
High performance distributed simulation for
interactive simulated vascular reconstruction

Robert G. Belleman and Roman Shulakov

Section Computational Science, Faculty of Science, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, the Netherlands.

(robbel|rshulako)@science.uva.nl

Abstract. Interactive distributed simulation environments consist of in-
terconnected communicating components. The performance of such a
system is determined by the execution time of the executing compo-
nents and the amount of data that is exchanged between components.
We describe an interactive distributed simulation system in the scope
of a medical test case (simulated vascular reconstruction) and present a
number of techniques to improve performance.

1 Introduction

Interactive simulation environments are dynamic systems that combine simula-
tion, data presentation and interaction capabilities that together allow users to
explore the results of computer simulation processes and influence the course of
these simulations at run-time [4] (see also Fig. 1). The goal of these interactive
environments is to shorten experimental cycles, decrease the cost of system re-
sources and enhance the researcher’s abilities for the exploration of data sets or
problem spaces.

In a dynamic environment, the information presented to the user is regen-
erated periodically by the simulation process. The environment is expected to
provide (1) a reliable and consistent representation of the results of the simula-
tion at that moment and (2) mechanisms enabling the user to change parameters

simulation
data

simulation visualization rendering

visualization
data

user

presentation

interaction

interaction

interaction

Fig. 1. Interactive simulation environments consist of a simulation, visualization and
rendering component with which a user interacts to interactively explore data sets or
problem spaces.



in the environment. An example of an application where this structure is used
has previously been described in [5]. This test case environment allows vascular
reconstruction procedures to be simulated using a fluid flow simulator that sim-
ulates the effect of a planned surgical procedure on a patient’s blood circulation.
An interactive immersive virtual reality environment allows a surgeon to study
the effect of a reconstructive procedure and interactively explore alternatives for
the best possible treatment for a specific patient.

1.1 Performance of interactive simulation environments

The most important factor in the performance of a dynamic simulation environ-
ment is update time; the delay between consecutive updates in the environment.
Usability increases when update time is as short as possible, so for a highly
responsive environment, delays should be minimized. Fig. 2 shows a schematic
representation of the most typical delay imposing factors in a simple dynamic
simulation environment.

1

1

2

2

3

visualization

rendering

simulation

time
rendering delay

communication delay

1 1 1 1 1 1 1 1 2 2 2 2 2

update time

Fig. 2. Typical delays in a simple dynamic simulation environment.

The main factors on delay in interactive environments are the execution times
of the components and the delay caused by the communication of data from one
component to the next. This paper describes a number of methods to improve
the performance of interactive simulation environments.

The ideas and methods in this paper have been applied to a test case, that
of the simulated vascular reconstruction test case described in [5] which will
be briefly described in section 2. Section 3 focuses on methods to maximize the
performance of an interactive simulation environment. Section 4 presents some of
the results obtained thus far. Finally, conclusions and future work are described
in section 5.



2 Test case: interactive simulated vascular reconstruction
in a virtual operating theater

The performance considerations described in the previous section are validated
by analysis of a prototypical case study of simulated vascular reconstruction. This
application combines simulation, visualization and interaction in an exemplary
fashion. By a detailed analysis of the spatial and temporal characteristics of this
test case we attempt to recognize generic elements for the design of an inter-
active simulation environment. Before we describe the methods that have been
implemented to obtain a high performance interactive simulation environment,
we begin with a description of the test case.

2.1 Introduction: interactive simulated vascular reconstruction

The purpose of vascular reconstruction is to redirect and augment blood flow or
perhaps repair a weakened or aneurysmal vessel through a surgical procedure.
The optimal procedure is often obvious but this is not always the case, for exam-
ple, in a patient with complicated or multi-level disease. Pre-operative surgical
planning will allow evaluation of different procedures a priori, under various
physiological states such as rest and exercise, thereby increasing the chances of
a positive outcome for the patient. The aim of this case study is to provide a
surgeon with an environment in which he/she can explore the effect of a num-
ber of different vascular reconstruction procedures before it is put to practice.
Our approach combines parallel flow simulation, interactive virtual reality and
high performance computing and networking techniques into an interactive dy-
namic exploration environment that together allows human-in-the-loop types of
experimentation [5].

2.2 Blood flow simulation: the lattice-Boltzmann method

The lattice-Boltzmann method (LBM) is a mesoscopic approach for simulating
fluid flow based on the kinetic Boltzmann equation [7]. In this method fluid is
modeled by particles moving on a regular lattice. At each time step, particles
propagate to neighboring lattice points and re-distribute their velocities in a
local collision phase. This inherent spatial and temporal locality of the update
rules makes this method ideal for parallel computing [11]. During recent years,
LBM has been successfully used for simulating many complex fluid-dynamical
problems, such as suspension flows, multi-phase flows, and fluid flow in porous
media [13]. All these problems are quite difficult to simulate by conventional
methods [10, 12].

