before.

The biggest problem for most inexperienced users was the interaction with the envi-
ronments. In relatively simple environments (such as the car crash simulation play-
back environment), the number of functions offered by the application are sufficiently
few that users have little difficulty interacting with the environment. However, in
more complex environments, it has proven to be difficult to provide the environment’s
functionality in an intuitive manner. For one, this can be attributed to the lack of
graphical user interface (GUI) toolkits for virtual environments. These toolkits would
enable the application developer to extend the interaction through hardware devices
(like the wand, buttons and joystick) to graphical interaction techniques (such as
graphical buttons, sliders and menus) to create user interfaces that the user knows
well from desktop applications. In chapter 4 we describe several techniques that ad-
dress interaction in virtual environments.

All the environments described in this chapter have in common that the explored
data is static or time-invariant; the data has been collected at a specific point in time;
after data acquisition or after a simulation has finished. Chapter 5 addresses the
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issues involved in the construction of dynamic environments that allow a researcher
to explore the progress of computational processes while they are running.
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Chapter 3

The UvA-DRIVE virtual reality

system∗

“The ultimate display would, of course, be a room within

which the computer can control the existence of matter.

A chair displayed in such a room would be good enough

to sit in. Handcuffs displayed in such a room would be

confining, a bullet displayed in such a room will be fatal.

With the appropriate programming, such a display could

literally be the Wonderland into which Alice walked.”

Ivan Sutherland, The Ultimate Display, Proceedings of

the IFIP Congress, 2, pages 506–508, 1965.

3.1 Introduction

The objective of a Virtual Environment (VE, the environment that is generated by
a VR system) in general is to fool a human being into believing that he or she is
physically located in a synthetically generated environment by presenting him or her
with reactive external stimuli. Of the human sensory system (vision, hearing, smell,
touch and taste), the modality that is most often exploited in a VR system is vision
because it has the greatest and most immediate impact. High-end VR systems, like
the CAVE installed at SARA in 1997, have been successfully applied in numerous
fields, ranging from architecture and engineering, to biotechnology, psychology and
medicine [5,20,25,50,51].
What all these projects have in common is that they need a VR system that can
generate a VE that is so compelling that the user is convinced he is immersed into
a new world. To achieve this, the VR system must, apart from presenting the user
with sensory stimuli, be able to sense the behaviour of a user so that it can react to

∗Parts of this chapter have been published in R.G. Belleman, B. Stolk, and R. de Vries. “Immersive

virtual reality on commodity hardware”, Proceedings of the 7th annual conference of the Advanced
School for Computing and Imaging (ASCI 2001), pages 297–304, 2001.
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the user’s actions. Such an environment then allows the user to interact with the VE,
thereby increasing a user’s awareness of the world presented around him. It is this
combination of presentation and interaction that makes VR so interesting.

Having said that, it is curious that VR has not met wider acceptance than it has
up until now. The main reason for this is cost. Not until recently, the only sys-
tems that were capable of providing high fidelity VR were large monolithic computer
systems with dedicated graphical subsystems that cost millions. However, with cur-
rently available commodity off-the-shelf (COTS) hardware and open source software
it is now possible to build VR systems that rival and in some cases surpass the capa-
bilities of large commercial VR systems.

This chapter describes a design that has resulted in the construction of, amongst oth-
ers, the University of Amsterdam Distributed Real-time Interactive Virtual Environ-

ment (UvA-DRIVE), a fully functional VR system based on COTS hard- and software.
Section 3.2 discusses the requirements of VR systems and the considerations that
have to be taken into account while constructing one. Section 3.3 describes a number
of design options for a VR architecture. Section 3.4 presents the prototype which has
been built and the results of a comparative benchmark. Finally, in section 3.5 we
present our conclusions.

3.2 Requirements and considerations

The primary objective of this work is to design and build a fully functional VR system
that allows users to explore their datasets or to develop prototypes of virtual environ-
ments for later use in larger systems, such as a CAVE, without having to use these
more expensive resources during development. The considerations we made in the
design of the new architecture are the following.

Multi user

In most applications, a researcher wants to explore and discuss the results of an
experiment with his peers. The display system should therefore allow more than
one person to join in the experience. This rules out the use of head-mounted displays
(HMD) that essentially provide a single user VR experience (the increase in both com-
plexity and cost make it impractical for every user to wear an HMD). Furthermore,
conventional cathode-ray tubes (CRT) monitors are too limited in size; in practice, no
CRT monitors larger than approximately 100 cm in diagonal exist. Larger sized LCD
panels are available but suffer from low refresh rates which makes them unsuitable
for VR displays.

Minimal effort in porting existing software

In the past, extensive effort has been put in the development of visualization and VR
applications for use on high-end VR systems. An important requirement is, therefore,
that the use of this software can be continued on the new architecture with minimal
porting efforts.
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Processor and graphics performance

The data sets that are currently explored by the users of VR systems range anywhere
from low to high volume and complexity. To accommodate the full range, the archi-
tecture’s processing power and graphical performance should be able to handle these
datasets adequately.

Stereoscopic 3D display

Stereo vision adds a compelling depth-cue over perspective projection by providing
the left and right eye with slightly different images, corresponding to the differences
the eyes see when looking at objects in the real world. This property, together with
the ability to interact with a VE is what makes a VR system a unique tool for explor-
ing large, complex, multi-dimensional data sets.

Head and hand tracking

Head tracking makes an additional depth-cue possible known as “motion parallax”.
With this technique, the environment responds naturally to the movements of the
user so that one can attain additional information on the shape and size of a 3D
structure. Hand tracking allows a VR system to determine the position and orienta-
tion of the user’s hand so that interaction with the environment is possible.

Flexibility and scalability

Rapid advances in the semiconductor industry make computing and graphics sys-
tems virtually obsolete within a time span of three to five years. To lengthen this
time span, the new architecture should consist of components that can be easily re-
placed as better hardware becomes available.

Cost

For most end-users, project budgets are limited. The solution we are looking for there-
fore aims at providing a VR architecture that is low cost (both in construction and
maintenance) but not at the expense of the requirements mentioned above.

3.3 Design options for a VR architecture

Given the requirements and considerations outlined in the previous section, we have
investigated a number of options to construct a VR architecture based on commodity
hardware. During our investigation we have considered a number of different designs
which will be discussed in this section. The architecture we have selected and built is
described in section 3.4.
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3.3.1 Multi user stereoscopic display

The display system is that part of the VR system the experimenter looks at and in-
teracts with. In some cases, a quality monitor may be quite sufficient as a display
system but for multi user use, a monitor is often too small. A convenient method for
obtaining a large display area is to use high brightness projectors that project images
on large surfaces that can be viewed by multiple users at the same time. In these sys-
tems a projector projects images on a screen, mostly on the back so that the user can
move freely in front of the screen without occluding the projected images (see Figure
3.1). This chapter will only cover single screen projection systems.

Front Projection (Occlusion) Back Projection (No occlusion)

Figure 3.1: Front and back projection systems.

For projection based systems, there are basically two methods to generate stereoscopic
images; active and passive stereo systems.

Active stereo

In active stereo systems, a single display device (i.e. a graphics adapter and a projec-
tor) is used to generate images for the left and right eye alternately. The display of
the images is synchronized with a device that ensures that the users see only the left
image in the left eye and the right image in the right eye.
The application, the graphics adapter’s firmware and the graphics adapter’s hard-
ware must support this type of stereo through an interface that signals the end of a
frame. This is commonly done using the vertical retrace signal that is generated by a
graphics adapter at the end of a frame. To prevent eye fatigue, the frame rate of an
active stereo display should be at least 100 Hz (i.e. 50 Hz per eye).
Active stereo systems either use shutter glasses or active polarization filters to direct
the left and right eye images into the correct eye (as will be illustrated using Figures
3.2 and 3.3).

Active stereo using shutter glasses

Shutter glasses (see Figure 3.2) use a liquid crystal material that can be turned
opaque or transparent under hardware or software control. The glasses are controlled
by the graphics system, either through a wire connection or via wireless infra-red, in
sync with the rendered left/right images. Although this method of generating stereo
images is the most commonly used, the shutter glasses can be quite expensive and
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LCD shutter glasses
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Figure 3.2: Active stereo using liquid crystal shutter glasses.

often get uncomfortable over long periods of use.

Active stereo using a “Z” screen

A “Z” screen (see Figure 3.3) is a dynamic optical filter that alternately changes the
polarization direction of light that travels through under hardware or software con-
trol. The low cost, lightweight glasses worn by the users also contain polarized mate-
rial that only passes light with a specific polarization direction. Linear polarization is
used (“left-right” and “up-down”), which implies that the users should keep their head
aligned with the Z screen in order to avoid that images for one eye “bleed through” to
the other. Circular polarization filters do not have this problem but these only exist
for passive setups.

L/R

video

‘‘Z’’ screen

screen

polarized glasses

host

projector

Figure 3.3: Active stereo using an active polarization screen (“Z” screen) and polarized

glasses.

Passive stereo

In passive stereo systems, two display devices are used; one for each eye (see Figure
3.4). Static polarization filters are used to polarize the left and right eye images from
the projectors while the users wear low cost, lightweight polarized glasses to direct
the left/right images into the correct eye. Again, linear polarization is used in most
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cases so that the users must keep their head aligned with the polarization filters to
avoid image bleed. Circular polarization filters exist that do not exhibit this problem
but these are very expensive and adversely influence image brightness.

polarization
filters

video L

video R

screen

polarized glassesprojector

projector

host

Figure 3.4: Passive stereo using two projectors, polarization filters and polarized

glasses.

This solution requires “dual-headed” support by both the software and the hardware†

as two graphics adapters are used. Another disadvantage with using two projectors is
that the projectors need to be accurately aligned. With a single projector, calibration
is considerably easier.
In any polarization system, special care has to be taken with the choice of screen
material since most projection screens adversely influence the polarization direction
of incident light. This is especially the case with the use of back-projection systems
and even more so with circular polarization.

3.3.2 High performance 3D graphics adapters

Graphics hardware performance has increased dramatically over the last years. Al-
though this hardware was mainly intended for use in games, the capabilities of these
adapters make them very well suitable for scientific visualization and in some cases
rival the capabilities of commercial solutions. With the introduction of 3D accelerated
chipsets that include hardware support for 3D operations such as linear transforma-
tions, lighting and depth buffering, powerful graphics hardware is now within reach
of everyday consumers.

OpenGL

OpenGL is the premier environment for developing portable, interactive 2D and 3D
graphics applications [261]. With its low-level software interface, OpenGL has often
been called the “assembler language” of computer graphics. Applications in many
domains, including entertainment, manufacturing, medical imaging and more, have

†Note that most graphics adapters for PCs use the AGP interface while no PC motherboards existed
at the time of writing which have more than one AGP slot.
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benefited from OpenGL’s multi-platform accessibility and depth of functionality. Since
SGI introduced OpenGL, it has grown into the leading cross-platform graphics Appli-
cation Programmer’s Interface (API).

Hardware acceleration

OpenGL’s design lends itself very well for hardware acceleration. Hardware accel-
erated graphics adapters have been available for SGI systems since the early days
of OpenGL. But mostly due to the advances in the gaming industry, semi-conductor
manufacturers are now rapidly closing this historical gap and in some cases surpass
the performance of SGI’s hardware.
For most high-end graphics adapters, hardware accelerated OpenGL support for var-
ious operating systems is available either directly from the vendor or through third-
parties. However, this support is in some cases experimental and lacks features that
are desired for VR purposes (such as stereo support).

Stereoscopic 3D

The essential part of stereoscopic rendering is the generation of two video streams;
one for the left eye and one for the right eye. The task of generating and managing
stereo pair video streams should not be the responsibility of the application developer.
Instead, this should be fully transparent to the developer.
The common approach taken by most graphics adapter manufacturers is to use four
frame buffers; images for the left and right eye are drawn into a “back” buffer while
the user looks at the left and right images in the “front” buffer (commonly referred to
as “quad buffered stereo”). While most 3D graphics adapters support quad buffered
stereo in hardware, this support is not always reflected in the driver software for some
operating systems. In cases where no quad buffered stereo support is available, an-
other method must be used to generate stereo pairs. For the display options described
in section 3.3.1, there are a number of alternatives.

Stereoscopic 3D using X Windows

The de facto standard graphics system for Unix environments is the X Windows
system. X Windows uses the concepts of hosts, displays, screens and windows (ar-
ranged from broad to narrow scope, see Figure 3.5). X Windows is able to access
any graphical display on a connected system using an identifier of the form host-
name:displaynumber.screennumber.
Using X Windows, we can opt for one of the following configurations to generate stereo
image pairs:
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Figure 3.5: The X Window system concept of hosts, displays, screens and windows.

Two hosts, two graphics adapters:

left right
host1

host1:0.0 host2:0.0

host2

network

Here two hosts are connected via a network, each equipped with a graphics adapter
and display device (a monitor or projector). Using a display identifier as described
earlier, each host can access the other host’s display‡. This configuration is suitable
for use in a passive projection system (see Figure 3.4).
The greatest advantage of this configuration is that left and right eye images can
be rendered by each graphics adapter in parallel, which can improve performance.
However, in practice, one of the two hosts will run the VE application which computes
the view for both the left and right eye. Then, it renders its own view on its local
adapter and the other view is sent over the network. The other host then only has to
render the graphics that it receives over the network. This implies a load imbalance
which may result in synchronization problems if no countermeasures are taken.
A possible solution to these synchronization problems would be to run the application
on a third system, but in that case network traffic doubles since now rendering infor-
mation for both eyes must be communicated.

‡The X Window implementation should support the GLX protocol in order to run OpenGL applica-
tions over a network.
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One host, two graphics adapters:

rightleft

host1:0.0 host1:1.0

host1

In principle, the synchronization problems described above would be solved by us-
ing two graphics adapters in one host (parallelism is then sacrificed, of course). In
that case the application renders the left/right views to two displays that reside on
the same host. However, this configuration can not be built from commodity hard-
ware since (as noted earlier) most graphics adapters use the AGP interface while PC
motherboards only have one AGP slot. Some graphics adapters exist for a PC’s PCI
interface, allowing an additional card to be added, but it should be noted that the
performance of these cards is often substantially less than that of AGP based cards
(mainly because of the lower bandwidth of the PCI bus), again resulting in synchro-
nization problems.

One host, multi-headed graphics adapter:
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Multiple screens on the same host can be achieved by using a graphics adapter with
multi-head output. Synchronization can be controlled since the two views are com-
puted on one host and rendered to two outputs on the same graphics adapter.
Care should be taken that the operating and graphics system include multi-headed
support (for example; XFree86, an X window implementation available for various
operating systems, supports multi-head since version 4.0.1, released late 1999, but it
does not support accelerated OpenGL to both heads).
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One host, one graphics adapter and sync-doubler:
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Specialized hardware in the form of a “sync-doubler” can be incorporated in cases
where none of the alternatives described above can be applied. A sync-doubler is a
device that accepts as input a video signal of X Hz, and outputs a signal of 2X Hz,
whereby the frames are constructed by using the top and bottom half of the input
image in an alternating fashion. The top and bottom halves often need to be separated
by a number of blank lines.
This simplifies the task of generating a stream of mixed video frames to generating a
video stream composed of top/bottom halves. A drawback of the sync-doubler method
is that vertical resolution is halved.

3.3.3 Tracking and input devices

Position and orientation are typically determined through six degrees-of-freedom
(DOF) tracking sensors (or “trackers”). A tracker mounted on the user’s head allows
a VR system to provide user centred projections that correspond to a user’s displace-
ments (“motion parallax”). A hand tracker allows the user to interact with virtual
objects. VR input devices often combine trackers with a number of buttons that allow
the user to convey intention to the VE, similar to the buttons on a mouse on personal
computers.
There are different types of tracking systems, each based on different acquisition tech-
niques such as magnetic, acoustic, optical and inertial trackers. Each of these have
their strong and weak points but to describe these would go far beyond the scope of
this chapter. By far the most popular in VR systems are the magnetic tracking sys-
tems built by Ascension and Polhemus. Although these tracking systems have been
in existence for many years, they are still very expensive due to the unavailability
of acceptable alternatives. A positive side effect of this is that they are supported by
nearly all VR application development environments.

3.3.4 Software availability

Since most of our previously developed software runs on Unix operating systems and
makes use of OpenGL, SGI’s OpenGL|Performer, VRCO’s CAVE library, Kitware’s
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Visualization Toolkit and DMSO’s High Level Architecture, a prerequisite is that this
software is available for the new architecture.
OpenGL has already been described in section 3.3.2. The following provides a brief
overview on the other software packages.

OpenGL|Performer

OpenGL|Performer is a programming interface for creating real-time visual simula-
tion and other performance-oriented 3D graphics applications [190]. It simplifies the
development of VR applications through a low level library providing rendering func-
tions, a scene graph and rendering system, functions for defining both geometric and
appearance attributes of three dimensional objects, user-interface components and
support for many popular industry standard database formats. OpenGL|Performer is
currently available for IRIX and Linux systems. Microsoft Windows support will be
added in version 3.0 which is scheduled for release in late 2002.

The CAVE library (CAVELib)

CAVELib is an Application Programmers Interface (API) that provides general sup-
port for building virtual environments [249]. CAVELib configures display devices,
synchronizes processes, draws stereoscopic views, creates a viewer-centred perspec-
tive and provides basic networking between remote Virtual Environments. A flexi-
ble configuration method makes programs written with CAVELib portable to a wide-
variety of display and input devices without rewriting or recompiling. CAVELib cur-
rently supports most common Unix systems. Microsoft Windows support was added
in 2002.

The Visualization Toolkit (VTK)

VTK is an open source, freely available software system for 3D computer graphics,
image processing, and visualization [209]. The design and implementation of this
library has been strongly influenced by object-oriented principles. VTK includes a
C++ class library containing over 500 visualization objects, and several interpreted
interface layers including Tcl, Java, and Python. VTK runs on nearly every Unix
based platform and Microsoft Windows.

The High Level Architecture (HLA)

The High Level Architecture (HLA) aims to establish a common architecture for sim-
ulation to facilitate interoperability among simulations and promote the reuse of sim-
ulations and their components [165]. As a successor to the DIS (Distributed Interac-
tive Simulation) protocol, HLA provides a robust architecture with which distributed
discrete event and other types of simulations can be designed. One particular im-
plementation of HLA, the Run Time Infrastructure (RTI) developed by the Defense
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Modeling and Simulation Office (DMSO, United States Department of Defense), is
supported on all major computing platforms.

3.3.5 Computing hardware

The computing hardware performs the main processing in the system, delegating
hardware specific tasks to dedicated subprocessors. For a high performance VR sys-
tem, the components used in the computing hardware should be selected with some
care. For example; as most VR applications benefit from a multi processing design,
the performance of the system as a whole can be increased by applying a multi-
processor design. The easiest multi-processor solution would be a Symmetric Mul-
tiProcessing (SMP) architecture in which all processors share the same resources in
the system. Although the maximum number of processors in an SMP architecture is
limited, it makes porting of existing software far easier when compared to distributed
multi-processor systems where some form of synchronization will need to take place.

Because graphical performance is important in VR applications, the communication
bus between the main CPU and the graphics adapter should be of sufficient band-
width to handle all data communication within the time constraints imposed by the
application. One particular example of a bus architecture in which the communica-
tion bandwidth between the main processor and the graphics adapter is optimized
can be found in most personal computers (PCs), called the Accelerated Graphics Port
(AGP). The initial implementation of AGP allowed for a peak bandwidth of 264 MB/s
which was almost double the 133 MB/s bandwidth provided by the main PCI bus
found in PCs at that time. In later versions of AGP, bandwidth was increased further
by allowing multiple data transfers per clock cycle which resulted in bandwidths of
528 MB/s (for AGP 2×), 1056 MB/s (for AGP 4×) and 2112 MB/s (for AGP 8×).

Most manufacturers of computing hardware have taken some, or all of these issues
into account in their designs. Mass acceptance has caused PC technology to be able
to rival, both in terms of performance and quality, that of large commercial computer
hardware manufacturers but at a significantly lower price. In addition, PC based
hardware allows high flexibility and scalability in the sense that hardware can be
replaced by newer (in general; faster, better) hardware easily and at low cost as soon
as it is available.

