
6.3.3 Dynamic exploration environments

Robert Belleman 1, Peter Sloot2

Introduction: exploration environments
In many scientific computing problems, the complexity of both the simulation

and the generated data is too vast to analyze analytically or numerically. For

these situations, exploration environments provide essential methods to pre-

sent and explore the data in a way that allows a researcher to comprehend the

information it contains. Exploration environments combine presentation and

interaction functions into one system to allow exploration of large data spaces.

These data spaces may originate from data acquisition devices or represent

results from computer simulations. In our research we discriminate between

static and dynamic exploration environments.

In Static Exploration Environments (SEE), the data presented to the user is time

invariant; once the data is loaded into the environment, the user is presented

with a visual representation of this data. Interaction methods are provided to

change the visualization parameters interactively in order to get the best view

to gain understanding. The data itself, however, does not change (see Figure 1).

An important step towards a successful exploration environment is to involve

the researcher in the presentation as much as possible, thereby increasing the

researcher’s level of awareness [Bryson, 1996a]. To achieve this, an exploration

system needs the following, often conflicting capabilities:

– High quality presentation. The most common method to provide insight in

large multidimensional data sets is to represent data as visual constructs

that present quantitative and relational aspects to the observer in an com-

prehensible manner. Many scientific visualization environments are now

available that provide means of efficiently achieving this [IBM, 1991;

IrisExplorer, 1998; Schroeder, 1997; Upson, 1989].

– High frame rate. While the capabilities of modern graphical hardware allow

increasingly complex images to be rendered with relative ease, the level of

detail in the presentation should be minimized to avoid information clutter

and achieve high frame rates (a compromise is often necessary). For an inter-

1 R.G. Belleman MSc,

robbel@wins.uva.nl,

The Universiteit van Amsterdam,

Faculty of Science, Section

Computational Science, Amsterdam,

The Netherlands

2 Prof Dr P.M.A. Sloot,

sloot@science.uva.nl,

The Universiteit van Amsterdam,

Faculty of Science, Section

Computational Science, Amsterdam,

The Netherlands

Figure 1
Schematic representation of a static

exploration environment (SEE).

771

visualization
parameters

data set

update

Visualization Interaction

Figure 2
Schematic representation of a

dynamic exploration environment

(DEE).

active exploration environment the visual frame rate should be at least 10

frames per second [Bryson, 1996b].

– Intuitive interaction. A prerequisite of a successful SEE is that a sufficiently

rich set of interaction methods is provided that allows a user to extract both

qualitative and quantitative knowledge from the data sets. An unfortunate

side effect of increasingly richer sets of interactive methods is that user-

friendliness is compromised, so careful consideration is required during

user-interface design.

– Real-time response. Some delay will always occur between the moment a

user interacts with a presentation and the moment that the results are visi-

ble. This is caused by low tracking rates of input devices, (re-computations,

communication delays or temporary reduced availability of computational or

network resources. To attain accurate control over the environment and to

avoid confusing the user, the amount of lag in an exploration system should

be minimized [Taylor, 1996].

Provided these capabilities are carefully considered, such environments are well

suited for the exploration of static multidimensional data sets [Belleman, 1998].

Static exploration environments can be customized to observe iteratively

updated data sets produced by ‘living’ simulations. When interaction with the

simulation is also allowed, however, we speak of dynamic exploration environ-

ments and radically different considerations come into play, as we describe in

the next section.

Dynamic exploration environments
Dynamic Exploration Environments (DEE) extend the previously described static

model in such a way that the information provided to the user is regenerated

periodically by an external process, in our case a computer simulation. Here,

the environment is expected to provide (1) a reliable and consistent representa-

tion of the results of the simulation at that moment and (2) mechanisms

enabling the user to change parameters of the external process (i.e. simulation)

(see Figure 2).

772

visualization
parameters

simulation
parameters

update update

simulation data

Simulation Visualization

Interaction

Dynamic environments have additional requirements over static environments.

For example, in static interactive systems, the interaction functions can be

implemented inside the visualization environment, since the only interaction

that takes place is with the visualization. In dynamic environments, interaction

influences both the visualization and the simulation environment. Changing a

static environment into a dynamic environment therefore requires that at least

one module performs additional processing to service the interaction. Such a

change makes these environment less suitable for use in other applications

without significant modifications. In the sequel we address some of the func-

tionalities required to develop generic dynamic exploration environments. We

start with a brief description of the specific time management aspects in DEE

and present a top-down description of the associated additional requirements

in such systems.

