CACE

A case study in embedded system design

Robert Belleman

CACE

A case study in embedded system design

Robert Belleman
robbel@wins.uva.nl

X

]

X

UNIVERSITEIT VAN AMSTERDAM
faculty of Mathematics, Computer Science, Physics, and Astronomy

Many of the designations used by the manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this thesis, and I was aware of a trade-
mark claim, the designations have been printed in initial caps or all caps.

This documentation was prepared with I#TEX 2¢. The version you’re now holding was last edited
on September 23, 1997.

Copyright (© 1997 by Robert Belleman, University of Amsterdam, the Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission by the copyright owner.

On the cover:
Photograph by Steve Rood (used with permission; thanks Steve!). The overlay shows a raytraced
representation of CACE data.

Contents

Voorwoord
1 Introduction
1.1 Embedded systems e e e e
1.2 About thisthesis e e e e e
2 Setting the scene

2.1 Imtroduction. L L e e e e e e
2.2 Flow Cytometry o e e e
2.3 Centrifugal Elutriation oL Lo L
2.4 Computer assisted cell separation o 0oL oL,

CACE: design considerations

3.1 Historical perspective
3.1.1 Data acquisition e e e e e
3.1.2 On-line monitoring primitives L Lo
3.1.3 Off-linedata analysis. e

3.2 Outline of a CACE experiment e
3.2.1 EXperienceso i o e e e e e e e e e e e e e e e

3.3 New requirements
3.3.1 The computational architecture o000,
3.3.2 Automatic alignment and focusing of the optical system
3.3.3 Automatic control of the flow system,
3.3.4 Thewuser interfaceo e

Building blocks of the embedded architecture

4.1 Introduction. o L e e
4.2 The Transputer 0 e e e e e e e e e e e e e e e
4.2.1 Reduced Instruction Set Computing
4.2.2 Programming transputers e e e e e
4.3 The occam programming language oo
4.3.1 Occam’s Syntax v it i e e e e e e e e e e e e e e e e e
4.3.2 DOccam’s semantics Lo e e e e
4.4 Embedded system design using transputers and occam L.,
4.4.1 The transputer e e e e e e
442 0CCaMt e
4.5 Conclusions oL e e e e e

vii

10
11
12
13
14
14
17
17
18

vi

4.5.1 No dynamic memory allocation
4.5.2 No non-blocked communication
4.5.3 Process scheduling on the transputer
4.5.4 Multidimensional arrays
4.5.5 ALT implementation on transputer is unfair
5 The CACE-II embedded architecture and implementation
5.1 The CACE-1I architecture
5.2 A parallel convolution filter00
5.2.1 Basic function requirements00
5.2.2 Problem decomposition
5.2.3 Description of the filter process
524 Results
5.3 Subpopulation detectiono oL
53.1 Designissuest
53.2 Clusteranalysis. oo,
5.3.3 Parallel Statistical Optimization
5.4 Processor network topology o oL
5.5 The parallel data analyses pipeline
5.5.1 The parallel digital analysis pipeline sequencer
5.6 The CACE-II user interface
6 The autofocus subsystem
6.1 Imtroduction.
6.1.1 Properties of the focus point,
6.2 The autofocus processo
6.2.1 Locating the flow chamber’s channel
6.2.2 Focusing thelenssystem
6.3 CACE-II implementation details
6.4 Conclusions e
6.4.1 Acknowledgments,
7 Conclusions and recommendations
7.1 Cluster analysis oo
7.2 Portability
7.3 Recommendations for future work
7.3.1 Automatic control of the flow system
7.3.2 The DMA interface
7.3.3 List mode data acquisition
7.3.4 The optical detection system

Bibliography

CONTENTS

Voorwoord

Het is werkelijk een verademing te noemen om na het produceren van een document als het deze,
eindelijk weer eens iets luchtigs op te mogen schrijven. Maar eindelijk is dan het moment daar dat
ik alle mensen mag bedanken voor hun inzet tijdens mijn studie.