Operating system

Several operating systems are available for Intel processor based PC platforms, in-
cluding IRIX, Solaris, various flavours of BSD and Linux. However, not all of these
provide both the hardware and software support required for compatibility with the
VR applications as described in section 3.3.4. The Linux operating system in this
respect provides the most complete support.



3.4 The design of UvA-DRIVE 63

3.4 The design of UvA-DRIVE

After careful consideration of the requirements posed in section 3.2 and the design
options outlined in section 3.3, we have opted for an Intel PC based computing system
in conjunction with an active shutter glasses system as shown in Figure 3.2. The
operating system running on this system is Linux. A first prototype of our design
was built by SARA in 2001, called the Linux Immersive Environment (SARA LIE).
Multiple systems have been derived from this prototype, including UvA-DRIVE.
Unfortunately, at the time of construction, none of the drivers for OpenGL accelerated
adapters that were supported under Linux contained quad buffered stereo support§.
As an intermediate solution for the prototype, we use the “sync-doubler” technique
described in section 3.3.2 to generate stereo pair video streams. The sync-doubler also
drives an infrared transmitter that switches the shutter glasses. As we have opted
to use an active stereo approach, the system requires only one projector. A schematic
representation of the architecture is shown in Figure 3.6. Table 3.1 provides a list of
components and specifications of both SARA LIE and UvA-DRIVE compared to the
SARA CAVE.

host

tracking

projector

infrared emitter
L/R

screen
hand tracker

interaction device

head tracker

video 2vsync

vsync
sync doubler

Figure 3.6: General setup of the VR architecture: an active stereo projection system us-

ing sync-doubling technology and an interaction system based on tracking hardware.

3.4.1 Top-bottom stereo with CAVELib

Since all previously developed VR software is based on VRCO’s CAVELib, we have
chosen to use CAVELib to minimize porting effort. Using CAVELib, the application
programmer can ignore technicalities like the number of projection screens, the setup
of the projection screens, the mono/stereo properties of projection screens. Instead,
the application developer can focus on that what matters: the 3D scene. How this 3D
scene is conveyed to the user is irrelevant from the developer’s point of view.
CAVELib has a feature that allows the rendering for left/right eye to be performed at
a specified sub window of the physical screen. Also, CAVELib supports applications

§nVidia (a manufacturer of high performance graphics chips used in many PCs today) released
Linux drivers with quad buffered stereo support on September 10, 2002 (version 1.0-3123) [173].
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SARA CAVE (1997) SARA LIE (2001) UvA-DRIVE (2002)

CPU 8 × MIPS R10000 2 × Intel Pentium-III 2 × Intel Pentium-III

CPU clock 195 MHz 700 MHz 1.0 GHz

architecture Onyx2 ASUS P2B-D, SMP ASUS CU4VX-D, SMP
Reality Monster Intel 440BX chipset VIA Apollo Pro chipset

memory 1 GB 256 MB, 100 MHz FSB 1 GB, 133 MHz FSB

graphics 4 × InfiniteReality2 Creative Labs ASUS V7700 (modified)
nVidia GeForce2 GTS nVidia Quadro2 Pro

gfx memory 4 × 16 MB 32 MB video memory 64 MB video memory

CPU→gfx bus 800 MB/s 528 MB/s (AGP 2×) 528 MB/s (AGP 2×)

projector Electrohome Electrohome Electrohome
Marquee 8500 Marquee 8500 Marquee 8110+

screens 4 (CAVE) 1 (IDesk) 1 (ImfinityBox)

tracking Ascension FoB Ascension FoB Polhemus Fastrak
four sensors two sensors two sensors

OS IRIX 6.5 Linux Debian (“sid”) Linux RedHat 7.3
kernel 2.2.18 kernel 2.4.19

software X Windows XFree86 4.0.2 XFree86 4.0.1a
OpenGL 1.1 nVidia GLX 0.9-6 nVidia GLX 1.0-2960
Performer 2.3 Performer 2.3 Performer 2.3
CAVELib 2.7 CAVELib 2.7 CAVELib 3.0.1

Table 3.1: Comparison of components and specifications of the CAVE, SARA LIE and

UvA-DRIVE.

that use OpenGL|Performer. This creates two additional advantages: minimal port-
ing effort for the migration from SGI (CAVE) to Linux, save a recompilation of the
sources, and also good possibilities for performance measurements comparing SGI
and PC based VR.

XFree86 was configured to run at 1024x1576 resolution with a colour depth of 24
bit per pixel. This means, that after sync-doubling, (1576-40)/2 = 768 pixels remain
in the vertical direction¶; the same as on the SGI Onyx platform used in the SARA
CAVE. We have found that a vertical sync of 85 Hz (170 Hz when doubled) is possible,
provided that a high quality projector is used.

3.4.2 Performance measurements

We have run benchmarks with full tracking support and stereo vision support. The
program to test the performance is an application developed by SARA, on top of
VRCO’s CAVELib.

In benchmark A, the dataset consists of 16 animated objects. Each object consists
of 9120 triangles (a total of 145920 triangles), organized in 405 triangle strips. In
benchmark B, the dataset consists of a surface model extracted from an Computed

¶The sync-doubler requires 40 blank lines between windows.
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Tomography (CT) dataset using a surface extraction algorithm. The dataset contains
204480 triangles, organized in 39134 triangle strips.
Two platforms were used for benchmarking. The first is SARA’s CAVE facility; an
SGI Onyx2 Reality Monster with 8 R10000 CPUs at 195 MHz, running IRIX 6.5.
This system is equipped with 4 InfiniteReality2 graphics pipes. For benchmarking,
we disabled all but one screen. The CAVE ran the benchmarks at a stereo 1024x768
resolution, 60 Hz refresh rate (120 Hz stereo), and full screen anti-aliasing.
The second system is the SARA LIE system described in section 3.4, and ran the
benchmarks at a stereo 1024x768 resolution, 58.4 Hz refresh rate (116.8 Hz stereo),
and without full screen anti-aliasing‖. Both tests did not include texture mapping.

test A test B
CAVE 13.3 5.5
SARA LIE 11.7 6.3

Table 3.2: Performance in frames per second of the SARA CAVE and the SARA LIE

prototype in two tests.

The results (see Table 3.2) show that there is no significant performance difference
between the two platforms. The PC based system performs better on test B. This is
mainly due to the fact that a single Intel CPU has a better floating point performance
than a single MIPS CPU [181].

Figure 3.7: The UvA-DRIVE system.

3.5 Conclusions

Immersive VR on commodity hardware shows great promise. Although not all the re-
quired hard- and software components for a single screen immersive VR system based

‖Although the nVidia GLX implementation supports anti-aliasing, we could not get CAVELib for
Linux to enable this mode.
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on commodity-of-the-shelf are available yet, progress is made or satisfactory alterna-
tives exist. Our first experiences show that a PC based system is a viable alternative
to established VR systems. We have shown that graphics performance for PC based
solutions is in the same order as that of high-end VR systems and is therefore no
longer a criterion for choosing one solution over the other. Moreover, compatibility
with existing VR applications is provided with currently existing solutions. Because
PC based VR systems are affordable, offer adequate performance and are compatible
with high-end VR systems, a host of new application domains now comes in reach.
Currently, work is in progress at the Section Computational Science for the construc-
tion of a PC based near-field VR system called the “Personal Space Station” (PSS).
This design by Mulder et al. uses a conventional computer display in combination
with a mirror and a camera based tracking system [168] (see also [213] and [186]). As
this design does not use a projector or a large projection screen, it can be built at sig-
nificantly lower cost and is suitable for personal use in a normal office environment. A
PSS is well suited for applications in which direct, hand-eye coordinated interaction
with virtual objects is important.



Chapter 4

Enabling technology for interaction

in virtual environments∗

“People shouldn’t have to read a manual to open a door,

even if it is only one word long (push/pull).”

Donald A. Norman.

4.1 Introduction

Virtual Environments (VEs) are used in areas where the immersion of a person in a
synthetically generated environment provides more insight in a specific problem over
classic methods using a desktop [247]. Often, these type of problems entail the anal-
ysis of three or more dimensional structures that are difficult to comprehend using
projections on two dimensional screens. The primary objective of an immersive VE is
to engulf a user in a computer generated synthetic environment. A successful immer-
sive experience is achieved when the user experiences the sensation of “presence”, of
being part of the artificial environment. Interaction is a key requirement in achieving
this goal.
In this chapter we begin by identifying the interaction methods that are important
to do useful work in a VEs. In the sections that follow, we describe various inter-
action techniques that can be used to create efficient, flexible and information rich
immersive exploration environments.

4.1.1 Increasing awareness through interaction

Different sensory modalities can be used to present data to the human senses. In
Virtual Reality (VR) research the objective is to subject the human sensory system
with impulses that leads the user to believe he is present in the synthetic world. As

∗Parts of this chapter have been published in R.G. Belleman, J.A. Kaandorp, D. Dijkman and

P.M.A. Sloot. “GEOPROVE: Geometric Probes for Virtual Environments”, number 1593 in Lecture Notes

in Computer Science, pages 817–827, 1999.
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in the real world, the experience of presence is greatly enhanced when the environ-
ment responds to our interaction. Interaction in an immersive VE should enhance the
immersive experience and most definitely not break it through interaction methods
that force the user to step out of the VE and into the real world, not even for a brief
moment. Unfortunately, very few readily available toolkits exist for VE application
developers that facilitate the construction of interactive VEs. The ones that do exist
use specialized hardware or physical devices that the user wears whilst in the VE,
offer limited flexibility, are too specific to the application area for which they were
developed or they require a substantial software engineering effort from the devel-
oper [35,43,127,149,161,201].

Input devices, gestures, intention and mapping

Input devices are the primary interfaces between the real and virtual world that en-
able users to interact with a VE. Input devices offer a degree of expressiveness that
is proportional to the “degrees of freedom” (DOF) they express. A simple button rep-
resents either a pressed or unpressed state and therefore does not provide sufficient
expressiveness to denote, say, a two dimensional vector like a two dimensional analog
joystick does. Higher degrees of expressiveness can be achieved by combining input
devices.
A frequently used input device used for interaction in a VE are 6 degrees of freedom
(3 translation and 3 rotation) tracking sensors. These devices create a relation of the
position and orientation of physical objects (such as the user’s hand) with objects in
the virtual world. Common ways in which these devices are used to interact with VEs
are through proximity tests that allow virtual objects to be “grabbed” or intersection
tests that detect that the device is pointing at a virtual object. Input devices used
in VR systems are often a combination of a tracking sensor with “manipulators” like
buttons, small joysticks or flex sensors (as in gloves) that can be manipulated by the
user.
VR input devices are used to monitor the user’s “gestures” which in turn convey “in-
tention” to the environment. The user’s gestures are analysed by the environment
to ascertain the user’s intentions which are then “mapped” to interaction methods.
An easy to use VE accurately maps the user’s gestures to the associated interaction
method so that the environment fulfills the user’s intention [162]. Moreover, the in-
teraction methods provided to the user should provide clear and intuitive clues to
their “affordance”; how they should be used and what they can be used for [171]. For
example, clinching the fingers of a glove in the proximity of a virtual object or clicking
a button while pointing at an object could result in the object being selected.

4.1.2 Interaction methods

Some interaction methods in a VE will be predetermined by the task-specific actions
that have to be performed. However, most environments have a need for interaction
methods that are generic for most applications. Unfortunately, there is no unifying
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framework for interaction in VEs as there are now for desktop PCs [162, 201]. Due
to its immersive nature, there are, however, a number of interaction methods that we
feel are mandatory to do useful work in a VE.

Motion parallax

An important interaction method allowing a user to comprehend multi dimensional
structures is by allowing the user to look around the visual representation of these
structures. Just as in the real world, the difference in perspective that results from
the changing position of the user’s eyes in relation to the object provides information
on the size and relative location of substructures, thereby providing useful depth-
cues. This method of interaction is often referred to as “motion parallax”. In VEs,
motion parallax is achieved by changing the rendered images based on the location
and orientation of the head. To that end, a tracking sensor is mounted on the head,
allowing the VE to obtain this information.

Object manipulation

The content of virtual environments consists of objects that are representations of the
structures of interest to the user. The manipulation of these objects can form the basis
of many interaction methods, much in the way we manipulate objects in the world
around us. An obvious (and intuitive) way to implement interaction in immersive VEs
would, therefore, be through the manipulation of virtual objects in the environment
[22,24,135,163,164,167,188]. In general, the following object manipulation tasks can
be identified:

• create, delete - The instantiation or removal of an object from the environment
changes the context of the environment, which in turn can be a reason to trigger
an action. For example, the deletion of an object could result in the deletion of
an associated menu (and vice versa). We will come back to what we mean by
“context” in section 4.4 (page 81).

• select - Selection is equivalent to identifying an object as being in the focus of the
user’s attention. If the object is a visual representation of an action, selecting an
object may result in the execution of an action (much like pressing a button).

• move, rotate, scale - Objects in a VE have a position, orientation or scale which
may be changed. This change itself may represent a change in context (like
moving a chess piece on a board) or represent a quantitative value (like the
displacement of a button over a certain distance in a slider).

• parameterization - Besides position, orientation and scale, objects often have
other, more object specific attributes associated with them like shape, or color.
Interaction methods to change the value of an attribute is a useful type of in-
teraction to signify parameter changes. The type, range and accuracy of the
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attribute puts constraints on the interaction methods that are most suitable to
set the value of an attribute.

In section 4.2 we describe an architecture that extends an existing scientific visual-
ization environment for use in a VE. This architecture allows for the manipulation
of scientific visualization results to facilitate the construction of information rich and
flexible exploration environments for scientific research.

Navigation and wayfinding

Users are constrained by the physical confinements of the VR devices they are using.
For example, in the case of HMDs the user will not be able to move beyond the length
of the connected cables, in projection based systems, the projection screens limit the
user’s movements. The virtual environment that they explore is often larger than
these confinements so that interaction methods are required that allow the user to
navigate through the virtual world and reach objects outside physical reach or to
constrain the movements of the user in relation to objects [132, 187, 198]. While the
user is navigating through a VE, it may be hard to find one’s way around and to locate
“what is where” in the environment, especially in large VEs [55,73,74,179].

Quantitative and text input

Text and number entry are important in situations where precision is critical. For
some applications an approximate value may be sufficient so that some form of user-
interface widget (such as the slider or dial we know so well from desktop user inter-
faces) could be used. Unfortunately, none of the existing user-interface libraries that
exist today can be readily incorporated into a VE. Also, in other situations where ex-
act values are critical, interaction methods are required that allow the user to enter
individual digits or characters. Some approaches to achieve exact value input involve
physical input devices that are taken into the VR system, such as keyboards, tablets
and even small computers (like PDAs) [252, 259]. For projection based environments
this is fine, but for head-mounted-displays this solution fails since the physical de-
vices cannot be seen by the user. In section 4.3 we address these problems through an
architecture that allows existing desktop applications and 2D user-interface libraries
to be used in a VE.
Voice input is an alternative method that is suitable for exact value input in some
cases [42]. Number entry is viable using most voice recognition systems through a
well-defined vocabulary [107]. Text input however forms a far more difficult prob-
lem since a predefined vocabulary can, in most cases, not be defined. Although most
automatic speech recognition (ASR) systems provide a dictation mode that allows
free text to be entered, the accuracy of these systems in this mode leaves a lot to
be desired [208, 264]. In section 4.4.2 we describe a speech recognition technique for
quantitative and text input that exploits environment context to increase recognition
reliability and allows multimodal interaction in a VE.
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Quantification

Although stereopsis allows humans to perceive depth, it is know that distances and
sizes in virtual environments are frequently underestimated due to a lack of adequate
visual stimuli for scale [200]. An instrument for obtaining quantitative information
from a visual representation is therefore a valuable asset. Section 4.5 describes GEO-
PROVE, a geometric probing software architecture for interactive data exploration en-
vironments, virtual environments in particular. This architecture allows researchers
to probe visual presentations in order to obtain quantitative information. The prop-
erties that we want to measure could be obtained automatically using data analy-
sis techniques, but this often requires designing and implementing specialized algo-
rithms that are dedicated to the specific task. Quite often these techniques rely on
heuristic algorithms that are difficult to design, implement and control.

4.2 Interactive scientific visualization in VEs

The primary method used to create virtual environments is through the rendering
of visual constructs. Programming environments exist that are ideally targeted to-
wards the construction of “content” for a VE, but in general these environments
do not provide methods to incorporate interactive scientific visualization into the
VE [212,218,219,236]. Likewise, many desktop environments exist that provide flex-
ible methods to do scientific visualization, but few of these provide support for direct
interaction and manipulation of graphical objects in VEs [103,172,209,242].
A combination of scientific visualization methods and interaction methods that al-
low a user to manipulate these visualizations from within a VE would allow for the
construction of interactive exploration environments for use in scientific research.
Using such a combination, environments could be constructed where scientific data
is represented through well established visualization methods and the interaction
capabilities support exploration.

4.2.1 The Visualization Toolkit

For our research we have chosen the Visualization Toolkit (Vtk) for our scientific visu-
alization purposes [106, 209]. Vtk is an open source object-oriented software system
for 3D computer graphics, image processing and scientific visualization. The avail-
ability of the source code to Vtk allows us to extend its functionality so that it can
be used for interactive scientific visualization in VEs. In addition, Vtk is supported
on most major operating systems which greatly facilitates application development
and portability. The combination of Vtk and the CAVE library produces an extremely
versatile and powerful software environment for scientific visualization in VEs.
The Vtk pipeline is an extension to the pipeline described in section 1.3.2 (page 7)
and is illustrated in Figure 4.1. The third column of this Figure also illustrates how
consecutive stages in the pipelines are created, parameterized and connected in a
program, in this case in the Tcl language [175, 258]. Vtk pipelines start with source
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Figure 4.1: The Visualization Toolkit (Vtk) pipeline.

objects that either produce source data themselves or that read input data from exter-
nal sources such as simulations or CAD programs. The output of a source object goes
through several filters that alter the geometry. In most cases it is these filters that
are the embodiment of a visualization algorithm. A mapper is used to map the output
data from the filters to geometric constructs that can be rendered by a graphics ren-
dering pipeline. The actor object is used to represent the resulting visualization and
is used to define the type and properties of the representation. The renderer forms
the interface between the visualization and the graphics rendering pipeline. On the
desktop, the renderer displays the resulting images in a window while interaction
with the visualization using the mouse and keyboard is implemented through an in-
teractor. Other objects types in Vtk define light sources, cameras and mathematical
functions.
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4.2.2 SCAVI: Speech, CAVE and Vtk Interaction

Previous work by others resulted in a library to render Vtk objects in a CAVELib ap-
plication [94]. This library copies all Vtk actors into a shared memory area to make
them accessible to all display processes for rendering (please refer to Appendix A for
details on CAVELib). Dynamically changing data is handled automatically. Not all of
Vtk’s functionality is supported (most notably cameras and lights are unsupported);
we have made several extensions to the original version to support actor opacity, ac-
tor removal, visibility and texture mapping of actors. Although this work allows us
to render Vtk visualizations in CAVELib applications, it did not provide methods to
interact with them. We have developed a framework that allows rendering and inter-
action with scientific visualizations produced by Vtk. This framework, called “Speech,
CAVE and Vtk Interaction” (SCAVI), provides the VE application developer with func-
tionality to interact directly with the visualized objects using the CAVE wand and
buttons and speech commands [95].