Time management

An important issue in a DEE is time management. Time management deals with

the exchange of time stamped information between components. For a DEE, the

four most time demanding components are; the simulation environment, the

visualization modules, the rendering layer and the explorer (i.e. the user).

Figure 3 and 4 show time frame diagrams illustrating the advancement of time,

under two different time management strategies; lock-step and asynchronous.

Time frames are illustrated by rounded boxes. The gaps between time frames on

a same level represent the idle time of the component on that level. The gaps

between time frames on neighboring levels represent the delays that occur

between the time one component is done with a time frame and the next com-

ponent starts working on it. These delays are delineated at the bottom of the

Figure.

Figure 3
Time frames and delays in a lock-

step interactive dynamic exploration

environment.

773

2

1 2

1 idle

rendering

exploration

simulation

interaction

perception delay

interaction delay

rendering delay

communication delay

time

visualization

idle

idle idle

1 1

1

11 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

2

2 2

response time

Figure 4
Time frames and delays in an asyn-

chronous interactive dynamic explo-

ration environment.

Figure 3 shows a time frame diagram in a lock-step interactive dynamic explo-

ration environment. In this strategy, the simulation is allowed to advance, only if

the user explicitly tells the environment it is alright to do so. While the user is

exploring the results rendered by the graphics system, the simulation and visu-

alization modules sit idle. In situations where a single simulation, visualization

and rendering time frame takes a negligible amount of time, this strategy may

be perfectly adequate, since the user will see the result of his interaction in

short notice. However, if the these time frames are long, it may take a long time

before the result of an interaction is shown. This often leads to an unusable

environment, confusing the user.

The time required before simulation updates are presented to the user (i.e. the

length of a time frame on the exploration level) can be shortened by allowing

the simulation to run asynchronously from the rest of the environment. Figure 4

shows a time frame diagram in an asynchronous environment. In an asynchro-

nous system, different components are allowed to advance, when they have fin-

ished processing and communicating the current time frame. Different compo-

nents may therefore execute at different time scales. In addition, these time

scales are mostly non-deterministic because of hardware, software and human

imposed delays. As a consequence, time delays occur as the output generated

by one component cannot be accepted immediately by another component for

processing. When components depend on the output of an increasing number

of other components, the time frame that is processed by ‘later’ components fall

further apart. This has a causality consequence for the user who explores the

final component in the environment and therefore interacts with components at

a much ‘earlier’ time compared to what is being processed by a simulation at

the same wall-clock time. Time management is responsible for detecting and

resolving this causality violation. Methods for resolving time causality problems

have been investigated by [Overeinder, 1999].

774

1

1

rendering

exploration

simulation

interaction

perception delay
interaction delay

rendering delay
communication delay

time

visualization

1 2

1

31 1 1 1 2 2 2 3 3 3

rollback

2 3

2 3

4

2

1’

Interaction

A DEE provides the opportunity to interact with a living simulation. This interac-

tion can take any form; from typed input for simple types of interaction via

graphical user interfaces to fully immersive virtual environments. The main fea-

ture of immersive environments over other graphical user interfaces is that

user-centered stereoscopic images are presented to a user rather than visual-

ization centered three-dimensional (3D) projections. User-centered stereoscop-

ic images differ from projections on a flat screen in that slightly different pic-

tures are generated for the left and right eye, dependent on the position of the

viewer. This makes images ‘pop out of the screen’ and react to the user’s move-

ments3, an important depth-cue to gain understanding in complex multidimen-

sional structures.

A minimal requirement for interaction in an immersive Virtual Environment (VE,

see also [Kaandorp, 1998]) is the availability of input devices that can be used to

convey intention to the environment. The most common are sensor devices that

measure the 6 Degrees Of Freedom (DOF) one has to move around in a 3D space

(position and orientation). These sensors can be used to detect the proximity of

a physical object (such as the user’s hand) to virtual objects, so that the user

can interact with them. Interaction with a virtual environment is a key issue,

especially in an interactive simulation environment. The following types of inter-

action are deemed mandatory:

– Object interaction. An ‘object’ is defined here as a visual entity that is in the

center of interest to an end-user. These objects are representations of data

sets or simulation results, but can also be ‘widgets’ (menus, buttons, sliders,

etc.). An object has attributes associated with it such as position, scale,

level, state, etc. Object interaction is concerned with changing these attribut-

es.

– Navigation and way finding. Navigation provides users with methods to

move beyond the confinements of the VE’s physical dimensions. Objects

beyond the VE come into reach by moving the user towards them. Note how

this concept places the user of the VE in the center of this type of interaction;

the user is transported from one place to another, while the objects remain

where they are. Way finding is a relatively new concept in VE applications

and provides the user with a reference on where he is in a virtual environ-

ment [Elvins, 1997].