The data structures required by LBM (Cartesian grids) bare a great resem-
blance to the grids that come out of CT and MRI scanners. As a result, the
amount of preprocessing can be kept to a minimum which reduces the risk of
introducing errors due to data structure conversions. LBM has the benefit over
other fluid flow simulation methods that flow around (or through) irregular ge-
ometries (like a vascular structure) can be simulated relatively easy. In addition,



velocity fields, pressure and shear stress on the arteries can be calculated di-
rectly from the densities of the particle distributions [2]. This may be beneficial
in cases where we want to interfere with the simulation while the velocity and
the stress field are still developing, thus supporting fast data-updating given a
proposed change in simulation parameters as a result of user interaction.

2.3 High performance interactive visualization

The simulated vascular reconstruction operating theater provides visualization
and interaction methods to simulate a vascular reconstruction procedure and vi-
sualize the effect of that procedure on a patient’s blood circulation in real time.
The environment can be used in a CAVE [8] but also on low cost commodity
hardware in conjunction with a projection display and tracking hardware [6].
Multi-modal interaction methods such as speech recognition, hand gestures, di-
rect manipulation of virtual 3D objects and measurement tools allow researchers
to explore simulation results [3].

3 High performance interactive simulation

The responsiveness of an interactive system is directly related to the rate at
which updates are generated by each of the components in the system. To in-
crease responsiveness, the delays between the consecutive components in the
interactive system should be minimized. The accumulation of all delays is re-
ferred to as “update time”. In an interactive system there will always be some
delay from the moment interaction takes place until the moment that the envi-
ronment has reacted to this interaction. This delay is referred to as “response
time”.

3.1 Update and response time

In a non-interactive environment, the update time TU is the sum over the exe-
cution time for the different components (Tsim for simulation, Tvis for visualiza-
tion and Tren for rendering) and the communication delay between components
(Tsim→vis and Tvis→ren):

TU = Tsim + Tsim→vis + Tvis + Tvis→ren + Tren. (1)

Decreasing update time means that the delays imposed by the different com-
ponents must be minimized. In the case of executing components this means
that the time between the acceptance of input data and the production of re-
sults should be minimized. In the case of communication between components,
the dominating factor on delay is the time that is required to transfer data from
one component to the next.

In an interactive system, the response time TR depends on which component
the interaction is directed to since only this and subsequent components need
to be updated. In case the user interacts with the simulation component, the
response time will be TR = Ti(sim) + TU , where Ti(sim) is the time required to
“apply” the interaction to the simulation component.



3.2 Distributed pipelined execution

A dynamic system differs from a static system in that the simulation component
is an iterative process that repeatedly produces (intermediate) results. Basically,
the delay at which these intermediate results become available is given by equa-
tion (1). However, since the simulation component has no dependency on the
execution of subsequent components, the update time of the whole environment
can benefit from a pipelined execution model. In this model, a component re-
sumes execution as soon as its output data has been accepted by the next (see
Fig. 3). In this case simulation, visualization and rendering execute in parallel.

1

1 2 3 4

1 1 1 1 1 2 2 2 2 3 3 3

2 3 4

3

visualization

rendering

simulation

time
rendering delay

communication delay

response time update time

Fig. 3. Response time, update time and delays in a pipelined interactive simulation
environment.

Once all components in the pipeline have executed at least once, and provided
sufficient resources are available to execute all components simultaneously, the
update time becomes

TU = max(Tsim + Tsim→vis, Tvis + Tvis→ren, Tren). (2)

Although the components in Fig. 1 show a close coupling between them,
it is not necessary, or even beneficial, to execute all on the same computing
system. It is often more efficient to execute the components on systems that have
optimized resources available for the most time consuming type of operations.
The flow simulation component described in section 2, for example, runs more
efficient on a parallel system, while the visualization component performs better
on a system with optimized visualization libraries and the rendering component
performs better on a system with specialized graphics hardware on board.

3.3 High performance network communication

Distributing components over different systems means that some form of com-
munication must be established to allow the output of one component to be



sender receiver

encode

compress

multi demulti

decompress

decode

network

Fig. 4. The stages in the communication pipeline.

transferred to the next. It could be that the overhead generated by this com-
munication mechanism annuls the benefits obtained by the distribution (i.e.
although Tc1 decreases through the use of optimized resources, Tc1→c2 increases
because of the extra communication overhead between two components c1 and
c2). To reduce the delays caused by communication it may be beneficial to re-
duce the amount of transferred data as much as possible. This reduction itself,
however, also takes time so careful consideration is often necessary.