Direct object manipulation

Direct object interaction in SCAVI is implemented using a hierarchical intersection
scheme: For each actor defined in the renderer, SCAVI first checks whether the line
that starts at the location of the front of the wand and points in the direction defined
by the wand’s orientation intersects the bounding-box of the actor. If one or more
intersections are found, a second line intersection test is performed on these objects
and the distance from the wand to the intersection points (if any) are calculated.
The object with the closest distance to the wand is considered to be “in focus”. Only
actors that are defined as “visible” and “pickable” can become focused (triggering a
focus event) whenever there is a direct line-of-sight from the front of the wand to
that object. Pressing and holding the first wand button allows a focused object to
be grabbed and dragged to another location. Pressing the second wand button on
a focused object selects that object, such that more elaborate manipulation can be
performed. Only one actor can be selected at a time. Manipulations on actors that
are in focus (by pointing at them) take precedence over actors that are selected. The
application developer can request a reference to a selected actor or the actor that is
in focus for subsequent action. Figure 4.2 illustrates a simple application that allows
primitive objects (spheres, cubes, cones, etc.) to be manipulated interactively.
Every object in SCAVI is a Vtk actor with several enhancements defined in a C++
class called vtkCAVEActor. All SCAVI objects are kept in a dynamically linked list
(DLL), which is not kept in shared memory making it only available to the main
CAVE process and none of the display processes. The main extra features of a SCAVI

object over a Vtk actor is the ability to add several event handlers to an object and the
ability of the interaction component to identify and perform interaction on an object.
Each SCAVI object can be given a name so that voice identification using speech tech-
nology or enumeration in a virtual menu becomes possible. Besides regular Vtk func-
tionality, such as changing the color of the object or the visibility state, several func-
tions have been rewritten to accommodate for the extended functionality, such as
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Figure 4.2: SCAVI in use to manipulate Vtk actors.

delete and copy. The rotating, scaling and translation functions are also rewritten,
which makes it possible to transparently use either the transformation matrix at the
end of the Vtk pipeline (i.e. from the actor) or after the source input. The benefit of us-
ing a transformation matrix directly after the source input is that use of subsequent
Vtk filters will be aware of changes in the object’s position, scale and orientation.

Although the concept of a “scene graph” is not explicitly implemented in Vtk (and
most other scientific visualization environments), this functionality can be simulated
through the use of a coordinate transformation filter (such as the Vtk class vtk-
TransformPolyDataFilter). This filter accepts vertex coordinates and a transfor-
mation matrix as input and produces transformed coordinates as output.

The transformation of coordinates requires a matrix-vector product for each coordi-
nate and so the time required to transform larger objects gets increasingly large. This
poses a problem in particular when a user manipulates the position, rotation or scale
of an object. In a “real” scene graph system, this displacement is easily performed
by inserting a transformation between the object and its parent that reflects the dis-
placement of the hand from the moment the object was grabbed. With the use of
a transformation filter, the new position of all polygons in the object must be recal-
culated at each frame by a transformation filter. This method may yield acceptable
results for small objects, but for large objects the time spent by the transformation
filter will make fluent interaction impossible.

In SCAVI this problem is circumvented by the following trick; as the user manipulates
an object, a transformation matrix is associated with the actor representing the ob-
ject so that the visual appearance of the object mimics the displacement intended by
the user. The transformation matrix associated with the actor is used by the graph-
ics rendering library (OpenGL) which performs the transformation in hardware, on
hardware that supports it, and is therefore much quicker compared to the software
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solution. As soon as the user releases the object, the actor’s transformation matrix
is copied and given to a transformation filter which then applies the transformation
to all vertices in the object. During the interaction, the visual appearance of the ob-
ject thus transforms, following the user’s gestures, while the actual transformation
of coordinates takes place just once when the user releases the object. As a result,
there will be a slight delay from the moment the user releases the object and the time
the object is actually transformed. Within this time, no interaction with the object is
possible.

4.3 Bridging the gap: 2D applications in VEs

Many applications in everyday use are designed for desktop systems with 2D graph-
ical user interfaces (GUIs). While these applications may not always be of particular
use in VEs, some provide capabilities that can be very useful to the VE user or applica-
tion developer. Web browsers, document readers and movie players, for example, are
often used by desktop applications as “standard” utilities to provide on-line documen-
tation or tutorials to the user. Desktop users also benefit greatly from “productivity
applications” like calculators, file browsers or conferencing tools, to name but a few,
that provide a rich set of accessories that enable the user to perform diverse tasks
that are not offered within a single application. The same is true for VE applications;
much of the functionality offered by the desktop utilities just mentioned would be
quite useful to users immersed in a VE. Unfortunately, few of these utilities currently
have 3D counterparts for use in immersive VEs.

A solution to this is to bring a desktop PC system or a handheld computer like a
Personal Digital Assistant (PDA) into the VR installation to gain access to these
utilities [252, 259]. However, this solution is impractical in combination with head-
mounted displays (HMDs) since the display obscures the physical devices from view.
But also in projection based VR systems, the user needs to “escape” from the VE to
access the system in the real world. Others have looked at solutions in which the
application is rewritten, or more specifically; the part that builds the GUI, so that the
GUI is presented in the VE [6, 7]. This either requires that the utility is available in
source form, and the VE application developer is up to this task, or that 3D equiv-
alents of 2D GUI toolkits are available [43]. Few GUI toolkits for use in VEs exist,
however, and the ones that do, often do not offer the same richness that is needed to
effectively express the same functionality. Moreover, applications that are distributed
in binary form only can not be adapted at all.

Although one can argue whether 2D interaction metaphors are efficient for use in
immersive environments, the advantages are multitude. Users are accustomed to
applications with 2D GUIs, so presenting them with existing utilities that can be used
in a VE provides the user with familiar applications that he knows to use well. The
immersive experience of the VE is maintained as the user is no longer forced to step
into the real world to interact with a GUI on a desktop. VE application developers
would be able to exploit existing applications, as do desktop applications developers,
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and focus on the task for which the VE is intended. Application developers would be
able to quickly construct GUIs using the flexibility of existing 2D GUI toolkits instead
of implementing 3D equivalents.

4.3.1 XiVE: X in Virtual Environments

X in Virtual Environments (XiVE, pronounced “zive”) provides access to existing 2D
desktop applications by “swallowing” their GUI into the VE. The ideas behind XiVE

have earlier been described by others.
Dykstra in [70] describes a modified X server that renders images into memory in-
stead of to a graphics device and accepts device input events through a FIFO queue.
The VE application then maps the images rendered by the X server onto textures
in 3D space while interaction with the applications is made possibly using the FIFO
queue. Developed at Chalmers Medialab, 3Dwm uses the Virtual Network Computing
(VNC, [38]) remote display system protocol to distribute a bitmapped desktop across
a network [71,159]. XiVE uses a more generic and flexible approach by exploiting the
client/server protocol that is used in the X Window System. The X Window System
(from hereon referred to simply as “X”) was designed with network transparency in
mind. This means that an application (the “client”) can run on one host and open
windows on a “server” running on any accessible host (meaning: reachable across a
network and having permission to access the server’s resources).

4.3.2 Design of XiVE

XiVE maintains a list of windows that are to be presented in the virtual environ-
ment (the “monitored list”). Each window in this list contains a display and identifier
that together uniquely identify a window on an X server. For each window, XiVE’s
update mechanism grabs the contents of the window from the X server and stores
its pixel representation in memory. This pixel representation is converted into an
OpenGL texture and rendered onto a rectangle in virtual space (see Figure 4.3) [261].
Each window has a transformation matrix associated with it so that a window can
be placed at any location, orientation and scale in virtual space, integrated with the
other content generated by the VE. Once the windows to monitor are identified, XiVE

repeatedly grabs their contents and renders them as textures in the VE. At the same
time, XiVE monitors the VE’s interaction devices for intersection with the displayed
textures and manipulator events (such as button presses). When this happens, XiVE

generates synthetic motion, button and keyboard events (using the XTEST extension
in the X server) to mimic the behavior of a conventional mouse or keyboard input
device.

Identifying windows and displays

Windows and displays are identified by the hostname of the system running the X
server and a numeral to identify the display, screen, window or a shared memory
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Figure 4.3: XiVE grabs window images from X servers and renders them in the virtual

environment as OpenGL textures. Interaction with the applications is made possi-

ble through synthetic keyboard and mouse events using the XTEST extension of the X

server.

identifier, using the following notation:

[hostname]:display[.screen][#window|%memid].

The members between square brackets are optional; if hostname is empty, the local
host is assumed; if screen is empty, the default screen of the display is used; if win-
dow is empty, all windows on the display are used; if memid is given, a shared memory
rendering X server is used. Using this identifier, windows and displays on an X server
can be rendered in a VE using any combination of the following configurations (see
also Figure 4.4):

host1:display.screen
specific window(s) on

all toplevel windows on
host3:display:screen

X server
shared−memory rendering

Figure 4.4: XiVE can monitor windows from specific windows on an X server (top

left), all top-level windows on an X server (bottom left), or shared-memory rendering X

servers (top right). See also colour reproduction on the back cover.
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1. Specific windows - For example: dexter:2#0x23 which identifies window
0x23 on the default screen of display :2 on host dexter. The window is rep-
resented by a textured rectangle in the VE. Note that the “root window” on an
X server is a special window, represented by a unique window identifier, that
contains all other windows on the screen.

2. Top-level windows - For example: dexter:0.2 which identifies all top-level
windows on screen 2 of display :0 on host dexter. Each window is represented
by a textured rectangle in the VE. The initial placement of each new window
mimicks that on the X server so that overlapping windows on the X server over-
lap in the same way in the VE. This ensures that pull-down menus and pop-up
windows appear at the same relative location. This initial placement can be
overridden using the transformation matrix so that, for example, the window
can be moved elsewhere through user interaction.

3. Shared memory rendering X server - For example: :9%12345 which identi-
fies a shared memory rendering X server running on the local host with display
number :9 and shared memory id 12345. The root window of a shared memory
rendering X server is represented as a single textured rectangle. The window
image can directly be accessed by a XiVE application, since it is located on the
same machine, so that it does not have to be copied using a network transfer
which improves update rate. The display identifier is required in this case only
to enable interaction with the client applications rendering on the X server. An
example of an X server that renders into memory instead of on a graphics dis-
play is Xvfb, which comes with most X distributions [140].

4.3.3 Performance issues

Two factors characterize the performance of a XiVE application. The first is update

rate; the frequency at which new content of an X window is represented in the VE.
Low update rates may result in important information being missed while at the same
time it may make interaction with the application difficult, especially when visual
feedback is of importance during the interaction with the X application. The second
is frame rate; the frequency at which a representation of an X window can be rendered
in the VE. Since most immersive environments render the environment from a user-
centered point-of-view (using the position and orientation of the user), the frame rate
should be at least 10 frames per second for a responsive environment. Low frame rate
results in decreased response from the environment which in fully immersive systems
can cause motion sickness or at the very least negatively influences interaction with
the VE.
The main factors that limit performance are (1) the limited performance of the net-
work connection between the host running the XiVE application and the host running
the X server, (2) the delay caused by the conversion of a grabbed image into a repre-
sentation that can be used as input format for OpenGL textures, (3) the delay caused
by the definition of the texture, and (4) the time that is required to render a textured
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rectangle in the VE. XiVE uses a number of techniques to reduce these overheads dur-
ing the four steps that are required to update a representation of a window in the
VE:

1. Obtaining a window image from the X server - In a situation where the X
server is not running locally, the image must be obtained using a network trans-
fer. High network latency reduces response time, low bandwidth reduces the
frequency of updates that can be rendered by XiVE. These network limitations
can be reduced by executing an X server on the same machine as where XiVE is
used so that communication takes place internally, or by using an X server that
renders images into shared memory which can be accessed without any network
communication.

2. Conversion of an image to a format suitable for texture rendering - Im-
ages retrieved from an X server are stored in color indexed format so that every
pixel is represented by a value that represents a color through a lookup table.
OpenGL version 1.1 and later supports this kind of image format in different
flavors and XiVE attempts to detect which are supported by the implementation
of OpenGL. If no support for color indexed textures is detected, XiVE falls down
to an algorithm that converts the color indexed images to RGB format which
is supported by all OpenGL implementations. The latter format takes time to
generate and requires considerable more memory to store and so XiVE benefits
from OpenGL libraries that have support for color indexed textures.

3. Texture definition - Defining textures in OpenGL often involves downloading
the texture into dedicated texture memory on a graphics interface. To avoid
unnecessary overhead, XiVE detects whether a window’s contents has changed
before redefining its texture. Although this requires that a new image is ob-
tained from the X server, this update scheme executes in a separate thread of
execution in XiVE. This thread detaches from the rendering processes and con-
stantly monitors the windows maintained by XiVE and redefines a texture only
when the contents of a window has changed.

4. Texture rendering - Texture rendering is one of the most expensive opera-
tions in computer graphics. XiVE benefits greatly from graphics hardware that
is capable of performing texture mapping in hardware.

Performance results

Tables 4.1, 4.2 and 4.3 illustrate the overhead in these four steps for a profiled XiVE

application running on a Sun UltraSPARC-IIi at 300 MHz, running Solaris 8 and
equipped with an OpenGL 1.2 accelerated Elite3D graphics interface. The XiVE ap-
plication grabs the root window from an X server running an X server at 800 by 600
with 16 bit pixels (937.5 kB total image size) and renders this window using either
RGB or color indexed (CI) textures.
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RGB (time) (%) CI (time) (%)
image transfer 1040 ms 49.7% 1040 ms 58.7%
conversion 750 ms 35.9% 430 ms 24.3%
texture definition 300 ms 14.3% 300 ms 16.9%
rendering 1 ms 0.0% 1 ms 0.0%
total 2091 ms 1771 ms

Table 4.1: Overhead of the four steps to update a window representation using a 10

Mbit/s ethernet connection between XiVE and the X server.

In Table 4.1 the two systems are connected via a 10 Mbit/s ethernet. The table shows
that most overhead is caused by the transfer of the window image from the X server.
Since the update rate is directly related to how fast images can be obtained from the
X server, this configuration is useful only in cases where update rate is not of high
importance. Note that the time to render the window is only 1 ms which leaves ample
time to render other geometry in the VE and still maintain a sufficiently high refresh
rate. The table also shows that the time required to convert the transfered image
into a suitable format for texture rendering is significantly lower in the case of color
indexed textures.

RGB (time) (%) CI (time) (%)
image transfer 36 ms 3.4% 36 ms 4.7%
conversion 730 ms 68.4% 430 ms 56.1%
texture definition 300 ms 28.1% 300 ms 39.1%
rendering 1 ms 0.0% 1 ms 0.0%
total 1067 ms 767 ms

Table 4.2: Overhead to update a window representation using internal network com-

munication.

In situations where high update rates are critical, the transfer overhead can be sig-
nificantly reduced by running the X server on the local host, as shown in table 4.2. As
the X server in this situation is running on the same host as the XiVE application, all
image transfers occur using internal communication. The table clearly shows that the
transfer overhead is significantly reduced. In fact, this overhead can be completely
canceled through an X server that renders into shared memory; as XiVE can access
this memory directly, no images need to be transferred at all, as can be seen from
Table 4.3.

4.3.4 Conclusions

We have described an architecture that allows existing applications with 2D graphical
user interfaces to be used in 3D immersive virtual environments. This architecture
bridges a gap between the 2D user interface libraries that exist for desktop applica-
tion development environments and VE development environments that in general
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RGB (time) (%) CI (time) (%)
image transfer 0 ms 0.0% 0 ms 0.0%
conversion 730 ms 70.8% 430 ms 58.8%
texture definition 300 ms 29.1% 300 ms 41.0%
rendering 1 ms 0.0% 1 ms 0.0%
total 1031 ms 731 ms

Table 4.3: Overhead to update a window representation using a shared-memory ren-

dering X server.

lack these facilities. Through XiVE, VE application users are presented with user
interfaces and applications they know well from conventional desktop applications
which greatly facilitates interaction in the VE and may result in increased productiv-
ity. The design of XiVE allows existing VE applications to be easily extended with this
feature at little loss of performance. For example, Figure 4.5 shows XiVE used in the
VRE application described earlier in section 2.3 (page 29) to set a threshold for the
isosurface modeling visualization pipeline via an interface designed in Tk [175].

Figure 4.5: XiVE used in the VRE environment (see section 2.3) to set an isosurface

threshold via a user interface defined in Tk [175].

4.4 Context sensitive interaction

The applicability of an interaction method is largely determined by its degrees of free-
dom, in providing sufficient expressiveness so that multiple functions can be triggered
by similar but different gestures, and by its robustness to discern one gesture from
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another. With the increase in functionality that can be triggered in an application us-
ing an interaction methodology, the chances increase that a user triggers a function
that was not intended. A relatively unexplored paradigm for interaction in a VE that
can be used to reduce this, is to restrict whether gestures are recognized based on the
context of the application. Although it may seem contradictory to constrain a user
in a restricted set of gestures, the aim of the technique described here is to provide
the user with more efficient, goal-directed interaction methods by eliminating those
that are out of context [23]. In the following we will describe the concept of “appli-
cation context” in a VE and how context can be used to improve the efficiency of an
interaction method.

4.4.1 Determining application context

During the use of a VE, the environment takes on a new state as the user interacts
with the environment. Each change as a result of user interaction or autonomously
operating entities in the environment, alters the state of the environment, potentially
bringing the user into a different context. Accurate determination of context is not
always a trivial task. In general, properties that have the most significant impact on
context and that can be easily obtained from the VE are:

• The state of entities in the environment - The existence or properties of entities
in the environment imply that there is a chance that the user may want to
interact with the entities or its properties. Therefore, the interaction methods
supporting the interaction on this entity should be enabled. Likewise, if entities
or properties are removed, its associated interaction methods may be disabled.

• The user’s focus of attention - When a user is located in the vicinity of, or has
his focus on a certain area in the environment (either by looking at, being in the
vicinity of, or pointing at entities in the VE), there is a chance that this user will
want to perform interaction on entities in this area, and not on those which are,
for example, out of view.

Determining these properties is possible if the VE provides access to the data struc-
tures that determine them.
Enabling every possible interaction method in the environment may result in incor-
rect interpretations of the user’s intentions and may therefore result in an unintended
response from the environment. By disabling interaction methods that are not appli-
cable to the context of the environment at some particular moment, the chances that
gestures are mistakingly recognized for something which was not intended can be
decreased.

The context engine

We have built a “context engine” that monitors the state of the environment asyn-
chronously [267]. This context engine provides information to “agents” that dynami-
cally adapt the interaction methods enabled by the environment at any time. Based
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on that, interaction methods are enabled or disabled automatically as the context of
the VE changes. Still subject to ongoing research at the University of Amsterdam, the
agents have the ability to perceive state changes through monitors, take actions that
affect conditions in the environment and perform reasoning to interpret perceptions,
solve problems and determine actions. As a test case, we have applied the context
engine to improve the reliability of interaction via speech recognition.

4.4.2 Context sensitive speech recognition

Speech recognition involves the transformation of an acoustic speech signal into writ-
ten text. Development of speech recognition has been ongoing for over 25 years and
only recently speech applications are coming into widespread use. Speech recognition
can be very useful in applications where hands and eyes are constantly busy, which is
often the case in immersive environments, or for people with disabilities that inhibit
their motor skills. Psychological studies have shown that users of virtual environ-
ments prefer to use a combination of speech and hand gestures so that they can con-
centrate on the objects in the virtual environments and the task at hand [96, 97].
Also, speech input does not require special training of the user or unfamiliar in-
put devices. Moreover, since speech recognition systems operate on a different input
modality (namely sound), they are not hampered by limitations of graphics resources,
thereby making it a suitable alternative input modality for situations where visual
fidelity (such as frame rate) is critical.

Common problems with speech recognition

Acceptance of speech technology is growing although there are still some key issues
holding it back, i.e. recognition accuracy and ambiguity [42, 177, 208, 228]. Common
situations where accuracy is important is where the speech recognition system must
be able to discern words that have approximately the same pronunciation (like “dye”
and “die”). Ambiguity occurs when the same verbal command is used to trigger dif-
ferent functionalities. For example, consider an application that supports a “volume”
command. In one particular context this command could refer to the output gain of
an audio device while in another it could refer to a quantitative property of a three-
dimensional object. To resolve this ambiguity, the user would have to add extra in-
formation (e.g. “audio volume” or “object volume”) in order to unambiguously identify
the target for this command. Although the recognition will perform better with this
extra information added, the user is expected to have a thorough understanding of the
speech recognition system’s grammar. This will not make the system easier to use.
These problems can be reduced by incorporating application context into the speech
recognition systems.

Related work

In 1980, Bolt has shown the added benefit of interaction through a combination of
speech and context information derived from hand gestures in his “Put That There”
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demonstration system [21]. The application and benefits of speech input in visual-
ization and virtual environments is described in [215, 239]. Oviatt et al. integrate
complementary modalities in a manner that supports mutual disambiguation of er-
rors to improve performance [177, 263]. Suhm et al. describe a multimodal error
correction that uses context provided by additional modalities (like key, mouse and
pen input gestures) to correct errors [228].