– Probing. Although visual presentations allow researchers to qualitatively

analyze their data, an instrument for obtaining quantitative information from

the visualization is a valuable asset. An architecture that allows researchers

to probe visual presentations in order to obtain quantitative information is

described in [Belleman, 1999].
3 This is commonly referred to as

‘motion parallax’.

775

Figure 5
A DEE instrumented with monitors

and an intelligent agent.

Coordination: intelligent agents

Since the various components in a DEE are independent processes, some

means of coordination between them is required to allow a complex environ-

ment of this kind to be used. Especially in the case of interactive simulations,

interaction involves not only the visualization element, but also the simulation

part. For software engineering and efficiency reasons, it is reasonable to move

the processing for those general interactions into independent modules, and let

them be reusable to all components that need these interactions. One approach

to this is through Intelligent Agents (IAs, see also Figure 5).

As are software modules with the capability of performing three functions:

(1) perceiving state changes in the environment through the use of monitors,

(2) taking actions that affect conditions in the environment and (3) reasoning to

interpret perceptions, solve problems, draw inference, and determine actions

[Hayes, 1995]. Agents execute autonomously, interfering minimally with the rest

of the environment, apart from communicating with other agents or the user.

Feedback is generated when the agent has solved a problem, or has prepared

suggestions based on the current running context. This feedback could be infor-

mation to the user, or the information is sent to environment components.

Depending on the permission settled beforehand, an agent could just provide

feedback without affecting the working status of the environment, or make

some changes in the environment based on its reasoning.

At present, agents are used to provide feedback to the user concerning the state

of a simulation (e.g. accuracy of the simulation, time to completion, conver-

gence rate) and user interaction (including speech recognition and synthesis).

In the near future agents will be developed for feature extraction (e.g. determin-

ing the geometric skeleton of objects, detecting eddies in flow domains) and

providing assistance (context sensitive help).

776

visualization
parameters

simulation
parameters

M M

M

simulation data

Simulation Visualization

Interaction

Agent

Distributed execution environment

Although the capabilities of modern computer systems are nearing the require-

ments for performing both simulation and visualization tasks on the same

machine, some performance increase may be attained by running these tasks

on dedicated computing platforms. For example, many simulation applications

perform better on dedicated hardware such as vector processors, massively

parallel platforms or other High Performance Computing (HPC) machinery, while

state of the art graphical systems are now available that are well suited for the

visualization tasks. Moreover, a decomposition of the environment into sepa-

rate communicating tasks facilitates implementation and allows more control

over the performance of the system as a whole (in Figure 5 each block can be

considered a separate process or a combination of processes, possibly running

on different systems).

Especially in the case of distributed environments, some means of job control is

required that starts/stops the execution of the different components of the

environment on the various computing platforms. In many organizations this

system also needs to allocate the required resources prior to execution (for

example in the case of batch execution systems). GLOBUS is one such software

infrastructure for computations that integrates geographically distributed com-

putational and information resources [Foster, 1997].

In distributed systems, components execute on different, possibly heteroge-

neous computing platforms. To be able to communicate data with each other,

components provide access to their attributes, which can then be made avail-

able to other components. In heterogeneous computing environments the

attributes often have to be converted into different representation formats.

Furthermore, in many circumstances not all components in an environment will

participate in a communication. For these situations a publication and subscrip-

tion mechanism needs to be provided that limits communication to members of

a restricted group.

Attribute ownership

The behavior of individual components in the environment is defined by one or

more attributes (or parameters), which together define the state of that compo-

nent. In a distributed system attribute changes (which can be considered to be

events, for example as a result of user interaction) should only be performed by

a component that owns the attribute to avoid race conditions. In some cases it

may be necessary to transfer ownership so that attributes can be changed by

other components (for example in a collaborative environment where multiple

users manipulate the same components).

777

Runtime support system

From the considerations described in the previous sections, it becomes clear

that a generic framework to support the different modalities is required. In our

research we have chosen for the ‘High Level Architecture’ (HLA) as a suitable

architecture for constructing a DEE.

HLA provides solutions to many of the problems and issues described in the

previous sections. Specifically, HLA allows data distribution across heteroge-

neous computing platforms (including message groups), supports a flexible

attribute publish/subscribe and ownership mechanism and offers several meth-

ods to do time management.