We have implemented three mechanisms to increase the throughput of data
transfers over a network. These mechanisms are cascaded into a pipeline to
decrease the amount of transferred data and spread the remaining data over
multiple network connections, in an effort to maximize throughput (see Fig. 4).

Hiding latency by using multiple connections. This method increases com-
munication throughput by using multiple network connections between peers at
the same time [9]. There are two reasons why this increases throughput (see also
Fig. 5). First; in the case of reliable network connections (such as connections
using the TCP protocol), delays caused by waiting for acknowledgment packets
can be “hidden” by serving other connections that are ready. Second; the tech-
nique can exploit “intelligent” network devices that spread communication over
different routes. This technique therefore performs best when there are many
such devices between peers (which is often the case when peers are geographi-
cally dispersed). In principle, data can travel along different routes from peer to
peer, thereby circumventing congestion caused by other traffic on the network.

Note that the total volume of data that is transferred between peers is not
decreased by this method. Instead, it increases throughput by exploiting as much
available bandwidth as possible. The techniques described next aim to increase
throughput by decreasing the volume of communicated data.

Data encoding. Data encoding is a data specific type of data reduction tech-
nique that aims to reduce the volume that is needed to represent the data to
a minimum. This technique relies on the fact that the receiving side may not
always be interested in the most accurate representation of the data that was



sender 12345 receiver4 3 2 1

sender 12345 5

4 1

2

3

4 1

5 2

3

12345 receiver

network

single connection

multiple connections

network
Multi Demulti

Fig. 5. Increasing communication throughput using multiple network connections.

calculated by the sender. Because this type of data reduction throws away unnec-
essary information, this method is frequently referred to as lossy compression.

Although a significant reduction in volume can be achieved using this tech-
nique, the receiver should be conscious of the fact that the data it has received
is not of the same accuracy as was originally produced. Although this reduction
may be acceptable under some circumstances, unexpected side effects may occur
when the errors that are present in the data are accumulated due to an inte-
grating method of analysis on the data. For example, an often used technique in
vector field visualization is to represent the path of the flow using streamlines.
These streamlines are created by integrating over individual vectors. Due to the
accumulation of (small) errors in each individual vector, a streamline may follow
a radically different path.

Data compression. Freely available compression libraries (such as zlib [1])
provide means of reducing data volumes very effectively. This data reduction
does not make any assumption about the data contents and is therefore without
any loss of information. Most compression libraries can be parameterized to
indicate the level of compression that should be achieved at the expense of
higher execution time. This type of data reduction is commonly referred to as
lossless compression as the data is unchanged after decompression. The amount
of compression depends on (1) the type of data and (2) the amount of data.
In general, the compression ratio decreases when the amount of data decreases.
Note that this is important in parallelized applications in which the original data
volume is often decomposed into smaller subvolumes.

4 Results

The simulated vascular reconstruction environment described in section 2 has
been implemented using the methods described in section 3. In this section we
show some preliminary results on the performance of the environment.



4.1 Performance of the distributed simulation pipeline

Fig. 6 illustrates the performance increase that is achieved by using a paral-
lelized implementation of the flow simulation kernel. Because the test case en-

0

1

2

3

4

5

6

1 2 4 8 16 32

tim
e 

(s
)

�

number of processors

lattice Boltzmann kernel execution time per iteration

SGI SN1 MIPS (R12000@300MHz), IRIX (1024 node Origin 3000, ccNUMA)
Intel (PII@300MHz), Solaris (20 dual-node COW)

AMD (Athlon@700MHz), Linux (40 node COW)

Fig. 6. Iteration time of the parallel lattice Boltzmann kernel on different multi-
processor systems.

vironment’s architecture uses the distributed pipeline architecture described in
section 3.2 and because the simulation component is, in general, the slowest ex-
ecuting component, the performance of the simulation environment in total is
greatly increased (as shown by equation 2).

4.2 Performance of the network communication pipeline

Fig. 7 shows the mean throughput over 200 measurements of the multiple con-
nection stage in the communication pipeline. As can be seen from this figure, the
average throughput increases as more connections are used, but up to a maxi-
mum. Using more connections congests the network and no further increase in
throughput can be obtained.