Applying context to speech recognition

Context sensitive speech recognition (CSSR) systems can have large vocabularies (i.e.
thousands of words), but only a subset of that vocabulary is activated at a particu-
lar time. The complete vocabulary is subdivided into subsets that contain commands
that are applicable to the context for which they are intended. While the application
is running, the context engine determines the context of the application and enables
only those subsets of the vocabulary that are applicable to the application context. As
only a part of the complete vocabulary is enabled, the chance that a verbal command
is incorrectly recognized is reduced, thereby increasing the overall accuracy of the
speech recognition system. Note the resemblance with conventional desktop appli-
cations where the user is also frequently inhibited from invoking some functionality
that are “inappropriate” by disabling the options.

Performance results

A speech recognition library capable of context sensitivity (CAVETalk) has been de-
veloped. The core of CAVETalk uses IBM’s ViaVoice as third-party recognition soft-
ware [47,104,105]. ViaVoice is a speaker independent speech recognition system that
can handle isolated or continuous recognition. User specific training is not necessary,
but can be done to improve recognition accuracy. Vocabularies in ViaVoice are defined
in Backus-Naur Form (BNF). Using this form, it is possible to define extremely large
and flexible vocabularies in a very concise notation, as shown in an example in Figure
4.6.
An experiment was conducted in which the user was presented with a verbal com-
mand set that consisted of 57 words in total, divided into five subsets. The user was
asked to issue the commands in random order, as provided by an external randomiza-
tion program. During a single experiment, the user was asked to issue each command
twice; once when all words in the vocabulary would be enabled, the second time only
the subset of the vocabulary that contained the command would be enabled. The user
did not know whether the whole vocabulary or only a subset would be enabled.
In total, 13 experiments were performed. In the non-context situation, the mean num-
ber of correctly recognized commands was 45.2 (79.4%) with a standard deviation of
4.4. In the context situation, the mean number of correctly recognized commands
was 49.5 (86.8%) with a standard deviation of 4.1, an average improvement of 7.4%.
Although this improvement may seem marginal, the vocabularies in this experiment
were intentionally chosen to contain words that had little similarity in pronuncia-
tion. For vocabularies that contain words with a similar pronunciation the results
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<<start>>
= "create" "a"? <target> <destination>?
| "delete" <denom>? <target> <source>?
| "move" <denom>? <target> <source>? <destination>
| <quit> .

<target> = "sphere" | "cube" .

<denom> = "the" | "that" | "this" .

<source> = "at the" <location> "of" <denom>? <target> .

<destination>
= "here"
| "to the"? <direction>
| "to the" <location> "of" <denom>? <target> .

<direction> = "up" | "down" | "left" | "right" | "front" | "back" .

<location> = "top" | "bottom" | "left" | "right" | "front" | "back" .

<quit> = "quit" <program>? | "exit" <program>? .

<program> = "program" | "application" .

“create cube”, “create a sphere”, “create a cube to the left of the sphere”, “create

a sphere here”, “move cube right”, “move that cube to the back of this sphere”,

“move the cube at the left of that sphere to the right of this cube”, “move the

cube up”, “move that sphere here”, “delete the cube”, “delete the sphere at the

left of that cube”, “exit program”, “quit”.

Figure 4.6: Example of a vocabulary in BNF notation used by the ViaVoice speech

recognition system. With this vocabulary, 24558 different sentences can be recognized,

some of which are shown at the bottom.

are much higher, provided these words are in different subsets and are not activated
at the same time.

User reactions

In the environments we developed, users are able to navigate through the VE with
great ease by pointing at objects in the environment and saying “come here” or “go
there”. The use of context also dismissed the need for “push-to-talk” solutions where
the voice recognition system’s attention is explicitly told when to listen to verbal com-
mands [142], as the system only listens when there is clear defined context. This
allows users to freely discuss the things that are going on in the environment with
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their peers, without having to worry that the environment responds unintentionally.

4.5 GEOPROVE: Geometric Probes for Virtual Envi-

ronments

In many scientific computing problems, the level of complexity in the generated data
is too vast to analyse numerically. For these situations, interactive scientific visualiza-
tion is an essential method to present and explore the data in a way that allows a re-
searcher to comprehend the information it contains. Immersive virtual environments
such as the CAVE [52] further enhance a researcher’s perception and are therefore
often used to obtain better insight in multi-dimensional datasets for which desktop
visualization environments are too restrictive.

In most scientific visualization environments, a visualization pipeline transforms nu-
merical data into geometric constructs that are rendered into visual presentations.
These presentations allow researchers to qualitatively analyse their data. Many vi-
sualization environments stop at this point and provide little means to obtain quanti-
tative information on what is being presented. Through the use of stereoscopic images
it is possible to estimate quantitative properties, such as the (relative) size and dis-
tance of virtual objects [200]. This may be acceptable to some applications, for others
however, an instrument for obtaining quantitative information from the visualization
is a valuable asset. Examples of this are applications where simulations are verified
to the real-life phenomena that are being modeled, applications for diagnostic pur-
poses based on medical data obtained from medical scanners (i.e. CT, MRI, etc.), or
computer aided design tasks.

In this section we describe GEOPROVE, a geometric probing software architecture for
interactive data exploration environments, virtual environments in particular. This
architecture allows researchers to probe visual presentations in order to obtain quan-
titative information. We will show the application of this probing system with the
test-case described earlier in section 2.4 (page 42).

4.5.1 Related work

While most scientific visualization environments provide some probing functionality,
most of these act as subset selectors that extract selected regions from larger data sets
for localized visualization, complementing global visualization methods [172, 242].
The Visualization Toolkit (Vtk) for example provides probe filters for the computation
of point attributes in local areas. Point attributes are computed at input points spec-
ified by a probe consisting of a geometric structure by interpolating into the source
data. Vtk also contains methods that calculate properties such as the volume, surface
area and normalized shape index of closed triangle surfaces [209].

The work by van Leeuw et al., takes this method one step further by using visual
probes that consist of a set of geometric primitives. Multiple characteristics of a small
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area in a flow field transform the geometric primitives in the probe to visualize veloc-
ity and local change of velocity [56]. Although these visual probes provide excellent
means for exploring local properties of a dataset, they are often used for localized
visualization only, and not for obtaining quantitative measurements.
The work by Brady et al., shows a CAVE application for the visualization of biomedi-
cal images obtained from medical scanners that allows features to be manually traced
and labeled [25]. This software has been used for obtaining the lengths of biological
structures and for segmenting medical images.
Germans et al. describe an approach to obtain measurements from the visual domain
which is similar to what we describe here [194].

4.5.2 Geometric probing

In our system, geometric probes consist of one or more markers. These markers are
used to sample properties of the presentations in the virtual environment. A property
can either be the coordinates of a position in the environment, or a value obtained
from data at this position. The property obtained from the markers are used in an
evaluation function producing the result of a measurement. The evaluation function
defines a relation between markers in a probe, which we illustrate here by connections
between markers.
Determined by the spatial configuration of the markers, probes have dimensions and
a certain degree of freedom by which they can be positioned over an area of interest.
For example, a probe consisting of exactly one marker has 3 degrees of freedom in a
3D environment (translation in 3 directions) and can thus either be used to obtain the
position (x,y,z) of a feature in 3D space or a mapped quantity f (x,y,z) at this position,
where f provides a mapping of a position to a quantity (i.e. a scalar, vector, tensor). An
evaluation function takes this sample and produces the result of the measurement.

Figure 4.7: Probing procedure, as an example applied here to determine the bounding

volume of part of a structure. From left to right: calibration, interactive placement of

the probe, registration of the probe to the data, calculation of bounding box.

A measurement procedure with probes in a virtual environment requires the follow-
ing course of actions (see also Figure 4.7):

1. Calibration - As in any measurement, the properties that are calculated based
on sampled quantities need to be referenced to a well defined unit. This unit



88 Enabling technology for interaction in virtual environments

of reference is especially required when the measurements from two different
objects are to be compared. For the same type of measurements, calibration will
only have to be performed once.

2. Placement of the probe - Interactive placement of a probe in a virtual environ-
ment makes use of devices whose position and orientation are tracked in three-
dimensional space. Through these devices, a user is able to place a probe roughly
over the region of interest.

3. Registration of the probe - The interactive placement of a probe is not accurate
in most cases because of inaccuracies in the tracking hardware or inexperience
of the user. Registration of the probe involves refining the position, scale and ro-
tation of the probe, either interactively or aided through registration functions.

4. Calculation of the result - Once the probe is in place, the result can be calculated.
Depending on the type of probe, the calculation is either performed purely based
on the position and orientation of the probe, or the positions of each marker are
first mapped to a quantity.

5. Presentation of the result - When the calculation is finished, the results need to
be presented to the user in some meaningful way. In addition, the user should
be able to log the measurement on file for later analysis and some method of
annotation is required so that the user can relate back to the measurement once
they are analysed elsewhere.

# markers 1 2 3 4 5

probe

positional position length, angle, bounding saddle

property distance curvature rectangle point

mapped value derivative extrema surface Gaussian

property distribution

Table 4.4: Examples of probes with different number of markers and examples of posi-

tional and mapped properties that can be measured with these probes.

Table 4.4 shows some examples of probes consisting of a number of markers and
examples of properties that can be obtained. Most of the properties in this table
can be relatively easily obtained. For the first implementation of this architecture,
with the coral growth data exploration system as a test-case, we limit ourselves to
measurements that require probes consisting of 2 markers (length, distance) and 3
markers (angles). However, in the design of GEOPROVE we have attempted to keep
the architecture generic so that the addition of probes for the acquisition of other
properties can be achieved with little effort.
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Software architecture

Interactive visualization applications benefit from a design in which the computation
and visualization processes are implemented by separate communicating threads of
control [31]. The library used in CAVE environments supports primitives for this
design [249]. If implemented carefully, this configuration allows interactive virtual
environments to be built that have a high frame rate and minimal interaction delay.
However, it does have implications for the design of the GEOPROVE architecture. The
software architecture that we have developed is shown schematically in Figure 4.8.

user
interface

registration
callback

visualization
callback

pointer
device

computation
threads

visualization
threads

tracking registration

kernel

GEOPROVE VE application

Figure 4.8: The software architecture for GEOPROVE and its interface to a virtual

environment application.

The heart of GEOPROVE consists of the kernel that logs the positions and annotations
of the probes, performs calculations and maintains a record of the measurements
for storage and retrieval. The tracking part provides the kernel with position and
orientation information of pointer devices with which probes can be positioned in
the virtual world. The registration part manages the positioning of probes based on
information provided by the application. This allows probes to be “snapped” in real
time to computed data so that accurate measurements can be obtained. The user

interface part provides access to GEOPROVE, including the rendering of probes, the
presentation of results and annotations, and methods to drive GEOPROVE.
Measurements can be obtained on two levels; on the first, most basic level, measure-
ments are based purely on the position and orientation of pointer devices that are
tracked in three-dimensional space. On the second level, measurements take place
based on structures defined by the application. This two-level scheme is described in
more detail in the following two sections.

Tracker based probing

On a most basic level, probes are positioned based solely on the location of pointer
devices that are being tracked in the visualization environment domain. Note that
in this situation measurements are taken without a direct relation to the applica-
tion other than the user’s perception of the environment. This allows simple mea-
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surements to be made such as distances and angles without any feedback from the
application.
As this method of probing is independent of what is being presented, probes can not
be registered on data from the application. Therefore, its accuracy and usefulness is
inherently dependent on the quality of the tracking systems, the experience of the
user and the application for which it is used. Most tracking systems are sensitive
to noise, therefore GEOPROVE supports scaling the coordinates obtained from the
tracker system such that a more accurate positioning of a probe can be performed.
In this research, the physical devices that are tracked consist of a head tracker and a
“wand”, a device that is similar to the desktop mouse but which is tracked using a six
degrees-of-freedom sensor [205].
The main benefit for this kind of probing lies in its simplicity and its allowance for the
fast acquisition of positional measurements such as lengths, angles, spatial derivative
approximations and special geometries like the fractal box dimension [78]. Further-
more, as the implementation of this kind of probing can be isolated into GEOPROVE

itself, it minimally interferes with existing VE software.

Mapping markers to quantities

Quantities that relate to properties that are defined by the application can only be
obtained by interrogating the visualization or computation thread. Since GEOPROVE

does not have direct access to the data maintained in the application, the quantifica-
tion of a marker from its position has to be handled by the application via a callback
function.
Some quantities can be best obtained from the abstractions that are made from ap-
plication data when these are visualized. An example of this is the calculation of a
surface area which can be approximated using isosurfaces that are extracted from
grid based data for visualization through e.g. a surface extraction algorithm. For
other measurements, the data contained in the computation may be of higher quality.

Registration

For some types of measurements it may be necessary to perform calculations on spe-
cific features of the underlying data. In these cases the probe needs to be aligned to
these features before calculations can be performed. Depending on the probe’s shape
and its degrees of freedom, the registration of a probe to the underlying data sets
takes the same form as the techniques that are used in geometric hashing [260]. In
short, this method first takes two markers of the probe as a handle to match “points
of interest” in the geometric dataset. Using geometric transformations (the most com-
mon being translation, rotation and scaling) a basis is constructed which determines
the exact position of all markers in the probe. Through a voting mechanism a his-
togram is then constructed of candidate bases from which the best candidate for reg-
istration is chosen. Using this method, positions acquired from tracker sensors can
be registered to data structures that have been used for visualization or computation.
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Although this technique is in general computationally expensive, we may exploit “fo-
cus locality” by disregarding the geometry which is far from the user’s focus.

Presentation, logging and annotation

GEOPROVE does not render its own user-interface. Instead, it relies on the VE ap-
plication to do this. This allows GEOPROVE to be seamlessly integrated into existing
applications. Most of our applications contain standard user interface components
that can be used by multiple processes at the same time (see also Figure 4.10). Ex-
isting software can be instrumented with probing facilities with minimal effort. In
the current version, only four function calls need to be added to the source code of an
existing application to obtain the most rudimentary features. These functions consist
of: (1) the initialization of GEOPROVE, (2) a display handler that renders feedback to
the user for both interaction and presentation of results, (3) a user interaction han-
dler, and (4) a registration function that allows markers to be snapped to visualized
geometry.
Probe locations and measurement results are stored in a log file. During runtime,
the user can browse through this log via the user interface and view entries or delete
entries. The user also has the option to add annotations to a measurement via a
“snapshot”; a virtual photograph made from the perspective of the user. Both low
resolution (for runtime inspection) and high resolution (for off-line inspection) pic-
tures are supported. We are currently adding the option to record a speech-sample to
annotate measurements with extra information.
When the application is terminated, the log is written to a file, containing the mea-
surements and references to possible snapshots and speech annotations. The log can
then be analysed on a workstation, saving valuable CAVE time.

4.5.3 Position accuracy of the SARA CAVE tracking sensors

We have performed experiments to measure the accuracy of the tracker installation
in the SARA CAVE. We are not so much concerned with the difference between the
reported tracker position and the physical position of the tracker, since this can (at
least partially) be corrected with visual feedback (e.g. by drawing a cursor at the
reported tracker position). What is important for a probing system is the ability for
users to indicate a certain position in 3D space. The accuracy with which this can be
done depends on several factors: the resolution of the tracker system, the quality of
the visualization system, and the skill of the user.
Our measurements are based on a task where a sphere was drawn at one of 196 tar-
get positions, and another sphere (drawn at the reported position of the wand) had
to be ‘superimposed’. Figure 4.9 shows a visual representation of our results. These
measurements were obtained by sampling the 196 target positions over 6 indepen-
dent experiments by two experienced CAVE users. Each target position was sampled
between 10 to 15 times. These measurements clearly show that large deviations from
target positions take place most often in the corners and at the entrance of the CAVE,
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making it almost impossible to accurately position a marker at these locations. We
have observed “jumping” behaviour in the reported position of the wand where slight
changes in hand position result in very different reported positions from the tracker.
The worst deviation we have measured was as high as 47 cm. This error can be at-
tributed to a large concrete pillar at the entrance of the CAVE which is far away from
the magnetic source and very likely contains metallic reinforcements that distort the
magnetic field.

Figure 4.9: Mean deviation of reported tracker positions against target positions in the

SARA CAVE.

To compensate for these large errors, we have opted for a refinement system in which
the user is able to refine initial probe positions through down-scaling the tracker
output. This way, large displacements of the hand result in smaller displacements
of the probe, allowing probe positions to be refined irrespective of tracker hardware
restrictions.

The best results are obtained in the center of the CAVE. Here target positions can be
indicated with very small deviations (< 1 cm). Ways to increase the accuracy of the
tracker systems used in projection-based VR systems such as the CAVE are reported
in [54].
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Figure 4.10: A CAVE simulator snapshot of an application instrumented with GEO-
PROVE. Three markers (shown in white) of a trace are registered (or “snapped”) to the

visual geometry. The window in the back shows the user interface to GEOPROVE and

presents the length of the trace.

4.5.4 Results

We instrumented the interactive coral growth exploration environment described in
section 2.4 (page 42) with GEOPROVE to obtain measurements of the shortest dis-
tances between neighbouring branch ends (“branch spacing”) (see also Figure 4.10)
[13]. The importance of this spatial observable is described in [211].

Figure 4.11 shows histograms of 106 measurements obtained from a CT scan of a real
coral structure (Pocillopora damicornis in a sheltered environment) and 155 measure-
ments obtained from 8 simulated coral structures under similar conditions.

It can be observed from the measurements shown in Figure 4.11 that there is a re-
markable difference between the measurements of the branch spacing done in the CT
scan of Pocillopora damicornis and the simulated growth forms. Three observations
can be made from these measurements:
(1) The measurements from the simulated structures seem to be bimodally distrib-
uted while the CT scan measurements are unimodal. This may be the result of mea-
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Figure 4.11: Comparison of branch spacing in a CT scan of Pocillopora damicornis in

a sheltered environment with 8 simulated structures under similar conditions.

surement artifacts or it may be caused by the simulation mechanics. To fully under-
stand the reasons for this we would need to obtain a larger number of more detailed
measurements, which we have not yet been able to acquire.
(2) The mean branch spacing of the two distributions differs significantly (≈ 0.5 ver-
sus ≈ 1.5). This may be due to the scaling of the measurements: in order to obtain
a scale that makes the simulated structures comparable to the real objects, the mea-
surements from the simulated structures have been scaled using a factor obtained
from the ratio in dimensions of the simulated structures and the real coral.
(3) In real Pocillopora damicornis the variability is relatively low compared to the
simulated forms. These measurements seem to indicate that there is a mechanism
which regulates growth of branches in the immediate vicinity of other branches, this
mechanism is not present in the current simulation models. In the study by Rinkevich
and Loya [196] it is proposed for the branching stony coral Stylopora pistillata that
there is a chemical signal mechanism which regulates growth of branches, resulting
in a relatively low variability and even a remarkable uniformity of the branch spac-
ing. Their experiments indicate the possible appearance of a chemical signal which
is being secreted into the water column and works as repellent, growth suppress-
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ing, agent. A similar mechanism might be present in Pocillopora damicornis. The
morphological measurements indicate that in future versions of simulation models of
stony corals a regulation mechanism is required in order to obtain a better approxi-
mation of the actual growth process.

4.5.5 Conclusions

We have presented a software architecture that allows us to instrument interactive
virtual exploration systems with probes to obtain quantitative information based on
visual presentations. We have used this system to instrument an existing application
with little effort. We have limited our system to simple measurements with probes
that consist of one, two or three markers. It is relatively easy to extend this system
with probes that consist of more complex markers, enabling more advanced measure-
ments to be performed.