Vascular reconstruction: a case study
The design considerations described in the previous section cover the issues

that are involved with building a DEE. The architecture is validated by analysis

of a prototypical case study of simulated abdominal vascular reconstruction.

The application we have chosen as a test case combines visualization, simula-

tion, interaction and real-time constraints in an exemplary fashion. By a detailed

analysis of the spatial and temporal characteristics of the test case we attempt

to recognize generic elements for the design of a computational steering archi-

tecture. We begin with a description of the test case.

Simulated abdominal vascular reconstruction

Vascular disorders in general fall into two categories: stenosis, a constriction or

narrowing of the artery by the build-up over time of fat, cholesterol and other

substances in the vascular wall, and aneurysms, a ballooning-out of the wall of

an artery, vein or the heart due to weakening of the wall. Aneurysms are often

caused or aggravated by high blood pressure. They are not always life-threaten-

ing, but serious consequences can result, if one bursts.

A vascular disorder can be detected by several imaging techniques such as X-

ray angiography, MRI (Magnetic Resonance Imaging) or Computed Tomography

(CT). Magnetic Resonance Angiography (MRA) has excited the interest of many

physicians working in cardiovascular disease, because of its ability to non-inva-

sively visualize vascular disease. Its potential to replace conventional X-ray

angiography methods which use iodinated contrast has been recognized for

many years, and this interest has been stimulated by the current emphasis on

cost containment, outpatient evaluation, and minimally invasive diagnosis and

therapy [Yucel, 1999].

778

A surgeon may decide on different treatments in different circumstances and on

different occasions, but all these treatments aim to improve the blood flow of

the affected area . Common options include thrombolysis where a blood clot

dissolving drug is injected into, or adjacent to, the affected area using a

catheter; balloon angioplasty and stent placement, which is used to widen a

narrowed vessel by means of a inflatable balloon or supporting framework; or

vascular surgery. A surgeon resorts to vascular surgery, when less invasive

treatments are unavailable. In endarterectomy the surgeon opens the artery to

remove plaque build-up in the affected areas. In vascular bypass operations,

the diseased artery is shunted using a graft or a healthy vein harvested from the

arm or leg.

The purpose of vascular reconstruction is to redirect and augment blood flow, or

perhaps repair a weakened or a neurysmal vessel through a surgical procedure.

The optimal procedure is often obvious, but this is not always the case, for

example, in a patient with complicated or multi-level disease. Pre-operative sur-

gical planning will allow evaluation of different procedures a priori under vari-

ous physiologic states such as rest and exercise, thereby increasing the

chances of a positive outcome for the patient [Taylor, 1998].

What is needed?

The test case described in the previous section contains all aspects of an inter-

active dynamic exploration environment that are of consequence in the con-

struction of a generic dynamical computational steering architecture. Our aim is

to provide a surgeon with an environment in which he or she can try out a num-

ber of different bypass operations and see the influence of these bypasses. The

environment needs the following:

– An environment that shows the patient under investigation with his inflic-

tion. A patient’s medical scan is 3D, so to obtain best understanding on the

nature of the problem the surgeon should be able to look at his specific

patient data in 3D, using unambiguous visualization methods.

– An environment that allows the surgeon to plan a surgical procedure. Again,

this environment should allow interaction in a 3D world, with 6 DOF. The

CAVE environment allows us to interact with 3D computer generated images

using 6 DOF interaction devices [SARA, 1998; Cruz-Neira, 1993]. Note that

visual realism is not the primary goal here; what is more important here is

physical realism, and then only of particular issues in fluid flow, as discussed

later 4.

– An environment that shows the surgeon the effect of his planned surgical

procedure. As the aim of the procedure is to improve the blood flow to the

affected area, the surgeon must have some means to compare the flow of

blood before and after the planned procedure. This requires the following:

4 This in contrast to research pro-

jects towards virtual operating the-

atres that include the simulation of

tissue deformation and realistic

blood spills [Basdogan, 1999;

Bockholt, 1999].

779

5 Endoscopy is a diagnostic proce-

dure where an instrument is used to

visualize the interior of a hollow

organ.

– a simulation environment that calculates pressure, velocity and shear

stress of blood flowing through the artery;

– a visualization environment that presents the results of the simulation in

a clear unambiguous manner;

– an exploration environment that allows the researcher to inspect and

probe (qualitatively and quantitatively) the results of the simulation (e.g.

means for performing measurements, annotate observations, releasing

tracer particles in the blood stream, etc.).

All this should be interactive, or in other words, it should be fast enough in such

that a surgeon does not have to wait for the simulation results.