In de allereerste plaats wil ik Peter Sloot heel hartelijk bedanken voor alle mogelijkheden die hij
mij heeft geboden sinds ik hem leerde kennen bij het Nederlands Kanker Instituut tot en met de
meest recente ontwikkelingen op het gebied van de Virtual Reality. Daartussen zit domweg te veel
om op te noemen. Tijdens de donkere perioden in de ontwikkeling van CACE waren de gesprekken
met hem altijd weer een bron vol inspiratie en motivatie. Na ruim tien jaar snap ik nog steeds niet
hoe hij het doet.

Alfons Hoekstra bleek altijd weer in staat mij bij te staan in de kunst van het knoeien aan wa-
terige en licht weerkaatsende proef opstellingen tijdens metingen aan CACE. Daarnaast hebben zijn
gedetailleerde op- en aanmerkingen over de inhoud van vroege versies van dit document een grote
invloed uitgeoefend op het uiteindelijk resultaat ervan. Alfons; ontzettend bedankt voor al je hulp.
Je krijgt een biertje van me.

Samen met Ruud Veldhuizen zal ik heel wat uurtjes achter de logic analyzer hebben gezeten om het
zoveelste probleem in de hardware te kunnen achterhalen. Dit gebeurde op een gegeven moment
zo vaak dat het ding bij mij Pavlov reacties teweeg bracht, maar gelukkig bleek Ruud altijd weer
in staat het probleem te achterhalen. Mijn complimenten, en dank.

Ook de mannen van de PSC&S groep waren altijd weer in staat om op mijn meest stompzinnige
vragen een intelligent (nou ja) antwoord te geven. Daarnaast bleken zij ook op sociaal gebied
geweldige kerels te zijn. Berry, Frank, Benno, Walter, Arjen, Jeroen, Jaap, Jan, Martin, Drona,
Arjan en Diederik: allemaal bedankt. Tk hoop dat er nog geweldige tijden gaan komen.

Ook Joep Vesseur, die de groep inmiddels geeft verlaten, wil ik bedanken voor zijn kritische houding
op momenten dat ik weer een heel stuk software ging herschrijven. Samen met Joep, Gert en Huch
bleek zelfs ook nog dat we menig muzakstukje konden produceren. Ik hoop dat we dat binnenkort
weer kunnen oppakken.

Ook ben ik veel dank verschuldigd aan Tobias Kuipers, Bas Luttik en in het bijzonder Ramin Mon-
ajemi met wie ik gedurende een jaar huis en haard heb mogen delen. Met alle drie heb ik sinds het
begin van mijn studie verschrikkelijk leuke momenten mogen meemaken, niet in de laatste plaats
in onze stamkroeg, Eik en Linde, waar wij heel wat discussies hebben gevoerd over drank, favoriete
TV programma’s en studie ervaringen. Ik vind alleen wel dat ze me te veel eer in de voeten wilden

vil

viii VOORWOORD

schuiven door te beweren dat CACE door mijn programmeerkunsten een dergelijke vorm van intel-
ligentie verkreeg dat het zichzelf gedeeltelijk vernietigde.

Mijn ouders, Gerard en Nel Belleman, wil ik graag bedanken voor hun interesse en steun tijdens
mijn studie, want laat ik duidelijk zijn; zonder hun zou dit alles nooit mogelijk zijn geweest. Ook
dank aan mijn broertje en beide zusjes (ik ben nog altijd een paar centimeter langer) en hun aan-
hang. Jeroen & Joélle, Saskia & Durk, José & Ron: bedankt voor jullie steun! Ik wil Jeroen graag
nog in het bijzonder bedanken voor het oplossen van een hardnekkig probleem in het VME systeem
waarmee ik heb gewerkt. En dat via e-mail!

Tenslotte ben ik oneindig veel dank verschuldigd aan Yvon. Sinds het begin tot en met het eind
van dit werk heeft zij mijn eindeloos geraaskal vol geduld aangehoord en slaagde ze er altijd weer
in om mij op nieuwe, verrassende inzichten te brengen. Tijdens hectische tijden vond ik bij Yvon
de broodnodige rust en vooral liefde. Vooral de laatste tijd heeft ze zo vaak voor mij gekookt en
de afwas gedaan, dat ik vrees dat ik heel wat heb in te halen.