4.6 Summary and conclusions

This chapter presented several interaction techniques to enrich the immersive ex-
perience of a virtual environment. As in the real world, interaction with a virtual
environment greatly increases a user’s awareness. Our primary goal was to develop
techniques for the purpose of scientific exploration, but most can be applied to other
types of virtual environments as well.
By adopting the Visualization Toolkit (Vtk) as our basis for the construction of virtual
environments using SCAVI, an application developer has immediate access to a wide
range of computer graphics, image processing and scientific visualization functions.
Our direct object manipulation extensions to Vtk allow flexible scientific exploration
environments to be built within a short time span. The resulting interaction capa-
bilities come close to those offered by commercially available VE toolkits such as the
WorldToolkit and Performer, but it also lacks important features, such as a scene
graph system. The basic interaction methods are relatively simple and are all based
on the wand’s buttons and joystick, but have proven to be effective for the implemen-
tation of expressive interactive environments.
XiVE provides a unique capability for VE application designers by allowing existing
2D GUI toolkits and applications to be integrated into virtual environments. Its gen-
eral design allows a developer to design graphical user interfaces using the same
programming techniques as are used for desktop applications and include them in
virtual environments with great ease. XiVE has recently been released to a selected
number of VE application developers for evaluation purposes. Based on their experi-
ences and comments, improvements will be incorporated after which the code will be
released to the public.
The concept of context in a virtual environment has, as of yet, only been applied to im-
prove the accuracy of a speech recognition system. Results have shown that the per-
formance of speech recognition does improve, though not by much. The added value
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of speech recognition in virtual environments, however, is unquestionable. Through
the use of a different modality than graphical representations (i.e. sound), interac-
tion with a virtual environment remains possible even when low frame rates make
interaction through graphical constructs difficult. However, experiences with the cur-
rent version of our speech recognition system show that variations in pronounciation
between different speakers remain a problem.
GEOPROVE provides interaction methods for obtaining quantitative measurements
from visual representations in a virtual environment, which is essential for scientific
exploration. Its design allows VE applications to be extended with this functionality
with little effort. The current implementation of GEOPROVE provides its own graphi-
cal user interface to facilitate integration in existing VE applications, but it has been
designed in such as way that this can be replaced by other interfaces.



Chapter 5

Interactive dynamic exploration

environments∗

“Computing machines can do readily, well, and rapidly

many things that are difficult or impossible for man, and

men can do readily and well, though not rapidly, many

things that are difficult or impossible for computers.

That suggests that a symbiotic cooperation, if successful

in integrating the positive characteristics of men and

computers, would be of great value. The differences in

speed and in language, of course, pose difficulties that

must be overcome.”

J.C.R. Licklider, Man-Computer Symbiosis, IRE Trans-

actions on Human Factors in Electronics (HFE-1), pages

4–11, 1960.

5.1 Introduction

The interactive dynamic exploration environment (IDEE) model illustrated in Figure
1.2 (page 5) is equivalent to a common design pattern known as the Model-View-

Controller (MVC) architecture (see Figure 5.1) [85]. The MVC architecture has its
roots in Smalltalk-80 where it was originally applied to map the traditional input,
processing, and output tasks to the graphical user interaction model [136]. This
three-way abstraction separates (1) the model of the underlying application, (2) the
representation of this model to the user and (3) the ways in which the user interacts
with the application. Compared to our IDEE model, the “Model” in the MVC archi-
tecture corresponds to our Process (or Simulation) component, “View” corresponds to

∗Parts of this chapter have been published in R.G. Belleman and P.M.A. Sloot. “The Design of Dy-

namic Exploration Environments for Computational Steering Simulations”, Proceedings of the SGI
Users’ Conference, pages 57–74, 2000 and R.G. Belleman and R. Shulakov. “High performance distrib-

uted simulation for interactive simulated vascular reconstruction”, number 2331 in Lecture Notes in
Computer Science, pages 265–274, 2002.
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Figure 5.1: State and message handling in the Model-View-Controller (MVC) design

pattern [136].

Presentation and “Controller” to Interaction.
The rationale behind isolating functional components from each other is two-fold.
First; this design helps the application engineer to understand and modify each com-
ponent without having to know everything about the other components. Here, the
Model is the central component of the application, the one that does the interesting
work. It is kept distinct from the View component which provides methods for the
representation of the data structures maintained by the model on a presentation de-
vice (e.g. a visual or audio display). The Controller provides an interface from the
interaction devices used by the user (e.g. the mouse, keyboard) and sends messages
to the model to change its state or to the view to change the representation of the
model.
Second, and more important for the environments we are considering here; this de-
sign facilitates the distribution of functional components over specialized computing
resources. If designed and implemented properly, such a distributed system could
provide a more responsive interactive system as compared to the situation where all
components execute on the same resource. The separation of an interactive applica-
tion into components requires some form of communication for the exchange of mes-
sages. The implementation of this message exchange mechanism raises additional
concerns when the components are distributed over different systems.

5.2 High performance interactive simulation

The responsiveness of an interactive system is directly related to the rate at which
updates are generated by each of the components in the system. To increase respon-
siveness, the delays between the consecutive components in the interactive system
should be minimized. In an ideal system, each component produces results the mo-
ment input data is available and communication between components is instanta-
neous. In practice, however, there will always be some delay. The accumulation of
all delays is referred to as “update time”. In an interactive system there will always
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be some delay from the moment interaction takes place until the moment that the
environment has reacted to this interaction. This delay is referred to as “response
time”.

5.2.1 Update and response time

In a non-interactive environment, the update time TU is the sum over the execution
time for the different components (Tsim for simulation, Tvis for visualization and Tren for
rendering) and the communication delay between components (Tsim→vis and Tvis→ren):

TU = Tsim +Tsim→vis +Tvis +Tvis→ren +Tren. (5.1)

Decreasing update time means that the delays imposed by the different components
must be minimized. In the case of executing components this means that the time
between the acceptance of input data and the production of results should be mini-
mized. In the case of communication between components, the dominating factor for
delay is the time that is required to transfer data from one component to the next.
In an interactive system, the response time TR depends on which component the inter-
action is directed to, since only this and subsequent components need to be updated.
In case the user interacts with the simulation component, the response time will be
TR = Ti(sim) +TU , where Ti(sim) is the delay between the moment an interaction with the
simulation component was initiated and the moment it is received by the simulation.

5.2.2 Pipelined execution

A dynamic system differs from a static system in that the simulation component is
an iterative process that repeatedly produces (intermediate) results. Basically, the
delay at which these intermediate results become available is given by equation 5.1.
Figure 5.2 shows a time-frame diagram in a “lock-step” IDEE. In this strategy, the
simulation is allowed to advance only if the user explicitly tells the environment it is
alright to do so. In this case we say the exploration system is “user driven”. While
the user is exploring the results rendered by the graphics system, the simulation and
visualization modules sit idle. In situations where a single simulation, a single visu-
alization and a single rendering time-frame takes a negligible amount of time, this
strategy may be perfectly adequate since the user will see the result of his interaction
in short notice. However, if these time-frames are long, it may take a long time before
the result of an interaction is shown. This can lead to an unusable environment and
frustration with the user.
If the simulation component is (or can be considered as) a component that is inde-
pendent of the execution of subsequent components, the update time of the whole
environment can benefit from a pipelined execution model. In this execution model,
a component resumes execution as soon as its output data has been accepted by the
next. The time required before simulation updates are presented to the user (i.e. the
length of a time frame on the exploration level) is shortened by allowing the simula-
tion to run in parallel to the rest of the environment, as illustrated by the time-frame
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Figure 5.2: Time-frames and delays in a lock-step, user driven interactive dynamic
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diagram in Figure 5.3. In this case simulation, visualization and rendering execute
in parallel. Once all components in the pipeline have executed at least once, and pro-
vided sufficient resources are available to execute all components simultaneously, the
update time becomes

TU = max(Tsim +Tsim→vis,Tvis +Tvis→ren,Tren). (5.2)

The frequency of updates perceived by the user at the exploration level depends on
the component that requires the longest amount of time to process one time-step. In
the case illustrated in Figure 5.3, the simulation is the longest executing component
in which case we say that the system as a whole is “simulation driven”.

As the components in this execution model are allowed to proceed after having pro-
cessed one time-step, a situation results where after some time each component is
processing a different time-step. Specifically, the user at the exploration level looks at
information that was calculated by the simulation component “in the past”. In case
the user performs no interaction with the data this is perfectly fine. However, if the
user does interact with the data and if this interaction has a direct influence on ear-
lier components (such as the simulation), the component with which the interaction
took place may have to rollback to the time step with which the interaction took place
in order to obtain consistent results. We will come back to the consequences of this
situation when we discuss time management in section 5.3.4.



5.3 Distributed simulation and visualization 101

1

1 2 3

2 3 4 1’

1’ 1’ 1’ 1’

interaction

���
���
���
���

���
���
���
���

visualization

rendering

exploration

simulation

perception delay
interaction delay

rendering delay
communication delay

time

3333222211111 3 3 3

2’

1’ 2’

1’

idle idle idle idle

rollback

1 2 3

Figure 5.3: Time-frames and delays in a pipelined, simulation driven IDEE.

5.3 Distributed simulation and visualization

The capabilities of modern computer systems may, in some cases, allow both the simu-
lation and visualization components to be performed on the same machine. However,
a performance increase may be attained by running these components on dedicated
computing platforms. For example, many simulation applications perform better on
dedicated hardware such as vector processors, massively parallel platforms or other
high performance computing machinery. State-of-the-art graphical systems are now
available that are well suited for the rendering tasks. Moreover, a decomposition of
an IDEE into separate communicating components facilitates implementation and
allows more control over the performance of the system as a whole. However, the de-
composition of an IDEE over distributed systems has a number of implications that
need to be addressed to obtain a usable exploration system, as described next.

5.3.1 Execution environment

Especially in the case of distributed environments, some means of job control is
needed that allocates the resources required for the application prior to execution
(when, for example, execution needs to take place on batch queue execution systems).
In many organizations such an environment will need to adhere to on-site authenti-
cation and authorization regulations as stipulated by the local organization. Further-
more, a mechanism should be provided that allows the user to start/stop the execution
of the different components of the environment on the various computing platforms
with minimal effort. The application developer cannot expect that an executable and
a startup script handed to a user can be successfully used to deploy this program,
especially not when distributed execution is involved. Failure is almost certain and it
can take days to track down and fix problems. “Globus” is one example of a software
infrastructure for distributed computation that integrates geographically distributed
computational and information resources [81]. Globus provides a “single sign-on”
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service that requires a user to be authenticated only once. After this, the user may
execute jobs on any remote system for which they have been given authorization.

5.3.2 Data distribution

In distributed systems, components execute on different, possibly heterogeneous com-
puting platforms. To be able to communicate data with each other, components pro-
vide access to their attributes, which can then be made available to other components.
In heterogeneous computing environments, the attributes often have to be converted
into different representation formats. Furthermore, in many circumstances not all
components in an environment will participate in a communication. For these sit-
uations a publication and subscription mechanism needs to be provided that limits
communication to members of a restricted group. Message passing systems such as
PVM and MPI support this data distribution facility for the most part [80, 229]. In
general, however, these systems do not support the construction of asynchronous sys-
tems as they restrict the application programmer to the Single Program Multiple
Data (SPMD) communication paradigm, which in an IDEE would be too restrictive.
In most of the interactive simulation systems we are interested in, the data volumes
that are generated by the simulation in each time-step are in the order of tens to
hundreds of megabytes per time-step. For this reason we are particularly concerned
with the communication performance provided by a data distribution facility in the
case of large data volumes.

5.3.3 Attribute ownership

The behaviour of individual components in the environment is defined by one or more
attributes (or parameters) which together define the state of that component. To avoid
race conditions in a distributed system, attribute changes (which can be considered
events, for example as a result of user interaction) should only be performed by a
component that owns the attribute. In some cases it may be necessary to transfer
ownership so that attributes can be changed by other components (for example in a
collaborative environment where multiple users manipulate the same components).

5.3.4 Time management

An important issue in an IDEE is time management. In some situations it may be
appropriate to constrain the progress of one component based on the progress of an-
other. Time management deals with the exchange of time stamped information be-
tween components. For an IDEE, the four most time demanding components are; the
simulation system, the visualization modules, the rendering layer and the explorer
(i.e. the user).
Please recall Figure 5.3 in which a time-frame diagram is shown for a pipelined en-
vironment. In a pipelined system, each component is allowed to advance to the next
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time-frame when it has finished processing and communicating the results of the cur-
rent time-frame. Different components may therefore be processing different time-
frames at the same wall-clock time. In addition, the rate of advance in time-frames
is mostly irregular because of hardware, software and human imposed delays. As a
consequence, time delays occur when the output generated by one component can-
not be accepted for processing by another component immediately. When components
depend on the output of an increasing number of other components, the difference
between time-frames that is processed by components further apart in the pipeline
increases. This has a causality consequence for the user who explores the final compo-
nent in the pipeline and therefore interacts with presentations derived from a much
“earlier” time-frame than what is being processed by the simulation at the same wall-
clock time. Time management is responsible for preventing, or otherwise, detecting
and resolving this causality violation. Methods for resolving time causality problems
have been investigated within our group [176].

5.4 Communication architectures

Interactive distributed simulation environments consist of interconnected communi-
cating components. The performance of such a system is determined by the execution
time of the executing components and the amount of data that is exchanged between
components. In the following sections, we will look into a number of different archi-
tectures that may be suitable for the implementation of IDEEs. We will describe the
capabilities of these systems for the implementation of the model depicted in Figure
1.2 (page 4). As noted earlier; most of the interactive simulation systems that interest
us generate data volumes that are in the order of tens to hundreds of megabytes per
time-step. For this reason, the communication performance of these systems for large
data volumes will be analysed in more detail.

5.4.1 The High Level Architecture

The High Level Architecture (HLA) is a technical framework for modeling and sim-
ulation. HLA aims to establish a common architecture for simulation to facilitate
interoperability among simulations and promote the reuse of simulations and their
components [26, 60–64, 165]. A successor to the DIS (Distributed Interactive Simu-
lation) protocol, HLA provides a robust architecture with which distributed discrete
event and other types of simulations can be designed. HLA has replaced DIS as the
standard technical architecture for all United States Department of Defense (DoD)
simulations since 1996 and has been accepted as an IEEE standard (IEEE1516) in
the year 2000.
An HLA simulation consists of a federation that is composed of one or more feder-

ates that exchange information in the form of objects and interactions (see Figure
5.4). Interaction between federations is controlled by a “Run-Time Infrastructure”
(RTI). HLA systems comprise rules which govern how federates and federations are
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constructed (see Figure 5.5); an interface specification which governs how federates
interact with the RTI; and an Object Model Template which provides a method for
documenting key information about simulations and federations.

federate

inter−process communication

libRTI libRTI

federation

RTIExec FedExec federate

Figure 5.4: Components in HLA; federates combine to form a federation which is man-

aged by a Federation Executive (FedExec) process. Inter-process communication is per-

formed through services offered by the Run-Time Infrastructure Executive (RTIExec).

HLA provides solutions to many of the problems and issues described in section 5.3.
Specifically, HLA allows data distribution across heterogeneous computing platforms
(including message groups), supports a flexible attribute publish/subscribe and own-
ership mechanism and offers several methods to do time management.
The management services provided by the RTI are separated into six groups of func-
tionality:

1. Federation management - this includes services for the creation of federations,
joining federates to federations, observing synchronization points, federation-
wide save and restores, resigning federates from federations and destroying fed-
erations.

2. Time management - this includes services that implement the policies and ne-
gotiations for advancing logical time. A federate may be “regulating” (meaning
it is allowed to send time-stamped events), “constrained” (meaning it is capable
of handling time-stamped events), “neither regulating nor constrained”, or “both
regulating and constrained”. With each federate adopting one of these four poli-
cies, continuous time simulations as well as conservative and optimistic discrete
event simulations can be constructed, or combinations of these within the same
federation, if so desired.

3. Declaration management - this includes functionality for the publication, sub-
scription of object instances or attributes.

4. Object management - these include the functions for the registration and in-
stance updates at the object production side and instance discovery and reflec-
tion on the consumer side. Object management also includes methods for send-
ing and receiving interactions, controlling instance updates based on consumer
demand.
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Federation Rules:

1. Federations shall have an HLA Federation Object Model (FOM), documented
in accordance with the HLA Object Model Template (OMT).

2. In a federation, all representation of objects in the FOM shall be in the fed-
erates, not in the run-time infrastructure (RTI).

3. During a federation execution, all exchange of FOM data among federates
shall occur via the RTI.

4. During a federation execution, federates shall interact with the run-time in-
frastructure (RTI) in accordance with the HLA interface specification.

5. During a federation execution, an attribute of an instance of an object shall
be owned by only one federate at any given time.

Federate Rules:

6. Federates shall have an HLA Simulation Object Model (SOM), documented
in accordance with the HLA Object Model Template (OMT).

7. Federates shall be able to update and/or reflect any attributes of objects in
their SOM and send and/or receive SOM object interactions externally, as
specified in their SOM.

8. Federates shall be able to transfer and/or accept ownership of an attribute
dynamically during a federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions under which they provide up-
dates of attributes of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way that will allow them to
coordinate data exchange with other members of a federation.

Figure 5.5: Governing rules for federations and federates in HLA.

5. Ownership management - controls which federates are allowed to change (at-
tributes of) object instances.

6. Data distribution management (DDM) - the RTI acts as an “intelligent switch”,
matching up producers and consumers of data based on their declared interest.
DDM provides a way to further isolate publication and subscription interests by
defining a “routing space”, defined by regions.

From the considerations described in the previous sections, the High Level Archi-
tecture (HLA) seems to be a suitable architecture for the construction of an IDEE.
Figure 5.6 illustrates how an IDEE can be implemented using HLA. This IDEE con-
sists of a simulation federate executing on a High Performance Computing (HPC)
system which allows the simulation to run at best performance, and a visualization



106 Interactive dynamic exploration environments

and interaction federate that both run on a VR system. All federates are joined into
one federation which is governed by a FedExec process. This FedExec process is cre-
ated by the RTIExec process (which needs to be started manually) the moment the
first federate is created and if the federation does not already exist. If the federation
already exists, federates simply join the federation.
The federates in the federation communicate using the services provided by the RTI.
In this IDEE, the simulation federate publishes simulation results using HLA’s dec-
laration and object management services. The visualization federate subscribes to
the simulation results so that these are reflected as soon as results are available from
the simulation. Interaction with both the visualization and the simulation federate is
performed using HLA’s object management services. Concurrent access to the simu-
lation results is controlled by HLA’s ownership management services while the time
management services can be used to control time-frame advances. Both lock-step
and pipelined execution models can be achieved with this IDEE through HLA’s time
management services; by defining the interaction federate as “regulating” and the
simulation as “constrained”, a lock-step execution model is obtained as illustrated in
Figure 5.2. By defining the visualization federate as “regulating” and the simulation
as “constrained”, a pipelined execution model is obtained as illustrated in Figure 5.3.

RTIExec

inter−process communication

FedExec

libRTI

Simulation

output devicesinput devices
HPC system VR system

federation

libRTI

Interaction Visualization

libRTI

Figure 5.6: Structure of an IDEE using HLA; in this case, a simulation federate is

running on a High Performance Computing (HPC) system, a visualization and inter-

action federate on a VR system. All take part in one single HLA federation, governed

by a FedExec process. Communication between federates in the federation is performed

through services offered by an RTIExec process.

Communication performance

Our primary concerns with HLA are with the performance of communication in HLA
and the engineering effort imposed on developers. We have measured the perfor-
mance of HLA by measuring the transfer time of various sized data blocks between
two workstations. Both workstations are based on Pentium III processors, running
Linux (RedHat 7.2) and connected via a shared 100 Mbit/s network, using both RTI
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1.3NG version 3 and version 5 developed by the Defense Modeling and Simulation Of-
fice (DMSO) [60]. Details on the software architecture used for these measurements
are described by Zhao et al. [269]. Each measurement in Figure 5.7 is the average
over 15 samples. The deviation in the measurements is around one percent.
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Figure 5.7: HLA communication performance between two Pentium III based Linux

systems, connected by a 100 Mbit/s network. All measurements are averaged over 15

samples. The deviation in the samples is around one percent.

Internally, RTI uses TCP/IP sockets as its communication mechanism and we can see
that the additional services provided by RTI do not put a severe penalty on commu-
nication, except for an additional latency for small messages of around 0.02 seconds.
For packages sizes less than 512 bytes, we can see that the transfer time is more or
less constant. It is very likely that the designers of this RTI implementation decided
to optimize the communication of small sized messages, which is probably quite com-
mon in the type of simulation systems used by the Department of Defense (i.e. combat
simulations). From package sizes of 64 kB and up we can see that the transfer time
grows linearly and stabilizes at a throughput of around 1.2 Mbyte/s for RTI version
3 and 5.0 Mbyte/s for version 5. The increase in performance from version 3 to ver-
sion 5 is significant. Little is known about the communication layer used in the RTI
implementation provided by DMSO, but as they were involved with the design and
development of CORBA, it could well be that the RTI makes use of “TAO”, a real-time
distributed Object Request Broker used in CORBA [270] [207,248].