Implementation of a dynamic exploration environment
Parts of the components mentioned in the previous section have already been

implemented in the course of previous projects. Others require minor adapta-

tions to fit into our dynamic exploration architecture. In the following subsec-

tions we will briefly discuss the current status of the visualization and explo-

ration environment, the interaction environment, the simulation environment

and the middleware that combines these together.

VRE: immersive static exploration

We have previously built a SEE called the Virtual Radiology Explorer (VRE

[Durnford, 1999; Versweyveld, 1998]) which is capable of visualizing medical CT

and or MRI data in 3D (see also Figure 6). 3D data sets acquired with CT or MRI

are often displayed and evaluated from various perspectives or at different levels,

including sets of single slices, stack mode (cine loop) interactive representation

of sets of slices, or Multi-Planar Reformation (MPR) represented as single slices

or interactive cine loops. Despite the increased possibilities of acquiring data,

clinical use of 3D rendering has been hampered by insufficient computing

capacity in the clinical environment.

An example of the clinical use of 3D rendering is simulated endoscopy 5.

Simulated endoscopy has several advantages over mechanical endoscopy

(shorter acquisition times, increased patient comfort, higher cost-effectiveness,

no complications of endoluminal instrumentation, field-of-view extending

beyond the surface). In addition, simulated endoscopy can be used in virtual

spaces that can not at all, or only after violation of normal anatomical struc-

tures, be reached by mechanical (endo)-scopy.

From a clinical perspective, there is a demand in community hospitals to make

an environment available, suitable for the interactive rendering and interactive

matching of, and switching between the above described data sets with an

780

emphasis on simulated endoscopy. The VRE environment provides various such

methods for the visualization of medical scans, including volume rendering

using SGI’s Volumizer [Volumizer homepage, 2000], surface rendering using VTK

[Schroeder, 1997] and OpenGL [OpenGL homepage, 2000], interactive clipping

and surface mapping techniques. Mechanisms have been added that allow the

VRE environment to be run in a CAVE or on an ImmersaDesk. The ImmersaDesk

allows the VRE environment to be used in the radiology department. Shown in

Figure 7 is an isosurface representation of the abdominal aorta from an MRA

scan. A geometric probing system (GEOPROVE, see [Belleman, 1999]) is used to

perform measurements on this representation.

VRE+

VRE+ extends VRE with methods that allow dynamic exploration. Various meth-

ods are added to visualize the results of a simulation, while it is running. An

intelligent agent system is integrated that constantly monitors a user’s actions

and provides feedback to the user. Currently, we have implemented a speech

recognition agent, which enables users to control the environment using hands

and voice simultaneously. A second agent monitors the position of the user,

when using GEOPROVE and provides feedback on the accuracy of the measure-

ments. Another agent monitors the state of the simulation environment and

provides feedback on the state of the simulation.

For the planning part, the VRE+ environment is extended with means to ‘draw’

a surgical procedure using a ‘grid editor’, as described in the section on grid

generation and editing.

Figure 6
The VRE environment allows medical

data from hospitals to be pre-

processed on HPC systems for 3D

visualization. High speed network-

ing initiatives such as the GigaPort

project [gigaport homepage, 2000]

allow hospitals to make interactive

use of HPC visualization techniques

for patient diagnostics.

781

raw data
analyzed

data

high performance
computer

medical
scanner

visualization
environment

user
interaction

Figure 7
A snapshot of the VRE environment

running in a CAVE. An isosurface rep-

resentation of an abdominal aorta is

shown obtained from an MRA scan.

The panel shows the GEOPROVE

environment, which allows measure-

ments and annotations (such as the

virtual ‘snapshot’ on the right) to be

made from within the environment.

Fluid flow simulation: the lattice-Boltzmann method

The lattice-Boltzmann method (LBM) is a mesoscopic approach for simulating

fluid flow based on the kinetic Boltzmann equation [Chen, 1998]. In this method

fluid is modeled by particles moving on a regular lattice. At each time step, par-

ticles propagate to neighboring lattice points and re-distribute their velocities

in a local collision phase. This inherent spatial and temporal locality of the

update rules makes this method ideal for parallel computing [Kandhai, 1998].

During recent years, LBM has been successfully used for simulating many com-

plex fluid-dynamical problems, such as suspension flows, multi-phase flows,

and fluid flow in porous media [Koponen, 1998]. All these problems are quite dif-

ficult to simulate by conventional methods [Kandhai, 1999a; Kandhai, 1999b].