Chapter 1

Introduction

1.1 Embedded systems

Embedded systems differ from general purpose (personal) computer systems in that they are dedi-
cated to perform a specific task [11]. The computer in an embedded system is used as a functional
component within a system, not as a computing engine in its own right. The hard- and software
in an embedded system are uniquely designed to perform the specific task at hand. This results
in an intimate interaction between the two which allows small yet flexible, fast yet cost effective,
complex yet reliable systems to be built.

Embedded systems can be found in a widening range of applications, e.g. portable telephones,
washing machines, automobiles, airplanes, weapon systems and space exploration vehicles. As
microprocessors continue to become smaller, more versatile, and faster at decreasing cost, today’s
manufacturers find it is often more effective to build embedded systems into their products than
custom designed electronic or mechanical devices.

In designing an embedded system, careful attention must be paid to the requirements of such
a system [8]. In particular, the following questions need to be answered:

¢ What environment will the system be used in?
The environment in which embedded systems must operate often impose constraints on the
design of both the hardware and software in a system. Especially in cases where a system must
operate in hostile environments (consider for example temperature, humidity, vibrations),
special attention must be paid on whether each and every component still works under the
most extreme expected conditions, down to the smallest detail. Additional limits on size,
weight and energy consumption may further complicate the design of the system.

e What will the interface to the outside world look like?

The interfaces that connect an embedded system to the environment under control come in
two forms. The first are the sensors which are used to obtain input data on the basis of which
the embedded system must fulfill its purpose. Examples of sensors range from simple switches
to serial communication links and analog-to-digital converters. The second form of interface
are the output devices, also known as actuators, that are used to control external devices.
Examples of these range from electronic switches and valves to motors and digital-to-analog
converters.

Furthermore, embedded systems always have some form of interface to the user. These user
interfaces need not necessarily be as explicit as the graphical display with keyboard and mouse

2 CHAPTER 1. INTRODUCTION

that we see with personal computers; the interfaces are often as simple as a couple of buttons
or lights. In ideal cases a user may not even be aware of the existence of the embedded system
(take for example the fuel injection system in modern cars).

e What performance is required?

A common differentiation in embedded systems with respect to response time is based on
the consequences of a “late” response on the correctness of the system as a whole. The most
strict form are the “hard real-time” systems which have to respond to externally generated
input stimuli within a finite and specifiable delay [67]. Consider for example the automatic
pilot in an airplane: the pilot sets a course and altitude from which the automatic pilot (an
embedded system) controls the power to the engines and the position of the wingflaps. Based
on readings acquired from sensors, the automatic pilot needs to compensate for differences
quick enough to ensure a smooth control of the airplane. Any significant delays would result
in a very uncomfortable flight for the passengers, or worse.

Embedded systems where a late response has no consequences on the correctness of the
system, are referred to as “on-line” systems.

e What if it fails?
An additional question to consider is how the system should react to failures. Unforeseen
failures may be induced by hardware and software but irrespective of the cause and nature,
an embedded system designer must carefully asses the consequences of a failure and provide
means to recognize such a situation and define how the system should react to it. Nevertheless,
no matter how carefully a system is defined, exceptional situations can always occur (indeed,
the infamous Murphy’s Law states that “everything that can go wrong, will go wrong”).

1.2 About this thesis

Within the Parallel Scientific Computing and Simulation Group, I have worked on the design
and implementation of an embedded system for the control of a biophysical experiment known as
“Centrifugal Elutriation”. In this thesis, I discuss the design considerations in the development of
an embedded system, applied to the development of this Computer Assisted Centrifugal Elutriation
(CACE) system.

e Chapter 2 provides some basic background information that is required to understand the
purpose of the CACE system.

e Chapter 3 provides a detailed overview on the CACE equipment developed by researchers at
the department of Immunology at the Netherlands Cancer Institute, including an overview
on how it was used during experiments. The experiences acquired during early tests resulted
in a list of desired improvements.