Engineering an HLA application

All objects and interactions between objects in a federation must be described accord-
ing to an “Object Model Template” (OMT). This prerequisite forces the application
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engineer to document his code through a formalized framework prior to (and during)
implementation. By doing so, applications developed in the HLA framework can be
automatically checked for correctness during development and at execution time. The
OMT is used to document objects and interactions in a federation in a “Federation Ob-
ject Model” (FOM), federates are documented in a “Simulation Object Model” (SOM),
objects and interactions that are used to manage a federation are documented in a
“Management Object Model” (MOM). The development of a SOM (for each federate in
a federation) and a FOM (for each federation) is a requirement put forth in the “Fed-
eration Development and Execution Process” (FEDEP) model. To help the developer
in the formulation of SOMs and FOMs, the “Object Model Development Tool” (OMDT)
was developed by DMSO.
The engineering enforced by the FEDEP requires a substantial investment from the
application developer. Although this design model forces the engineer to formally de-
scribe his code, which is intended to increase the quality of the end product, the initial
investment, in terms of time, for the development of new federates is high. However;
once defined, SOMs allow simulation components to be reused, which significantly
reduces development time.

Conclusions

HLA is a complex but complete framework for the development of interactive distrib-
uted simulations. HLA provides most of the services described in section 5.3 that are
needed for the construction of interactive distributed exploration systems. DMSO’s
RTI provides no execution environment that allows HLA simulations to be boot-
strapped autonomously; each host participating in a federation requires that an RTI
execution environment is started manually. Work is currently underway in our de-
partment to see whether HLA can be used in ways that avoid this. Although early ver-
sion of DMSO’s RTI showed communication performance results that were marginal,
the performance of recent versions has increased significantly. The latest (and final)
version of DMSO’s RTI (version 6) was released on September 30, 2002 [67].

5.4.2 SPLICE

SPLICE is a software architecture developed at Hollandse Signaalapparaten B.V.
(HSA) for large-scale distributed embedded systems [17, 18, 59]. Included in the
design goals of SPLICE was the aim to provide an architecture that reduces the com-
plexity of the development of large, reactive distributed systems, to provide fault-
tolerance and to allow incremental deployment and development of systems.
SPLICE uses a data-oriented coordination model in which multiple processes exchange
messages. Each process has its own communication “agent” that maintains a “lo-
cal store” (see Figure 5.8). As in HLA, there is no explicit communication between
processes. Instead, each process executes autonomously and the communication
agents manage communication between distributed processes based on a subscription
paradigm (hence the acronym; Subscription Paradigm for the Logical Interconnection
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of Concurrent Engines). Each process publishes and/or subscribes to one or more
“data sorts” that identify messages. When a process publishes a datum, its agent will
store it in the local data store and forward the datum to all agents that manage a pro-
cess that has subscribed to this datum. The data space that is thus created resembles
the “tuple space” paradigm used in Linda [214]. As all processes work independently
from each other, global control is minimized which greatly reduces the complexity of
designing a distributed reactive system.

Local
store

Process

Agent

Local
store

Process

Agent

Network

Figure 5.8: Components in SPLICE: processes, each with an agent and a local store

that communicate over a network.

SPLICE makes a distinction between periodic, context and persistent data to handle
different communication needs between processes. Periodic data sorts are used in
situations where data is generated repetitively and the validity of this data decreases
over time. Data in this category is delivered only to processes that are active at the
time it is published. Context data sorts are used to represent the current state of
the system as a whole. SPLICE ensures that the most up-to-date values are always
available and provides all context data to each newly created processes. Persistent
data is like context data except that storage is non-volatile. Sorts that are labeled
“persistent” are stored in a persistent database even after processes have gone offline.
When new processes require this data, the values are retrieved from the database.
Processes may identify fields in the data structure of a data sort as “key-fields”. New
instances of a dataset that are identical in all key-fields replace earlier produced data
while all other instances will be stored separately. Even if the data structure in a
dataset is the same for both producers and consumers, the key-fields may be different.
This mechanism allows subscribers to index data that was produced while it was
unable to consume the data.
Figure 5.9 illustrates how an IDEE can be implemented using SPLICE. This IDEE
consists of a simulation process executing on a High Performance Computing (HPC)
system which allows the simulation to run at best performance, and a visualization
and interaction process that both run on a VR system. All processes communicate
through local communication agents provided by SPLICE. In this IDEE, the simula-
tion process publishes simulation results as “periodic” data through its local agent.
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Figure 5.9: Structure of an IDEE using SPLICE; in this case, a simulation process is

running on a High Performance Computing (HPC) system, a visualization and interac-

tion process on a VR system. Communication between processes is performed through

local communication agents provided by SPLICE.

The visualization process subscribes to the simulation results so that these are re-
flected by its local agent as soon as results are available from the simulation. By
providing different “key-fields”, separate time-frames of simulation results are main-
tained to avoid that simulation data is missed by the visualization or interaction
processes in case they were unable to consume the data. Interaction with both the vi-
sualization and the simulation processes is performed using the same publication and
subscription methods. Although SPLICE provides no explicit services to support own-
ership management and time management, the existing services can, in principle, be
used to implement these.

Communication performance

As SPLICE is primarily designed for the exchange of small messages between many
processes executing at the same time, we were concerned with its performance for
the communication of large data volumes. To determine this, we designed and imple-
mented a program using SPLICE that exchanges large messages between two distrib-
uted systems†. Figure 5.10 shows the communication performance of SPLICE (version
3.8) measured between two Sun UltraSparcs, connected by a 100 Mbit/s network con-
nection. Each measurement is averaged over 15 samples.

The measurements show that the increase in transfer time differs below and over a
message size of 1 Mbyte. At this message size, the transfer rate is approximately 500
kByte/s. For larger messages, the transfer time increases at a steeper rate and trans-

†Many thanks to Erik Boasson, HSA B.V., for providing us with a version of SPLICE for these
experiments and for his support in answering questions.
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Figure 5.10: SPLICE communication performance for large messages between two Sun

connected by a 100 Mbit/s network connection. Each measurement is averaged over

15 samples.

fer rate drops back to approximately 200 kByte/s for a 10 Mbyte message. It turns out
that this is related directly to the amount of shared memory available on a system.
SPLICE stores data into shared memory to improve communication between processes
on the same system. However, it also uses this memory as a buffer for communication
to processes on other systems by the communication agents. Unfortunately, shared
memory is a limited resource on most operating systems. When the amount of shared
memory is depleted, SPLICE is forced to break up messages into smaller blocks. This,
as well as the overhead imposed by the exchange of multiple blocks for one message,
reduces the communication throughput for large messages.

Conclusions

The paradigm provided by SPLICE allows for the development of large, complex dis-
tributed systems with relative ease. It is clear that HLA and SPLICE share many
of the same design decisions, however, the construction of distributed systems using
SPLICE is much easier. SPLICE provides most of the services described in section 5.3
that are needed for the construction of interactive distributed exploration systems.
However, the implementation we used for our performance measurements showed
that SPLICE is less suitable for systems that exchange large data volumes.
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5.4.3 The Virtual Laboratory and the Data Grid

VLAM-G, the Grid-based Virtual Laboratory AMsterdam (or VL for short), provides
a science portal for distributed analysis in applied scientific research. It offers scien-
tists the possibility to carry out their experiments in a familiar environment, where
content and data are clearly separated. Emphasis is put on the development and
use of open standards and seamless integration of external computational resources
across organizational borders [3]. A modular architecture is essential to establish
such a flexibility. Supporting inter-disciplinary interactions implies the composition
of (software) modules, which may have been developed independently. VLAM-G takes
this modularity into account by providing a modular data flow-based system. In order
to ensure that only proper connections can be established, the constituting modules
communicate using a strongly typed communication mechanism.

A common Run-Time System (RTS) has been designed which can properly deal with
a set of generic modules for various scientific areas. A preliminary requirement anal-
ysis performed together with various scientists from the three application domains
has led to a classification of three types of modules: control modules that control ex-
ternal devices, processing modules that perform data filtering and visualization, and
database and mass storage modules that allow the experimenter to store and retrieve
local and remote data, either in raw data files or in databases. A scientist assembles
these modules to compose his experiments. VL middleware assists the scientist by
providing a Graphical User Interface (GUI) and an assistant. These components ease
the handling of remote data access, resource allocation, security issues and access to
external devices. The editing phase of an experiment is performed using a portal,
implemented as a drag-and-drop GUI.

Communication in VL

Modules in VL start execution when consumable data is available and produce results
for other processes to consume, much in the same way as in visualization pipelines
described earlier in section 1.3.2 (page 7) [262]. The main difference with SPLICE

and HLA is that the communication path from one process to another is explicit in
VL. Processes in VL are logically connected in Process Flow Templates (PFT) that
identify (1) the modules that are part of an application (a so-called “experiment” in
VL terminology) and (2) the logical connections between the modules (see also Fig-
ure 5.11). So-called “portals” provide access to the different aspects of VL for the
definition of experiments, launching experiments, data storage of intermediate re-
sults and visualization front ends for (intermediate) representation of experimental
results. Communication between modules is performed by the Virtual Laboratory Ab-
stract Machine (VLAM) which uses the Globus communication primitives to transfer
data across organizational borders [81,88].
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Figure 5.11: An example of an experiment definition in the Virtual Laboratory. This

example shows an IDEE where resources from different institutes are combined into

an experiment for interactive flow simulations through medical scans (see also Chapter

6).

Concluding remarks

The design of VL addresses some of the issues described in section 5.3 for the con-
struction of an interactive dynamic exploration environment (IDEE). In particular,
VL provides an execution environment that hides many of the details of the execu-
tion of distributed processes on different systems across organizational domains. The
communication and execution mechanisms provided by VL are sufficient for the im-
plementation of a pipelined distributed IDEE as described at the beginning of this
chapter, although they do not provide the richness of capabilities offered by both HLA
and SPLICE. Unfortunately, the performance of the communication mechanisms in
current implementations of VL is inadequate for the exchange of large data volumes
(data not shown).

5.4.4 Concluding remarks on communication architectures

The communication architectures just described address many, though not all, of the
design criteria for the construction of an IDEE that were set forth in section 5.3.
HLA (the High Level Architecture) provides solutions to many of the problems and
issues described in the previous sections and is, therefore, a suitable architecture
for constructing an IDEE. Specifically, HLA allows data distribution across heteroge-
neous computing platforms (including message groups), supports a flexible attribute
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publish/subscribe and ownership mechanism and offers several methods to do time
management. The use of HLA in interactive simulation systems is described in more
detail by Zhao in [268, 269]; this work describes an Agent-based Intelligent Virtual
environment (AG-IVE) where agents are used to coordinate communication between
distributed systems on behalf of processes that take part in an interactive simulation
system.
One concern that remains is that of the interchange of large data volumes in an IDEE.
Again; as noted earlier, most of the interactive simulation systems that interest us
generate data volumes that are in the order of tens to hundreds of megabytes per
time-step. In the following section we describe a number of techniques that can be
used to increase the throughput of a communication architecture. These mechanisms
are used in a test case of an IDEE which will be described in chapter 6.

5.5 High throughput communication using CAVERN

Distributing components over different systems means that some form of communi-
cation must be established to allow the output of one component to be transferred to
the next. It could be that the overhead generated by this communication mechanism
annuls the benefits obtained by the distribution (i.e. although Tc1 decreases through
the use of optimized resources, Tc1→c2 increases because of the extra communication
overhead between two components c1 and c2). To reduce the delays caused by com-
munication it may be beneficial to reduce the amount of transferred data as much as
possible. This reduction itself, however, also takes time so careful consideration is
often necessary.
We have implemented three mechanisms to increase the throughput of data trans-
fers over a network. These mechanisms are cascaded into a pipeline to decrease the
amount of transferred data and spread the remaining data over multiple network
connections, in an effort to maximize throughput (see Figure 5.12).

sender receiver

encode

compress

multi demulti

decompress

decode

network

Figure 5.12: The stages in the communication pipeline: the data volume produced by

a sender is reduced in volume by an application specific encoder and a compression

stage. The remaining data is sent through multiple network connection to the receiver

where the pipeline reconstructs the data for the receiver.



5.5 High throughput communication using CAVERN 115

5.5.1 Hiding latency by using multiple connections.

The first method increases communication throughput by using multiple network
connections between peers at the same time. There are two reasons why this in-
creases throughput (see also Figure 5.13). First; in the case of reliable network con-
nections (such as connections using the TCP protocol), delays caused by waiting for
acknowledgment packets can be “hidden” by serving other connections that are ready.
Second; the technique can exploit “intelligent” network devices that spread commu-
nication over different routes. This technique therefore performs best when there are
many such devices between peers (which is often the case when peers are geographi-
cally dispersed). In principle, data can travel along different routes from peer-to-peer,
thereby circumventing congestion caused by other traffic on the network.
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Figure 5.13: Increasing communication throughput using multiple network connec-

tions.

5.5.2 Data volume reduction

Note that the total volume of data that is transferred between peers is not decreased
by the method described in the previous section. Instead, it increases throughput by
exploiting as much available bandwidth as possible. The techniques described next
aim to increase throughput by decreasing the volume of communicated data.

Data encoding

Data encoding is a semantic volume reduction technique that aims to reduce the vol-
ume that is needed to represent the data to a minimum. This technique relies on the
fact that the receiving side may not always be interested in the most accurate rep-
resentation of the data that was calculated by the sender. Because this type of data
reduction throws away unnecessary information, this method is frequently referred
to as lossy compression.
Although a significant reduction in volume can be achieved using this technique, the
receiver should be conscious of the fact that the data it has received is not of the
same accuracy as was originally produced. Although this reduction may be acceptable
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under some circumstances, unexpected side effects may occur when the errors that
are present in the data are accumulated due to an integrating method of analysis
on the data. For example, an often used technique in vector field visualization is to
represent the path of the flow using streamlines. These streamlines are created by
integrating over individual vectors. Due to the accumulation of (small) errors in each
individual vector, a streamline may follow a radically different path.

Data compression

Freely available compression libraries (such as zlib [152]) provide means of reduc-
ing data volumes very effectively. This data reduction does not make any assump-
tion about the data contents and is therefore without any loss of information. Most
compression libraries can be parameterized to indicate the level of compression that
should be achieved at the expense of higher execution time. This type of data reduc-
tion is commonly referred to as lossless compression as the data is unchanged after
decompression. The amount of compression depends on (1) the type of data and (2)
the amount of data. In general, the compression ratio decreases when the amount of
data decreases. Note that this is important in parallelized applications in which the
original data volume is often decomposed into smaller subvolumes.

5.5.3 Performance of the network communication pipeline

We have implemented the mechanisms described above using CAVERN [145,169]. In
this section we show some results obtained from measurements on their performance.

Figure 5.14 shows the mean throughput over 200 measurements of the multiple con-
nection stage in the communication pipeline. These measurements were taken be-
tween a system in Amsterdam and St. Petersburg, Russia. Over a single connec-
tion, the throughput between these systems was approximately 100 Kbyte/s. As can
be seen from this figure, the average throughput increases as more connections are
used, but up to a maximum. Using more connections congests the network and no
further increase in throughput can be obtained. As more connections are used, the
throughput becomes more and more unpredictable and decreases when too many si-
multaneous connections are used.

To illustrate the influence of encoding on throughput, Figure 5.15 shows the mean
performance over 5 measurements of the complete network communication pipeline
on the transfer of the results from a parallel lattice Boltzmann flow simulation kernel
to a visualization frontend; using compression, multiple network connections, both
with and without encoding. This figure illustrates that, on average, encoding doubles
throughput. Although this figure shows the typical throughput that can be achieved,
in some situations the total performance of the network communication pipeline re-
sulted in a throughput of 62 Mbyte/s, which is over 5 times the bandwidth of the
slowest network link (100 Mbit/s).
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Figure 5.14: Average network throughput when using multiple network connections

between a system in Amsterdam and a system in St. Petersburg, Russia.
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Figure 5.15: Mean throughput of the network communication pipeline when used to

transfer the results from a parallel lattice Boltzmann flow simulation kernel to a visu-

alization frontend; shown with and without encoding. Multiple network connections

and data compression were used in both measurements.

5.5.4 Conclusions

Our measurements show that a great performance increase can be obtained with
the mechanisms described in this section. The results presented here were obtained
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using unoptimized algorithms; we expect that performance could be increased even
more. The different stages in the communication pipeline require a certain amount
of time to execute which adds delay to communication time. By tuning the param-
eters that influence this execution time, throughput can (in principle) be automati-
cally optimized. For example; networks are generally shared by many institutes so
that available bandwidth changes over time. The multiple connection technique can
sense this change by measuring the effect of employing more or fewer connections
during communication. An optimal number of connections can thus be determined
dynamically (and transparently) while peers communicate. However, a different pa-
rameterization at one stage influences the execution time of subsequent stages which
implies that parameter optimization is not a trivial task.

5.6 Summary and conclusions

This chapter addressed the issues involved in the design and implementation of high
performance interactive dynamic exploration environments (IDEE). We argued that
a design where processing, presentation and interaction are isolated into separate
components can facilitate the engineering of an IDEE and allows the components to
be distributed over specialized computing resources to increase performance.
We described two execution models for IDEEs; a user driven and a simulation driven
execution model, and discussed the performance behaviour and functional implica-
tions in the use and implementation of these models. The decomposition of an IDEE
over distributed computing resources requires a supporting communication architec-
ture. Several communication architectures were described and evaluated; the High
Level Architecture (HLA), SPLICE, and the Grid-based Virtual Laboratory AMster-
dam (VLAM-G). We analysed the communication performance for the exchange of
large data volumes in more detail.
The overall performance of a distributed IDEE benefits from high throughput com-
munication. We designed three independent, cascadable mechanisms to increase com-
munication throughput and measured their performance. These measurements show
that a great increase in communication throughput can be obtained with these mech-
anisms. However, the measurements also suggest that throughput can be improved
further by dynamically tuning the behaviour of the different stages at run-time.



Chapter 6

Integrating all: simulated vascular

reconstruction in a virtual

operating theatre∗

“Training for

minimal invasive surgery, or “trying to get the most gut

for the cut”, has its limitation due to the lack of repeti-

tive training opportunities on either animals or humans.”

Newsbytes News Network, 1997.

6.1 Introduction

In this chapter we describe an interactive dynamic exploration environment (IDEE)
that combines simulation and interactive visualization in virtual reality (VR) into
an environment that enables pre-operative surgical planning of vascular reconstruc-
tion procedures. This environment uses many of the ideas described in the previous
chapters. It shows how the simulation and interactive visualization execute on dis-
tributed systems, communicating with each other over a high throughput network
interface. Visualization of the simulation results and interaction with the environ-
ment take place from within a virtual environment (VE). The simulation runs on a
parallel system for best performance.