Fig. 8 shows the mean performance over 5 measurements of the complete
network communication pipeline on a typical medical data set; using compres-
sion, multiple network connections, both with and without encoding. This figure
illustrates that, on average, encoding doubles throughput. Although this figure
shows the typical throughput that can be achieved, in some situations the total
performance of the network communication pipeline resulted in a throughput of
62 Mbyte/s, which is over 5 times the bandwidth of the slowest network link
(100 Mbit/s).



100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

th
ro

ug
hp

ut
 (

K
B

yt
e/

s)

�

number of connections

Average throughput with multiple connections

average throughput over 200 samples

Fig. 7. Average network throughput when using multiple network connections on a
100 MBit/s link.

5 Conclusions and future work

Preliminary tests show a great performance increase over earlier versions of the
interactive simulated vascular reconstruction environment. The results presented
here were obtained using unoptimized algorithms; we expect future versions to
increase performance even more.

The different stages in the communication pipeline require a certain amount
of time to execute which adds delay to communication time. By tuning the pa-
rameters that influence this execution time, throughput can (in principle) be
automatically optimized. For example; networks are generally shared by many
institutes so that available bandwidth changes over time. The multiple connec-
tion technique can sense this change by measuring the effect of employing more
or fewer connections during communication. An optimal number of connections
can thus be determined dynamically (and transparently), while peers communi-
cate. However, a different parameterization at one stage influences the execution
time of subsequent stages which implies that parameter optimization is not a
trivial task.

References

1. zlib homepage, 2001. On the web: http://www.gzip.org/zlib/.
2. A.M. Artoli, D. Kandhai, A.G. Hoekstra, and P.M.A. Sloot. Accuracy of shear

stress calculations in the lattice Boltzmann method. Accepted for the 9th Inter-
national Conference on Discrete Simulation of Fluid Dynamics.

3. R.G. Belleman, J.A. Kaandorp, D. Dijkman, and P.M.A. Sloot. GEOPROVE:
Geometric probes for virtual environments. In P.M.A. Sloot et al., editors, High
Performance Computing and Networking (HPCN’99), pages 817–827, Amsterdam,
1999. Springer-Verlag.



0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

th
ro

ug
hp

ut
 (

M
B

yt
e/

s)

�

number of processors

Sample: BELLE05 (clipped, thresholded, resampled)

performance with encoding
performance without encoding

Fig. 8. Mean throughput of the network communication pipeline when used with the
parallel LBM simulation kernel (with compression, shown with encoding and without
encoding.

4. R.G. Belleman and P.M.A. Sloot. The design of dynamic exploration environments
for computational steering simulations. In Marian Bubak et al., editors, SGI Users’
Conference, pages 57–74, Kraków, 2000. CYFRONET AGH.

5. R.G. Belleman and P.M.A. Sloot. Simulated vascular reconstruction in a virtual
operating theatre. In H.U. Lemke et al., editors, CARS (Excerpta Medica, ICS-
1230), pages 938–944, Berlin, 2001. Elsevier Science B.V.

6. R.G. Belleman, B. Stolk, and R. de Vries. Immersive virtual reality on commodity
hardware. In R.L. Lagendijk et al., editors, Seventh annual ASCI conference, pages
297–304, Heijen, Netherlands, 2001. Advanced School for Computing and Imaging.

7. S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev.
Fluid Mech., 30:329, 1998.

8. C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen projection-based
virtual reality: The design and implementation of the CAVE. In SIGGRAPH ’93
Computer Graphics Conference, pages 135–142. ACM SIGGRAPH, August 1993.

9. Open Channel Foundation. CAVERNsoft G2, A toolkit for high
performance tele-immersive collaboration, 2001. On the web:
http://www.openchannelsoftware.org/projects/CAVERNsoft G2/.

10. D. Kandhai. Large Scale Lattice-Boltzmann Simulations (Computational Meth-
ods and Applications). PhD thesis, Universiteit van Amsterdam, Amsterdam, the
Netherlands, 1999.

11. D. Kandhai, A. Koponen, A.G. Hoekstra, M. Kataja, J. Timonen, and P.M.A.
Sloot. Lattice Boltzmann hydrodynamics on parallel systems. Computer Physics
Communications, 1998.

12. D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema, and P.M.A. Sloot.
Lattice-Boltzmann and finite element simulations of fluid flow in a SMRX mixer.
Int. J. Numer. Meth. Fluids, 31:1019–1033, 1999.

13. A. Koponen, D. Kandhai, E. Hellen, M. Alava, A. Hoekstra, M. Kataja, K. Niska-
nen, P. Sloot, and J. Timonen. Permeability of three-dimensional random fiber
webs. Physical Review Letters, 80(4):716–719, January 26 1998.