Based on these experiences, an indepth analyses of the requirements for the new CACE-II
system, both in hard- and software, are addressed. From this, the choices in computational
architecture and the selected programming language are discussed.

e Chapter 4 provides a detailed overview on the computational architecture that has been
selected for the CACE-II system, including the choice in programming language that was used
to implement the software on this architecture.

1.2. ABOUT THIS THESIS 3
e Chapter 5 describes the design of the new CACE-II architecture and goes into detail on the
software that has been implemented on this system.

e Chapter 6 describes the automatic focusing subsystem of CACE-1I that frees inexperienced
users from the intricate details in aligning the optical system.

e Finally, Chapter 7 summarizes the experiences that have been obtained from early experi-
ments with CACE-1I thus far and provides recommendations for future work.

Chapter 2

Setting the scene

2.1 Introduction

Human blood roughly consists of plasma, platelets (or thrombocytes), red blood cells (or erythro-
cytes) and white blood cells (or leukocytes). Of these, the white blood cells form an important
part of the human immunological defense system against diseases. Human white blood cells are
commonly differentiated into the classes shown in Table 2.1 [26].

H class ‘ subclass H

lymphocytes (30%) | B lymphocytes

T lymphocytes

large granular lymphocytes
natural killer cells

monocytes (5%)
granulocytes neutrophiles (60%)
eosinophiles (4%)
basophiles (1%)

Table 2.1: The main classes and subclasses in human white blood cells. The percentages shown
are relative occurrences in a typical healthy donor.

For clinical purposes, analysts may require accurate knowledge on the composition of these
classes in a particular donor, e.g. in cases where malignant leukocytes are suspected, or to measure
reduced lymphocyte counts in AIDS patients. Furthermore, in research situations (e.g. drug design),
an immunologist may require particular classes of pure leukocytes so that experiments can be
performed on isolated types of cells. In that case some method must be devised by which a mixture
can be separated into the different classes. For both purposes, some kind of detection equipment
is required by which the different classes of leukocytes can be recognized. Since the purified cells
may be used in further biological experiments, no modification (e.g. staining) of the cells under
separation is allowed. This limits the applicable methods for detection to non-destructive remote
sensing techniques.

6 CHAPTER 2. SETTING THE SCENE

2.2 Flow Cytometry

One particular method by which different subpopulations in a mixture can be discriminated is a
technique called Flow Cytometry (FCM) [15]. A flow cytometer (see Figure 2.1) usually consists of a
flow chamber in which cells are forced to flow in sequence through a technique called hydrodynamic
focusing. A laser beam is focused on the cells such that the cells pass the beam one by one. Each cell
causes the light to be scattered in some specific pattern depending on its morphological properties.

sanmpl e
fluid

sheat h
fluid

sheath
fluid

A N R
<ol -7 | aser beam
FS Y i H -~
7ol
L
L9
9
hi
o

detectors

Figure 2.1: Schematic drawing of a flow cytometer (FCM) including forward, side and back scatter

detectors (resp. FS, SS and BS).

It has been shown that various subpopulations of particles can be discriminated by measuring
the scattered light pulses in two principal directions: Forward Scattering (FS, where the detection
angle ¢ relative to the direction of the laser beam is usually 1° < ¢ < 3°) and Side Scattering
(SS, usually 65° < ¢ < 115°) [26, 52]. In some cases a third detector is used to allow a broader
or more accurate differentiation by the use of a Back Scattering detector (BS, usually 160° <
¢ < 180°) [57]. The signals from these detectors are amplified and often visualized on specialized
measuring equipment that create histograms based on the pulse height of the signals. Based on
these histograms, expert users are able to discern which kind of leukocytes have passed the flow
chamber. In other cases the amplified signals are converted to digital values using analog-to-digital
converters (ADC) and stored in a computer where they may be subsequently analyzed.