6.1.1 Abdominal vascular reconstruction

Vascular disorders in general fall into two categories: stenosis, a constriction or nar-
rowing of the artery by the buildup over time of fat, cholesterol and other substances
in the vascular wall, and aneurysms, a ballooning-out of the wall of an artery, vein

∗Parts of this chapter have been published in R.G. Belleman and P.M.A. Sloot. “Simulated vas-

cular reconstruction in a virtual operating theatre”, number 1230 in Excerpta Medica, International
Congress Series, pages 938–944, 2001.
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or the heart due to weakening of the wall [15, 34]. Aneurysms are often caused or
aggravated by high blood pressure. They are not always life-threatening, but serious
consequences can result if one bursts.
A vascular disorder can be detected by several imaging techniques such as X-ray
angiography, MRI (magnetic resonance imaging) or computed tomography (CT). Mag-
netic resonance angiography (MRA) has excited the interest of many physicians work-
ing in cardiovascular disease because of its ability to non-invasively visualize vascular
disease. Its potential to replace conventional X-ray angiography that uses iodinated
contrast has been recognized for many years, and this interest has been stimulated
by the current emphasis on cost containment, outpatient evaluation, and minimally
invasive diagnosis and therapy [266].
A surgeon may decide on different treatments in different circumstances and on dif-
ferent occasions but all these treatments aim to improve the blood flow of the affected
area . Common options include thrombolysis where a blood clot dissolving drug is in-
jected into, or adjacent to, the affected area using a catheter; balloon angioplasty and
stent placement which is used to widen a narrowed vessel by means of a inflatable
balloon or supporting framework; or vascular surgery. A surgeon resorts to vascu-
lar surgery when less invasive treatments are unavailable. In endarterectomy the
surgeon opens the artery to remove plaque buildup in the affected areas. In vascu-
lar bypass operations, the diseased artery is shunted using a graft or a healthy vein
harvested from the arm or leg.
The purpose of vascular reconstruction is to redirect and augment blood flow, or per-
haps repair a weakened or aneurysmal vessel through a surgical procedure. Although
the optimal procedure is often obvious, this is not always the case; for example, in a
patient with complicated or multi-level disease. Pre-operative surgical planning will
allow evaluation of different procedures a priori, under various physiologic states
such as rest and exercise, thereby increasing the chances of a positive outcome for the
patient [234].

6.1.2 What is needed?

The test case described in section 6.1.1 contains all aspects of an interactive dynamic
exploration environment. Our aim is to provide a surgeon with an environment in
which he/she can try out a number of different bypass operations and see the influence
of these bypasses. The environment needs the following:

• An environment that shows the patient under investigation with his affliction.
A patient’s medical scan is 3D, so to obtain best understanding on the nature of
the problem, the surgeon should be able to look at his specific patient data in
3D, using unambiguous visualization methods. We have described the Virtual
Radiology Explorer (VRE) environment that allows for the visualization of 3D
medical scans in section 2.3 (page 29).

• An environment that allows the surgeon to plan a surgical procedure. Again,
this environment should allow interaction in a 3D environment. For example,
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the CAVE environment allows us to interact with 3D computer generated im-
ages using 6 degrees of freedom (DOF) interaction devices [52, 205]. We have
described an architecture that allows interactive manipulation of virtual 3D ob-
jects in a virtual environment in section 4.2 (page 71). Note that visual realism
is not the primary goal here; what is more important here is physical realism,
and then only of particular features of fluid flow, as discussed later†.

• An environment that shows the surgeon the effect of his planned surgical pro-
cedure. As the aim of the procedure is to improve the blood flow to the affected
area, the surgeon must have some means to compare the flow of blood before
and after the planned procedure. This requires the following:

– A simulation environment that calculates the important properties of blood
flowing through a patient’s vascular system (i.e. pressure, velocity, wall
shear stress). We will describe this simulation environment and the meth-
ods for obtaining the input data for this environment from patient specific
data in section 6.2.

– A visualization environment that presents the results of the simulation in
a clear and unambiguous manner. We have described a scientific visualiza-
tion environment that can be used in virtual environments in section 4.2
(page 71).

– An exploration environment that allows the researcher to inspect and probe
(qualitatively and quantitatively) the results of the simulation (e.g. means
for performing measurements, annotate observations, releasing tracer par-
ticles in the blood stream, etc.). We have described an architecture that
allows measurements to be taken in a virtual environment in section 4.5
(page 86). An environment that visualizes the results of blood flow simula-
tion will be described in section 6.3.

6.2 The lattice Boltzmann method for flow simula-

tion

The lattice Boltzmann method (LBM) is a mesoscopic approach for simulating fluid
flow based on the kinetic Boltzmann equation. In this method fluid is modeled as
particles moving on a regular lattice. At each time step particles propagate to neigh-
boring lattice points and re-distribute their velocities in a local collision phase. This
inherent spatial and temporal locality of the update rules makes this method ideal
for parallel computing [123]. During recent years, LBM has been successfully used
for simulating many complex fluid-dynamical problems, such as suspension flows,
multi-phase flows, and fluid flow in porous media [134]. All these problems are quite
difficult to simulate by conventional methods [122,124].

†This in contrast to research projects toward virtual operating theatres that include the simulation
of tissue deformation and realistic blood spills [12,19].
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The data structures required by LBM (cartesian grids) bear a great resemblance to
the grids that come out of CT and MRI scanners. As a result, the amount of prepro-
cessing can be kept to a minimum which reduces the risk of introducing errors due
to data structure conversions. In addition, LBM has the benefit over other fluid flow
simulation methods that flow around (or through) irregular geometries (like a vascu-
lar structure) can be simulated relatively simply. Yet another advantage of LBM is
the possibility to calculate the shear stress on the arteries directly from the densi-
ties of the particle distributions [8]. This may be beneficial in cases where we want
to interfere with the simulation while the velocity and the stress field are still de-
veloping, thus supporting fast data-updating given a proposed change in simulation
parameters from the interaction modules.

6.2.1 Performance of the parallel LBM flow simulation kernel

Figure 6.1 illustrates the performance increase that is achieved by using a paral-
lelized implementation of the flow simulation kernel on three different parallel com-
puting systems;

• a 128 node SGI Origin 2000 system, each node consisting of a MIPS R12000
processor running at 300 MHz, running IRIX; the processors are interconnected
through a ccNUMA (cache coherent Non Uniform Memory Access) architecture;

• a 20 node cluster-of-workstations (COW), each node consisting of 2 symmetric
multi-processing (SMP) Intel Pentium-II processors running at 300 MHz (i.e.
the system contains 40 processors in total), running Solaris, interconnected by
Myrinet;

• a 40 node cluster-of-workstations (COW), each node consisting of an AMD
Athlon processor running at 700 MHz, running Linux, interconnected with a
dedicated fast (100 Mb/s) switched ethernet.

Figure 6.2 shows the speedup of the parallel implementation. Although the execu-
tion time per iteration was higher on the SGI system, this figure shows that the code
runs at higher efficiency. This can be largely attributed to the more efficient commu-
nication architecture that is used in the SGI system. The figure also shows erratic
speedup behaviour on the 20-node COW when more than 20 processes are used, even
though the system has 40 processors. This can be explained from the fact that each
node contains two processors but one network interface; when more than 20 processes
are scheduled on the system, some nodes will run multiple processes on the same
node, scheduled over the two available processors. When communication takes place,
the processors compete for the single network interface, thereby inhibiting speedup.
Because the test case environment’s architecture uses the distributed pipeline archi-
tecture described in section 5.2.2 and because the simulation component is, in general,
the slowest executing component, the performance of the simulation environment in
total is greatly increased. In the current LBM simulation environment the execution
time of the lattice Boltzmann kernel is independent of the morphology through or
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around which the flow is calculated (given equal grid dimensions and simulation pa-
rameters). However, the ratio of fluid nodes and solid nodes can make an important
difference. Especially in angio-vascular applications, the number of solid nodes is of-
ten much higher than the number of fluid nodes. An optimization can be applied in
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the lattice Boltzmann kernel to speed up the simulation by disregarding solid nodes
in the propagation phase.

6.2.2 LBM grid generation

For our purpose, we consider lattice Boltzmann grids to consist of isotropically struc-
tured nodes with one of the following five properties (see also Figure 6.3):

1. Fluid nodes define the geometry through which flow is simulated.

2. Solid nodes delimit the domain of fluid nodes, and as such define the “shape” of
the geometry around (or through) which the fluid flow is simulated.

3. Boundary nodes are solid nodes that border fluid nodes. They are often defined
as “first order bounce back nodes” or as “second order no-slip nodes” to describe
the behaviour of the flow at the boundary of a solid and the fluid. What exactly
constitutes a “border” depends on the type of neighbourhood that is used in the
LBM algorithm; in 2D, the D2Q5 and D2Q9 models are often used (respectively
with a 4 and 8 boundary neighbourhood); in 3D, the D3Q19 model is very popu-
lar (26 boundary neighbourhood).

4. Inlet nodes define the initial distribution of forces from where the flow enters the
system. Often the inlet flow profile is statically defined to approximate a system
in which the flow evolves under the influence of a time-continuous velocity pro-
file. In dynamic systems, the inlet velocity profile is changed dynamically over
time to approximate the forces that are exerted on the system by an external
force (such as the pulsating flow as a result of a beating heart cycle, consist-
ing of alternating cycles of systoles where blood is pumped out of the heart and
diastoles where the heart is in rest).

5. Outlet nodes define the behaviour of the flow as it exits the system. Common
conditions on the outlet nodes are “free flow”, where the forces traveling out
from the system encounter no resistance, “periodic flow”, where the forces are
wrapped back into the inlet nodes simulating a closed, recursive, system and
“restrictive flow” in which a situation is approximated where flow encounters a
high resistance (such as flow through small branches and capillaries that are
too small to be accurately simulated using LBM).

LBM requires that the input grids comply to the following set of rules:

• inlet nodes may not neighbour boundary nodes, only fluid nodes,

• outlet nodes may not neighbour boundary nodes, only fluid nodes,

• solid nodes may only neighbour boundary nodes,

• boundary nodes may only neighbour fluid nodes.

The purpose of automatic LBM grid generation is to construct grids that comply to
this set of rules.
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Figure 6.3: Different node types in an example D2Q5 lattice Boltzmann grid.

6.2.3 LBM grid generation from medical data sets

As mentioned earlier, the basic structure of the grids used in LBM bear great resem-
blance to the medical scans obtained from a patient by medical imaging devices such
as CT and/or MRI scanners. In general these scanners produce stacks of two dimen-
sional images that, when stacked together, form a three dimensional image volume.

For the purpose of flow simulation it is imperative that the structures through which
the flow must be simulated are isolated from the raw medical scan as accurate as
possible. This process is known as “image segmentation”.

Image segmentation

Image segmentation, like flow simulation, is an area of active scientific research [9,
76, 148]. Many techniques exist, ranging from manual techniques where pixels are
tagged by experienced radiologists with a thorough understanding of human anatomy,
to fully automated techniques. All techniques rely on the basis that a sufficient signal-
to-noise (S/N) ratio is present in the images so that the relationship of pixels with
others that belong to the same structure can be identified. Obtaining images with a
sufficiently high S/N ratio begins in the radiology department, at the time the scan is
made.

In the case of vascular structures, the imaging process is referred as “angiography”
(from the Greek angeion, “vessel” and graphien, “to write or record”). Radiologists
are trained with the knowledge on the physics behind the different medical scanners
and therefore know how to obtain good quality images. One currently used method is
computerized tomographic angiography (CT angiography or CTA). Here, a high con-
trast CT scan is produced using intravenous water-soluble iodinated agents to image
the vascular system. Time-of-flight magnetic resonance angiography (TOF-MRA) is a
non-invasive imaging technique that is well suited for obtaining high S/N ratio scans.
Although TOF-MRA does not require a contrast agent, it has the disadvantage that
the acquisition times are usually high (in the range of 10-30 minutes for high resolu-
tion scans). This may hamper the maximum attainable resolution in regions of the
body that move under the influence of respiratory motion.

Provided that sufficient contrast is present in the medical scans, the raw data from
the medical scanner is first segmented so that only the arterial structures of inter-
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Figure 6.4: LBM grids are generated from raw medical scans through a combination

of segmentation and image processing techniques.

est remain in the data set (see also Figure 6.4). In some rare cases, the S/N ratio
may be sufficiently high that a level-threshold segmentation technique is suitable to
segment the structure of interest from the raw medical scan. If this is not possible,
more sophisticated techniques are required, such as for example the wave propaga-
tion technique developed at the Leiden University Medical Center [206].

Automatic generation of boundary nodes

The segmented data set is then converted into a grid that can be used in LBM; bound-
ary nodes, inlet nodes and outlet nodes are added to the grid using a variety of image
processing techniques. The implementation of the Lattice Boltzmann used requires
that grids are isotropic. This means that the settings of the medical scanner either
have to be such that isotropic voxels are produced or, otherwise, the image has to be
resampled onto an isotropic grid. Conventional image processing techniques can be
applied here, provided that valid interpolation algorithms are used as determined by
the acquisition method that was used.
Boundary nodes are generated using a morphological image operation known as im-
age dilation (see Figure 6.5). The effect of this operation is that one layer of nodes
is generated around the segmented image that conforms to the requirements of the
LBM simulation. By subtracting the original segmented image from the dilated im-
age, an image is obtained that contains the boundary nodes only.

6.2.4 LBM grid generation and editing from polygonal data

As our aim is to provide physicians with an environment in which vascular recon-
struction procedures can be simulated, methods should be available by which a re-
constructive procedure can in some way be approximated by a LBM grid. We limit
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_dilation

Figure 6.5: Boundary node generation using image dilation.

ourselves to reconstructive procedures that alter vascular geometry, more specifically,
the types of treatment that are performed with stenotic and aneurysmal disease as
described in section 6.1.1, with the exception of thrombolysis using chemical agents.

Distance sampling

A suitable method for generating grids from simple curves is distance sampling. Here,
an implicit model is created from the input geometry by computing the smallest un-
signed distance from the input geometry to each voxel in a grid. Figure 6.6 shows the
execution pipeline that has been implemented to do this. The size of the output grid
and the number of points in the input curve should be defined in such a way that a
sufficiently accurate representation can be obtained.
The distance sampling algorithm visits each node in the output grid and records the

Select nodes
with d < cut−off

Add grid to
existing data

grid dimensions

curve grid

Sample distance from
curve into a grid

distance sampler threshold +

max distance cut−off data set

Figure 6.6: Grid generation using distance sampling.
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Figure 6.7: Distance sampling from a line representation of the letter ‘E’ onto a 3-bit

deep two dimensional image. Larger distance is represented by a darker colour.

minimal distance of this node to each of the points in the input curve. When this
distance is represented by a colour, we obtain the picture shown in Figure 6.7. To
decrease the execution time of the distance sampling algorithm, especially in the case
of large grids, a maximum distance parameter limits the traversal to grid nodes that
are within a specified distance from the input curve. The distances values stored
in the sampled grid can be used to extract grid nodes with a distance less than a
threshold value. This threshold value defines the diameter of the sampled curve;
higher values result in wider structures while lower values in structures that are
narrower. Finally, the thresholded grid is added to the medical data set for which the
procedure it to be simulated.

Figure 6.8: Example application of distance sampling to approximate a vascular re-

constructive procedure used in abdominal aortic aneurysm repair known as a “aorto-

femoral bypass graft with proximal end to side anastomosis” [233]. The picture on the

left shows a spline representation of the bypass placed onto the aorta and both iliacs.

The picture on the right shows a distance sampling of the bypass, added to the original

data set.
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Figure 6.8 shows an example of how the distance sampling technique can be used to
approximate the placement of a bypass known as an “aorto-femoral bypass graft with
proximal end to side anastomosis” [233]. This procedure is applied in patients with
aneurysms that involve the aorta and the iliac arteries as well.

Grid generation and editing using stencils

The distance sampling method is well suited to approximate vascular reconstruction
procedures that can be described by simple curves, such as shunts or bypasses with a
constant diameter. Shapes that are more complex, however, can not be easily created
in this manner.
Stencils are patterns that are used to mask (copy or replace) pixels in an image in
location where pixels in the stencil are set. In its most simple form a stencil is an
image by itself. The previously described distance sampling technique can be used
to generate stencils from other shapes that are not images. To change an image, the
stencil pattern is transformed to the desired location of the image. Next, each voxel
in that image that overlaps a set voxel in the stencil is either replaced or copied to
respectively delete or add pixels in the image. Figure 6.9 illustrates this process with
a 2D stencil on a 2D image; the process is identical for 3D stencils and images.

copy

replace

transform

input image

‘replace’ output image

‘copy’ output image

stencil image

Figure 6.9: The stencil operator used to copy or replace regions of an image.

Grid generation using implicit functions

Implicit functions are functions that, given a 3D coordinate (x,y,z) coordinate, evalu-
ate to a value w = fv(x,y,z) and a gradient vector ~v = fg(x,y,z). A carefully structured
complex polygon structure, such as those modeled using computer aided design (CAD)
or 3D modeling packages, can be used as an implicit function by determining, for each
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3D voxel in an output grid; (a) the distance from the voxel to the nearest polygon in
the model and (b) the vector to this polygon. This information can be used to discre-
tise a 3D polygonal representation of an object onto a 3D image, as illustrated by the
example in Figure 6.10. This Alias|Wavefront model of an airplane was sampled onto
a grid of 64×64×64 voxels using an implicit function operator in Vtk.

Figure 6.10: A model of an airplane sampled onto a grid of 64× 64× 64 voxels using

an implicit function.

6.2.5 Interactive LBM grid editing in a VE

Surgical procedures in a VE are simulated using a combination of the 3D manipu-
lation techniques offered by SCAVI, described in section 4.2, and the grid generation
techniques described in the previous sections. This combination allows a user to in-
teractively add and/or delete areas in the LBM grid corresponding to the procedure
that is simulated. Similar grid generation techniques as described above are used
to ensure the grids comply to the demands imposed by LBM. Figure 6.11 shows an
example of the interactive placement of a simulated bypass, represented by a spline.
SCAVI is used to allow the user to manipulate the spline and its control points, rep-
resented by spheres, to set the start and end point and the path of the spline. Once
the bypass is in place, a distance sampling method is used to sample the bypass and
add it onto the existing grid, as previously illustrated in Figure 6.8. After adding the
boundary nodes this grid can be converted to a new LBM grid which can be used as
the input for a new flow simulation.
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Figure 6.11: Interactive placement of a bypass, represented by a spline. The start and

end point of the spline and its path is adjusted using the control points represented by

spheres.

6.3 Interactive 3D flow visualization in VEs

The visualization of flow fields is difficult. The challenge in the visualization of flow
fields (or vector fields in general) lies in the mapping of vectors to comprehensible
visual constructs. Various methods have been designed that do this [56,57,185,246].
The effectiveness of a vector field visualization method depends on the spatial and
temporal complexity of the underlying vector field. Although very effective visual-
ization methods have been developed for the representation of 2D vector fields, these
methods are not always suitable for 3D fields. The reason for this is often that the 2D
visualization methods lack the depth cues that make them suitable for 3D vector field
visualization. One way through which these depth cues can be added is through the
use of advanced graphics rendering techniques (depth of field, shadows) and VR dis-
play and interaction technology (in particular stereoscopic projection and head motion
parallax) .

For the purpose of our test-case, we are concerned with the visualization of flow prop-
erties that help a surgeon in making a decision on a vascular treatment and deciding
what the effect is of a proposed treatment on blood flow [225]. The flow properties
that should be represented at minimum are flow direction, flow speed and pressure.
We have designed and implemented a number of flow visualization methods for use in
interactive VEs [193]. These methods make use of vector field visualization methods
in Vtk. The interaction with the flow visualization methods is handled by SCAVI (see
section 4.2). The flow visualization methods can be categorized into global and local
visualization methods.
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6.3.1 Global flow visualization methods

Global visualization methods display the overall behaviour of the flow and are repre-
sented by isosurface modeling on scalar properties of the flow (like pressure and flow
speed) or by a glyph representation. Glyph visualization of flowfields is a technique
where a shape is positioned at each vector, oriented in the direction of the vector and
(if desired) coloured by an additional scalar property of the flow at the vector location.
The shapes that are most often used in this case have length and direction, such as
arrows, so that the shape of the flow becomes apparent. This technique is quite ef-
fective for 2D vector fields. For 3D fields, the number of vectors quickly clutters the
view on the global flow domain. This can be compensated by subsampling the input
data set, but in this case care should be taken of undersampling, in which case impor-
tant information could be missed, and aliasing effects in the case of regular sampling.
Aliasing effects can be reduced by applying a random sampling of the vector field.
With a large number of vectors in the vector field, the number of objects that need
to be rendered also increases which may impose a significant load on the rendering
engine and, as a consequence, lead to a reduced frame rate. This problem can be
solved by the use of glyph objects with as few geometric primitives as possible, such
as a simple hook consisting of two lines‡.