The data structures required by LBM (Cartesian grids) bear a great resemblance

to the grids that come out of CT and MRI scanners. As a result, the amount of

preprocessing can be kept to a minimum, which reduces the risk of introducing

errors due to data structure conversions. In addition, LBM has the benefit over

other fluid flow simulation methods that flow around (or through) irregular

geometries (like a vascular structure) can be simulated relatively easily. Yet

another advantage of LBM is the possibility to calculate the shear stress on the

arteries directly from the densities of the particle distributions [Artoli, 2000].

This may be beneficial in cases where we want to interfere with the simulation

while the velocity and the stress field are still developing, thus supporting fast

data updating given a proposed change in simulation parameters from the

interaction modules.

782

Lattice-Boltzmann grid generation and editing

As mentioned earlier, the basic structure of the grids used in LBM bear great

resemblance to the medical scans obtained from a patient. To convert the med-

ical scans into LBM grids, the raw data from the medical scanner is first seg-

mented so that only the arterial structures of interest remain in the data set (see

also Figure 8). The contrast fluid injected into the patient in a MRA scan pro-

vides sufficient contrast in the vascular structures to do this quite efficiently.

The segmented data set is then converted into a grid that can be used in LBM;

boundary nodes, inlet nodes and outlet nodes are added to the grid using a

variety of image processing techniques.

A surgical procedure is simulated through the use of a 3D grid editor. This sys-

tem allows a user to interactively add and or delete areas in the LBM grid corre-

sponding to the procedure that is simulated. Similar grid generation techniques

as described above are used to ensure the grids comply with the demands

imposed by LBM.

Middleware

The different components involved in our interactive simulation system are

shown in Figure 9. As can be seen from this figure, the visualization and explo-

ration system runs on a different system (a CAVE) than the simulation system (a

massively parallel Origin 2000). HLA is used as a middleware layer to connect

these components together. By using HLA, the different components can run

asynchronously, while spatial and temporal effects as described in the Section

on time management can be controlled. In addition, HLA provides attribute

ownership management and does efficient data distribution between heteroge-

neous (if needed) systems.

Figure 8
LBM grids are generated from raw

medical scans through a combina-

tion of segmentation and image pro-

cessing techniques.

783

segmentation
LBM grid

generation

segmented dataraw MRA scan LBM grid

Figure 9
The visualization and exploration

environment (on the left, running in

a CAVE) and the simulation system

communicate via the HLA.

Discussion and future work
We have presented our views on dynamic exploration environments that sup-

port distributed interactive simulation. We have provided an overview on the

requirements of such an environment and the issues involved in its construc-

tion. We have described how the HLA offers all requirements that are needed in

its basic architecture. The case described in the final section is presented as a

prototypical case study to validate these assumptions.

Preliminary measurements on the test case environment show that HLA is a

suitable architecture to build a relatively efficient interactive and distributed

simulation environment. Compared to raw network performance, communica-

tion overhead and delays imposed by HLA are acceptable. Implementing a HLA

federation, however, requires a substantial effort, but is mostly due to the lack

of proper software development tools.

The performance of the test case simulation environment will be validated

through a comparison of fluid flow simulation results and the results of other

simulation methods as well as in vivo measurements of blood flow through

phantom structures and pre- and post-operative MRA scans.

Acknowledgements
This research is funded through grant 612-21-103 from the Netherlands

Organization for Scientific Research (NWO). We are also greatly indebted to

Charles A. Taylor (Department of Mechanical Engineering, Stanford University)

for his insightful and inspiring discussions and for allowing us to use his data

sets, Sean A. Spicer (Department of Mechanical Engineering, Stanford

784

VRE+ visualization &
exploration environment

OpenGL, Vtk, Volumizer,
CAVElib, pthreads

High Level Architecture
1.3NG V3

IRIX 6.5

Onyx 2

8 x R10000@196 MHz
4 x IR2 pipelines
1 GB shared memory

Lattice Bolzmann
flow simulation

MPI

IRIX 6.5

Origin 2000

128 x R12000@300 MHz
65 GB shared memory

High Level Architecture
1.3NG V3

HIPPI

University) for providing his Volumizer Convenience Classes and enabling them

for use in the CAVE, Silicon Graphics Inc. for their patience in answering all our

questions and fixing bugs in the course of this research, Drona Kandhai (Section

Computational Science, The Universiteit van Amsterdam) for his work on the

Lattice-Boltzmann fluid simulation environment and Zhiming Zhao (Section

Computational Science, The Universiteit van Amsterdam) for his work on HLA

and IA’s. Finally, we would like to thank Eva Rombouts for her medical input and

Alfons Hoekstra for his helpful remarks, while reading this document.

References
– Academic Computing Services Amsterdam (SARA). (1998). Amsterdam, The

Netherlands. SARA - CAVE Homepage. http://www.sara.nl/hec/vr/cave/

– Artoli, A.M., D. Kandhai, A.G. Hoekstra, P.M.A. Sloot. (2000). Accuracy of

Shear Stress Calculations in the Lattice Boltzmann Method. Accepted for the

9th International Conference on Discrete Simulation of Fluid Dynamics

– Basdogan, C., H. Chih-Hao, M.A. Srinivasan. (1999). Simulation of Tissue

Cutting and Bleeding for Laparoscopic Surgery Using Auxiliary Surfaces. In:

J.D. Westwood, H.M. Homan, R.A. Robb, D. Stredney. (eds.). (1999). Medicine

Meets Virtual Reality. pp38-44. IOS Press, Amsterdam

– Belleman, R.G., J.A. Kaandorp, P.M.A. Sloot. (1998). A Virtual Environment for

the Exploration of Diffusion and Flow Phenomena in Complex Geometries.

Future Generation Computer Systems 14 (3-4):209-214

– Belleman, R.G., J.A. Kaandorp, D. Dijkman, P.M.A. Sloot. (1999). GEOPROVE:

Geometric Probes for Virtual Environments. In: P.M.A. Sloot, M. Bubak, A.

Hoekstra, L.O. Hertzberger. (eds.). High Performance Computing and

Networking (HPCN’99). pp817-827, Amsterdam, The Netherlands. Springer

Verlag

– Bockholt, U., U. Ecke, W. Muller, G. Voss. (1999). Realtime Simulation of

Tissue Deformation for the Nasal Endoscopy Simulator (NES). In: J.D.

Westwood, H.M. Homan, R.A. Robb, D. Stredney. (eds.). Medicine Meets

Virtual Reality. pp74-75. IOS Press, Amsterdam

– Bryson, S. (1996a). Virtual Reality in Scientific Visualization.

Communications of the ACM 39 (5):62-71

– Bryson, S., S. Johan. (1996b). Time Management, Simultaneity and Time-

Critical Computation in Interactive Unsteady Visualization Environments.

Proceedings of Visualization ‘96. p255. IEEE Computer Science Press, Los

Alamitos, CA

– Chen, J.X., D. Rine, H.D. Simon. (1996). Advancing Interactive Visualization

and Computational Steering. IEEE Computational Science & Engineering,

pp13-17

– Chen, S., G.D. Doolen. (1998). Lattice Boltzmann Method for Fluid Flows.

Annu. Rev. Fluid Mech. 30:329

785

http://www.sara.nl/hec/vr/cave/

– Cruz-Neira, C., D.J. Sandin, T.A. DeFanti. (1993). Surround-Screen Projection-

Based Virtual Reality: The Design and Implementation of the CAVE. SIG-

GRAPH ‘93 Computer Graphics Conference. pp135-142. ACM SIGGRAPH

– Defense Modeling and Simulation Office (DMSO). (1999). Department of

Defense, US. High Level Architecture Run Time Infrastructure Programmer’s

Guide (1.3 version 7). http://hla.dmso.mil/

– Defense Modeling and Simulation Office (DMSO). (1999). High Level

Architecture (HLA) homepage. http://hla.dmso.mil/

– Durnford, L. (1999). Virtual Reality: More than just a Game. Radio

Netherlands Wereldomroep.

http://www.rnw.nl/science/html/virtualreality990514.html

– Elvins, T. (1997). Virtually Lost in Virtual Worlds — Wayfinding without a

Cognitive Map. Computer Graphics. http://www.sdsc.edu/~todd/

– Foster, I., C. Kesselman. (1997). Globus: A Metacomputing Infrastructure

Toolkit. International Journal Supercomputer Applications 11 (2):115-128

– Hayes-Roth, B. (1995). An Architecture for Adaptive Intelligent Systems.

Artificial Intelligence. Special Issue on Agents and Interactivity 72:329-365

– IBM Corporation, Armonk, NY. (1991). Data Explorer Reference Manual

– Johnson, Ch.R., S.G. Parker. Applications in Computational Medicine Using

SCIRun: A Computational Steering Programming Environment. In: H.W.

Meuer. (ed.). Supercomputer ‘95. pp2-19

– Kaandorp, J.A. (ed.). (1998). Future Generation Computer Systems. Special

Double Issue on Virtual Reality in Industry and Research 14 (3-4). Elsevier

Science

– Kandhai, D., A. Koponen, A.G. Hoekstra, M. Kataja, J. Timonen, P.M.A. Sloot.