6.3.2 Local flow visualization methods

A common method to visualize flow fields is by tracing the path of a virtual particle
through the velocity vectors. Stepwise integration of a particle at position x(t) and
velocity v(x(t)) at time t through a velocity field is obtained by repeated application of
the following procedure:

x(t +δt) = x(t)+
∫ t+δt

t
v(x(t))dt

The integration is normally done using a second or fourth order Runge-Kutta method.
A path trace is computed starting from an initial location x(0) and repeated applica-
tion of this procedure with a constant or variable time step. The procedure stops
when (1) the virtual particle leaves the velocity field, (2) the speed of the virtual par-
ticle drops below a predefined threshold, or (3) a predefined number of integration
steps have been performed. After this, the positions computed by this procedure can
be used to draw a curve through the velocity field. This method can be repeated for
more particles, each at a different starting location. For example; by using a set of
equidistant start locations on a line segment (called a “rake”), a similar representa-
tion can be obtained as with the smoke released from such an instrument used in real
wind tunnel experiments.
Although this visualization method produces acceptable results when applied to 2D
velocity fields, it quickly creates occluded views when applied to 3D fields. This can

‡Note that lines can not be shaded by most rendering engines, thereby removing a depth-cue which
may be important in understanding a 3D vector field.
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Figure 6.12: Interactive 3D flow visualization in a virtual environment (image created

by Hans Ragas). See also colour reproduction on the back cover.

only be partially resolved through depth cues such as stereoscopic projections, motion
parallax and shading. Furthermore, it is not easy to tune the integration parameters
in such a way that clear results can be obtained.

6.3.3 Results

Figure 6.12 shows an example of an interactive 3D flow visualization method used in
a VE. This example shows a streamline representation of a flow field that was simu-
lated through a bifurcated abdominal aorta using the lattice Boltzmann method. The
input data set for this simulation was generated from a magnetic resonance angiog-
raphy (MRA) scan of a healthy patient. This data set was converted into a lattice
Boltzmann grid using the methods described in section 6.2.3. The streamlines in
this visualization are generated from an interactively moveable plane-shaped source
shown at the right of the picture. The colour of the streamlines represents flow speed
(from blue for low velocity to red for high velocity). The size, shape and number of
particles in the source is interactively controlled by the user from within the envi-
ronment. The visualization shows that the flow speed is low at the artery walls and
higher just after the bifuraction.

6.4 Summary and conclusions

Using the design decisions on the construction of an interactive dynamic exploration
environment described in the previous chapters and the additional methods described
in this chapter, we have been able to construct an environment that combines fluid
flow simulation, visualization and interactive exploration in a virtual environment
for the purpose of simulated vascular reconstruction. The environment allows users
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to simulate flow through complex shaped geometries and explore the simulation re-
sults at run-time. The interactive visualization of results from the simulation in a
3D virtual environment provides insights that would have been difficult to obtain on
conventional desktop environments. Furthermore, the interaction capabilities allow
the 3D geometry of the geometry to be changed from within the environment to sim-
ulate a vascular reconstruction procedure. These changes can then be given back to
the fluid flow solver to see the effect of these changes on the flow properties (see also
Figure 6.13). Although the system we have developed is by no means ready for use in
realistic situations, we have shown that our design choices result in an environment
with great potential.

Figure 6.13: The effect of a change in geometry on a flow field (see also colour repro-

duction on the back cover).

There are however also still several areas that require further attention. Although
the 3D flow visualization environment provides an extensive array of possibilities
to explore a fluid flow domain, the parameterization of the visualization methods is
problematic. An attempt has been made to automatically derive the best parameters
for each visualization algorithm, but these will have to be addressed. Also; the current
interaction methods to simulate vascular procedures bear little or no resemblance to
the actual procedures performed by vascular surgeons. If a system as proposed in this
chapter is to be used in realistic situations, the interaction methods will need to be
thoroughly reviewed together with prospective users. This process has recently been
initiated at the Section Computational Science.
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Summary and concluding remarks

7.1 Summary

Over the last years, computers have become increasingly powerful. As a consequence,
researchers are now able to study increasingly large and complex problems. However,
this development has led to a situation where the size and complexity of the data
spaces that are generated by these problems have increased as well. Often, it turns
out to be quite difficult to analyse this data using computer algorithms, either because
suitable algorithms do not exist, or because existing algorithms would take too long
to find an acceptable result. In these cases, interactive exploration environments may
be the only suitable alternative. This thesis makes a distinction between static and
dynamic exploration environments. In static environments, the data under study has
been generated at an earlier time and will, therefore, not change during exploration.
In dynamic environments, the data under study is generated by a computer process
that is active while the exploration takes place. This would make it possible to not
only study the running process, but also alter its course.
In an interactive exploration environment, the data under investigation should be
represented to the researcher in an understandable and accurate way. Within the
area of scientific visualization, several methods have been developed to accomplish
this, but in some cases the complexity of the data can be such that the resulting
images are still insufficient to obtain insight in the phenomena under study. In these
cases, Virtual Reality (VR) may provide a suitable alternative.
The aim of a a Virtual Environment (VE, the environment that is generated by a
VR system) is to immerse the researcher in a representation of his data. To achieve
this, the data is represented as a collection of virtual objects in a computer gener-
ated artificial world. As in the real world, interaction with these objects enhances
the experience of “presence” in the environment, thereby breaking the conventional
barrier of a flat computer screen, keyboard and mouse and increasing a researcher’s
involvement with his data.
Three case studies were built to obtain a better understanding on the available tech-
nology, the applications and scientific issues involved in the construction of a usable
exploration environment (Chapter 2). These showed that there were still significant
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challenges that inhibit the productive use of these environments. The experiences did
show that for some applications a VE can help in obtaining a better insight in large
and complex data sets.

Until recently, the use of VR required a significant financial investment that was
hard to overcome by many. At the end of the Nineties, the performance and price of
commodity-of-the-shelf personal computer (PC) hardware was such that it would, in
principle, be possible to build a low cost VR system out of easily available components.
Chapter 3 describes the design and construction of a PC hardware based VR system
and shows that these systems can compete with commercially available solutions.

Essential building blocks were still missing that hampered the construction of a suc-
cessful interactive exploration environment for scientific research. Chapter 4 de-
scribes a number of techniques and interaction methods that address these problems.
SCAVI allows the application developer to include existing scientific visualization al-
gorithms into VEs, including methods that allow the researcher to interact directly
with these visualizations in an intuitive manner. XiVE bridges a gap by enabling
existing 2D desktop applications and graphical user interface toolkits to be used in
virtual environments. Automatic speech recognition provides a powerful alternative
over graphical interaction methods and, through the use of environment context, the
performance of speech recognition can be improved. GEOPROVE allows the researcher
to perform measurements on visual entities presented in the virtual environment.

A dynamic environment can benefit from a design where the process under study
is separated from the component that represents the data and the component from
which the exploration is coordinated. This would allow these different components
to execute on dedicated hardware if that could make them perform more efficiently.
However, as a consequence, some means of communication must be established be-
tween the distributed components. Chapter 5 addresses the issues involved in the
design of dynamic environments and describes several architectures that allow these
environments to exploit specialized computing resources through a distributed de-
sign. Because the exploration environments that are of concern to this research are
intended for the exploration of large data and problem spaces, the communication
performance of these architectures was described in some detail and a number of
techniques was described to increase performance.

Based on the design issues addressed in the previous chapters, Chapter 6 describes a
test-case environment that has been designed and built for an application from a med-
ical domain: simulated vascular reconstruction. Here, a virtual environment for the
representation of 3D angiography scans is connected to a computational fluid solver
to simulate blood flow through vascular structures. Interactive scientific visualiza-
tion techniques allow the researcher to explore the morphology of the structures and
the flow behaviour through these structures. Additional interaction techniques allow
the researcher to modify the vascular morphology. This environment allows human-
in-the-loop simulations through which the researcher can simulate the influence of a
proposed treatment on blood flow for a particular patient.
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7.2 Concluding remarks

Our description of the construction of conglomerate applications out of distributed ex-
ecuting components in Chapter 5 is currently under review within the Section Compu-
tational Science. Several research initiatives are being explored that can help in the
development of collaborative interactive dynamic exploration environments for the
construction of generic Problem Solving Environments (PSEs). One such initiative is
the “Open Grid Services Architecture” (OGSA) that builds on concepts and technolo-
gies of the Grid and Web services community in order to define an architecture that
provides uniform exposed service semantics [82,83].
The description of the medical application in Chapter 6 primarily focuses on the soft-
ware architecture of an environment that can assist a surgeon in his decision process.
Although we addressed some of the user interface issues in this design, we have not
looked in detail at the usability issues of the particular VR configuration that is most
suitable for this application. Clearly, one particular VR configuration will not be suit-
able for every imaginable application. Current work in our research group includes
initiatives to design and build alternative displays, interaction devices and interac-
tion methods that provide a more intuitive interface to the application at hand.
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Appendix A

The CAVE library

The CAVE Library (CAVELib) is a set of libraries designed as a base for developing
virtual reality applications for spatially immersive displays [249]. CAVELib has been
in development since the debut of the CAVE in 1992, and is widely used in research
and academic areas. CAVELib abstracts from the hardware used in a VR device and
therefore allows portable VE applications to be built. The operating systems on which
CAVELib is supported is currently IRIX, Linux, Solaris, HPUX and Microsoft Win-
dows. The graphics interfaces supported by CAVELib are OpenGL and Performer.
A schematic diagram of a CAVELib application is shown in Figure A.1. CAVELib
forks separate processes for each display (i.e. each wall). Communication between
processes is done through shared memory which implies that semaphore locking op-
erators are required to enforce mutual exclusion to shared data structures and to
synchronize processes. The states of the trackers and controllers are also stored in
shared memory. This tracker data is acquired from the hardware through a sepa-
rate daemon process known as trackd. Several library functions are provided by
CAVELib to access this data. Each display process is synchronized and automatically
renders the correct perspective for each wall. Flexible configuration files make pro-
grams written with CAVELib portable to several display and input devices without
the need to recompile. The library also provides functions to share information on
a virtual environment over a network. This allows users on geographically different
locations to collaborate in the same virtual environment.

A.1 Interprocess communication in a CAVELib ap-

plication

After initialization, CAVELib applications spawn multiple processes; one “master pro-
cess” that handles user input and performs the necessary calculations that define the
behaviour of the virtual environment and one or more “display processes” that do the
rendering, one process for each wall. From a software design standpoint the master
process describes the process under investigation by filling in (writing) a data struc-
ture that is used (read) by the display processes for representation. Conceptually this
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each display

Call user’s frame
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Call user’s graphics function

Setup for right eye
Call user’s graphics function

Setup for right eye
Call user’s graphics function
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Call user’s graphics function

Update CAVELib
shared variables

(this is the master process)

CAVEInit()

Swap buffers Swap buffers Swap buffers

Barrier − Wait for master process to finish updating shared variables

Barrier − Wait for all display processes to finish rendering left/right eyes

Figure A.1: Flowchart of a CAVELib program [249].

use of a shared data structure (“shared” in the sense that changes made by one pro-
cess will also be available to other processes) is an easy to understand and sensible
program structure to have two processes intercommunicate. Unfortunately, a design
choice in CAVELib makes this a little harder than it should be.

The processes created by CAVELib are spawned using the fork() system call which
means that, at least initially, each process is the same except for its process identifier
and parent process identifier. Most UNIX operating systems optimize the creation
of new processes by fork() by a “copy-on-write” mechanism [232]. This mechanism
allows the kernel to create the processes in such a way that they can execute from
the same memory areas as long as the processes perform only read accesses to this
memory. When a process attempts a write access, the kernel first copies the memory
areas before the process is allowed to continue. The implication of this for CAVELib
applications is that the “shared” data structure proposed in the previous section will
in practice not be shared between the processes at all. Instead, the main process
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will have its own private copy from the moment it first writes to it while the display
processes are reading from the initial, unchanged version.
The proposed method in CAVELib applications for solving this is through the use of
“shared memory”. As the name suggests, shared memory allows two or more pro-
cesses to share a given region of memory [226]. A CAVELib application would, before
any processes are spawned, allocate an area of shared memory and then pass a ref-
erence to this area to all processes that need access to it. While the main process
is writing in the area, semaphores are used to prevent the display processes from
accessing the area until the main process is done. The use of shared memory is a
perfectly acceptable method for interprocess communications. However, shared mem-
ory is a restricted resource in some UNIX kernels. For example; on IRIX systems the
maximum amount of shared memory is 4 GB but in most Linux kernels the maxi-
mum is set to 32 MB by default. While 4 GB of shared memory is sufficient for most
CAVELib applications, the amount of 32 MB is quickly depleted as applications grow
more complex.
Another reason why interprocess communication via shared memory is cumbersome
is in the overhead that is caused when data needs to be copied from heap (i.e., “nor-
mal”) memory to shared memory. This can occur when, for example, the main process
uses external, third-party libraries to prepare data for rendering that return the out-
put into heap memory (as most libraries do if they use the standard malloc() family
of functions or the C++ new operator). Since the display processes will not be able to
access this memory without causing a memory violation, the main process will have
to copy this data into shared memory. The overhead caused by this, both in terms
of the length of time needed to copy as well as the additional memory needed for
the copy, can dramatically influence application performance, especially in dynamic
applications where the data that is to be rendered changes frequently.
An easier solution to solve these problems would be if CAVELib spawned threads

instead of processes [130]. The main difference between processes and threads is that
threads share (most of) the resources with its parent process. This allows threads to
access memory areas concurrently with its parent process and other threads without
the side effects described above. VRCO apparently realized this themselves as since
version 3.0 (which was in beta at the beginning of 2002∗) CAVELib provides an option
to spawn the different processes as threads instead of processes.

∗Thanks to Matt Szymanski (VRCO) for allowing me to test a Linux beta version of a multi-threaded
CAVELib.
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Samenvatting

(Summary in Dutch)

Computers zijn over de afgelopen jaren steeds krachtiger geworden. Als gevolg daar-
van zijn onderzoekers in staat om steeds grotere en ingewikkeldere problemen te
bestuderen. Die toename heeft er echter toe geleid dat de hoeveelheid en complex-
iteit van de gegevens die door die problemen gegenereerd worden, eveneens toene-
men. Vaak blijkt het erg lastig te zijn om die gegevens door een computer te laten
analyseren, enerzijds omdat we de computer niet kunnen uitleggen wat interessant
is en wat niet, anderzijds omdat de computer er veel te lang over zou doen om een
resultaat te vinden. In die gevallen kan het zin hebben om de onderzoeker samen
met de computer op ontdekkingsreis te sturen om een beter inzicht te krijgen. In
dit proefschrift wordt een onderscheid gemaakt tussen statische en dynamische ont-
dekkingsomgevingen. In het eerst geval zijn de gegevens al eens op een eerder tijdstip
door een computer programma berekend en zullen dus niet veranderen tijdens de ont-
dekkingsreis. In het tweede geval worden de gegevens berekend door een programma
dat loopt tijdens de ontdekkingsreis waardoor de gegevens continu veranderen. Die
laatste categorie maakt het mogelijk om het gedrag van een lopend programma niet
alleen te bestuderen, maar ook te wijzigen.
Om zo’n ontdekkingsreis mogelijk te maken, moeten de te bestuderen gegevens in
de allereerste plaats op een begrijpelijke en zorgvuldige manier aan de onderzoeker
gepresenteerd worden. Binnen de wetenschappelijke visualisatie zijn verschillende
methoden ontwikkeld om dat mogelijk te maken, maar in veel gevallen zijn de
gegevens zó complex, dat het nog steeds moeilijk is om inzicht te krijgen aan de
hand van een stilstaand plaatje op een beeldscherm. In dergelijke gevallen kan een
“virtuele werkelijkheid” (Virtual Reality, VR) uitkomst bieden.
Met een virtuele omgeving (Virtual Environment, VE; de kunstmatige wereld die men
kan waarnemen met een VR systeem) wordt geprobeerd om gegevens op dusdanige
manier aan de onderzoeker te presenteren dat deze het gevoel krijgt ondergedompeld
te worden in zijn gegevens. De gegevens worden daartoe weergegeven als virtuele ob-
jecten in een door de computer gegenereerde kunstmatige wereld. Door deze objecten
zich te laten gedragen alsof het echte objecten zijn, is de onderzoeker in staat de
gegevens te manipuleren zoals hij dat gewend is uit de echte wereld. Op deze manier
wordt de gebruikelijke barrière, bestaande uit een plat beeldscherm, toetsenbord en
muis, doorbroken en is de onderzoeker meer betrokken bij zijn gegevens.
Om een beter inzicht te krijgen in de technologische aspecten, de toepassingsgebieden
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en de wetenschappelijke implicaties die van belang zijn bij de totstandkoming van
een bruikbare omgeving, is een drietal statische omgevingen gebouwd (hoofdstuk 2).
Daarbij bleek dat de technologie die ons ter beschikking stond wezenlijke beperkin-
gen had die productief gebruik in de weg staan. Uit de ervaringen die zijn opgedaan
met deze omgevingen bleek wél dat het gebruik van een VE in sommige toepassings-
gebieden inderdaad kan helpen bij het inzichtelijk maken van grote hoeveelheden
complexe gegevens.

Tot nu toe betekende het gebruik van VR dat er apparatuur aangeschaft moest
worden die voor velen onbetaalbaar was. Eind jaren negentig waren de prijs en
prestaties van de huis-tuin-en-keuken personal computer (PC) echter dusdanig, dat
het in principe mogelijk was om een goedkoop VR systeem te bouwen op basis van on-
derdelen die in de winkel verkrijgbaar zijn. Hoofdstuk 3 beschrijft hoe een dergelijk
systeem opgebouwd kan worden en laat zien dat de prestaties van een PC gebaseerd
VR systeem vrij goed zijn als we die vergelijken met een commercieel verkrijgbare
oplossing.

Om bruikbare ontdekkingsomgevingen te kunnen maken voor wetenschappelijk on-
derzoek, bleek dat sommige essentiële bouwstenen niet voor het grijpen lagen. Dat
gold met name voor de wetenschappelijke representatie van gegevens in de vorm van
virtuele objecten, de manipulatie van die virtuele objecten, de mogelijkheid om te
kunnen meten aan virtuele objecten en de interactie met een virtuele omgeving over
het algemeen. In hoofdstuk 4 beschrijven we een aantal technieken en methoden die
ontwikkeld zijn om hiervoor een oplossing te bieden.

Een dynamische omgeving kan baat hebben bij een ontwerp waarbij het computer
programma dat we willen bestuderen gescheiden wordt van het deel dat de presen-
tatie van gegevens voor zijn rekening neemt en het deel van waaruit we de ont-
dekkingsreis coördineren. Op die manier is het bijvoorbeeld mogelijk om speciale
computer apparatuur in te zetten voor delen die sneller op dergelijke apparatuur kun-
nen draaien. De consequentie is dan wél dat we maatregelen moeten nemen om de
verschillende delen door middel van een computernetwerk aan elkaar te knopen. Als
dat onzorgvuldig gebeurd, dan zou het zo kunnen zijn dat de winst die we dachten te
halen door de verschillende delen te distribueren over snelle computer apparatuur, te-
niet gaat door de tijdsvertraging als gevolg van communicatie tussen de delen. Hoofd-
stuk 5 beschrijft een aantal bestaande oplossingen om dergelijke gedistribueerde ont-
dekkingsomgevingen te kunnen bouwen. Dit hoofdstuk beschrijft tevens een drietal
methoden waarmee de capaciteit van een netwerkverbinding zo efficiënt mogelijk be-
nut kan worden.

Om alle voorgaande technieken en methoden te testen is een prototype gebouwd van
een dynamische ontdekkingsomgeving, toegepast op een medische vraagstelling. In
deze omgeving is een vloeistofstroming simulatie gecombineerd met een interactieve
virtuele omgeving waarin de resultaten van de simulatie aan de onderzoeker gepre-
senteerd worden. In dit specifieke geval heeft de omgeving als doel om een chirurg
te assisteren in het nemen van een beslissing met betrekking tot de meest opti-
male procedure om de bloeddoorstroming in een patiënt met een vaatverwijding (een
aneurysma) of -vernauwing (een stenose) te herstellen. Uit eerste ervaringen blijkt
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deze omgeving redelijk te presteren. Het is echter duidelijk dat er nog een lange weg
vóór ons ligt voordat dit systeem in realistische situaties gebruikt zou kunnen wor-
den. Momenteel werken verschillende onderzoekers binnen de Sectie Computational
Science aan deze toepassing, op diverse onderzoeksgebieden.
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