(1998). Lattice Boltzmann Hydrodynamics on Parallel Systems. Computer

Physics Communications

– Kandhai, D. (1999a). Large Scale Lattice-Boltzmann Simulations

(Computational Methods and Applications). PhD Thesis. The Universiteit van

Amsterdam, Amsterdam, The Netherlands

– Kandhai, D., D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema, P.M.A. Sloot.

(1999b). Lattice-Boltzmann and Finite Element Simulations of Fluid Flow in a

SMRX Mixer. Int. J. Numer. Meth. Fluids 31:1019-1033

– Koponen, A., D. Kandhai, E. Hellen, M. Alava, A. Hoekstra, M. Kataja, K.

Niskanen, P. Sloot, J. Timonen. (1998). Permeability of Three-Dimensional

Random Fiber Webs. Physical Review Letters 0 (4):716-719

– Ku, D.N. (1997). Blood Flow in Arteries. Annu. Rev. Fluid Mech. 29:399-434

– Liere, R. van, J.D. Mulder, J.J. van Wijk. (1996). Computational Steering. In: H.

Liddell, A. Colbrook, B. Hertzberger, P. Sloot. (eds.). High-Performance

Computing and Networking. pp696-702. Springer Verlag

– Mulder, J.D., J.J. van Wijk. (1995). 3D Computational Steering with

Parameterized Geometric Objects. In: G.M. Nielson, D. Silver. (eds.). IEEE

786

http://hla.dmso.mil/
http://hla.dmso.mil/
http://www.rnw.nl/science/html/virtualreality990514.html
http://www.sdsc.edu/~todd/

Visualization ‘95, pp304-312. IEEE CS

– Overeinder, B.J., P.M.A. Sloot. (1999). Extensions to Time Warp Parallel

Simulation for Spatially Decomposed Applications. In: D. Al-Dabass, R.

Cheng. (eds.). Proceedings of the Fourth United Kingdom Simulation Society

Conference (UKSim 99). pp67-73. Cambridge, UK

– Parker, S.G., Ch.R. Johnson. (1995). SCIRun: A Scientific Programming

Environment for Computational Steering. Supercomputing ‘95

– Roy, T.M., C. Cruz-Neira, T.A. DeFanti, D.J. Sandin. (1995). Steering a High

Performance Computing Application from a Virtual Environment. Presence:

Teleoperators and Virtual Environments 4 (2):121-129

– Schroeder, W., K. Martin, B. Lorensen. (1997). The Visualization Toolkit, an

Object-Oriented Approach to 3D Graphics. 2nd edition. Prentice Hall, Upper

Saddle River, NJ

– Silicon Graphics Inc. Software Products. (2000). OpenGL homepage.

http://www.sgi.com/software/opengl/

– Silicon Graphics Inc. Software Products. (2000). Volumizer homepage.

http://www.sgi.com/software/volumizer/

– Surfnet. Gigaport homepage. (2000).

http://www.gigaport.nl/en index.html

– Taylor, Ch.A., Th.J.R. Hughes, Ch.K. Zarins. (1998). Finite Element Modeling of

Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to

Atherosclerosis. Annals of Biomedical Engineering 26:975-987

– Taylor, V.E., J. Chen, T.L. Disz, M.E. Papka, R. Stevens. (1996). Interactive

Virtual Reality in Simulations: Exploring Lag Time. IEEE Computational

Science and Engineering. pp46-54

– The Numerical Algorithms Group Ltd. (1998). Oxford, UK. Iris Explorer User’s

Guide

– Upson, C., T. Faulhaber, jr., D. Kamins. (et al.). (1989). The Application

Visualization System: a Computational Environment for Scientific

Visualization. IEEE Computer Graphics and Applications 9 (4):30-42

– Versweyveld, L. (1998). Exploring the Medical Applications of Virtual Reality

Techniques in the Dutch CAVE. Virtual Medical Worlds.

http://www.hoise.com/vmw/articles/LV-VM-04-98-13.html

– Yucel, E.K., Ch.M. Anderson, R.R. Edelman, Th.M. Grist, R.A. Baum, W.J.

Manning, A. Culebras, W. Pearce. (1999). Magnetic Resonance Angiography.

Update on Applications for Extracranial Arteries). Circulation 100:2284-2301

787

http://www.sgi.com/software/opengl/
http://www.sgi.com/software/volumizer/
http://www.gigaport.nl/en
http://www.hoise.com/vmw/articles/LV-VM-04-98-13.html