Note that this method for differentiation is radically different from morphological methods in
which digital images are taken from the cells under investigation that are then analyzed using
image processing techniques (see [3] for an example). The combination of a flow chamber and
light scattering equipment allows rapid cell identification for great numbers of cells, while image
processing techniques are often very time consuming and appropriate only for the identification of
cells in small batches.

2.3 Centrifugal Elutriation

A flow cytometer allows an immunologist to discriminate different subpopulations in a mixture,
provided the light scattering properties of the subpopulations are dissimilar. A technique that allows
the different subpopulations to be separated has been improved at the Netherlands Cancer Institute
and is known as Centrifugal Elutriation [18, 19]. Centrifugal elutriation (henceforth referred to as
CE) exploits differences in sedimentation velocity of human peripheral blood cells to isolate various
classes of cells from inhomogeneous cell populations.

CE is based on the following principle: a fluid containing the mixture of interest is pumped into
the center of a centrifuge rotor through a rotating seal. The fluid flows through internal tubing

2.4. COMPUTER ASSISTED CELL SEPARATION 7

Foenlrifugal

Figure 2.2: Schematic drawing of a separation chamber applied in centrifugal elutriation (CE).

into a divergent separation chamber situated inside the rotor (see Figure 2.2). At the end of this
chamber, the flow reconverges into a small tube and leaves the system back through the rotating
seal. Two forces act on the cells in the separation chamber: the centrifugal force caused by the
rotation of the rotor and the force caused by the fluid flow through the chamber. When these
forces are in balance, the special shape of the separation chamber causes the different classes of
cells to reposition to an equilibrium state based on their differences in sedimentation velocity. By
slowly decreasing the spin rate of the centrifuge, the centrifugal force decreases while the fluid flow
remains constant so that the different subpopulations wash out in consecutive batches.

2.4 Computer assisted cell separation

The combination of a centrifugal elutriator and a flow cytometer allows different cell populations
in a mixture to be separated from each other (see Figure 2.3). Here the CE equipment is used
for the actual separation of the different subpopulations in a mixture while the FCM equipment is
used for the identification of the cells that exit the elutriator [55]. A major problem with the use
of such a system is that accurate cell separation requires specialized knowledge on both the FCM
and CE equipment that can not always be expected from users in a clinical environment.

mxture ——=

separation chanber

L

Centrifugal Elutriator Fl ow Cytoneter

Figure 2.3: Schematic drawing of a coupled CE and FCM system.

In order to facilitate a cell separation experiment, a system has been developed at the Nether-
lands Cancer Institute consisting of a three-parameter flow cytometer and an embedded computer
system, interfaced to a centrifugal elutriator [56, 59]. The objective of this so called Computer As-
sisted Centrifugal Elutriation (CACE) system is to allow the control of a cell separation experiment
in such a way that optimal cell separation can be achieved by non-experts. Early experiments with
the CACE system showed that it is capable of controlling a cell separation experiment. As expected
however, these experiments also showed that improvements are required before the CACE system
can be used in a non-expert environment.

In the following chapter, a historical perspective is given on the design and implementation

8 CHAPTER 2. SETTING THE SCENE

of the original CACE system, including an overview on the experiences that were obtained with
this system. These experiences form the basis on which the requirements for an improved CACE-II
system are formulated.

Chapter 3

CACE: design considerations

3.1 Historical perspective

In an effort to control a cell separation experiment, a three-parameter light scattering device has
been designed and built at the Netherlands Cancer Institute that simultaneously measures Forward
Scattering (FS), Side Scattering (SS) and Back Scattering (BS) parameters, interfaced to a CE
system [56, 59] (see also Figure 2.3). It has been shown that it is possible with these three parameters
to discriminate between various subpopulations present in a mixture [52, 62].

In this so called Computer Assisted Centrifugal Elutriation (CACE) system!, a dedicated data
acquisition module is integrated with on-line monitoring primitives and off-line software to analyze
the experimental multivariate data, including the detection of the various subpopulations that are
present in a mixture. This allows for controlled centrifugal elutriation and facilitates optimal cell
separation where previously specialized knowledge and time consuming cell identification techniques
were required. Figure 3.1 shows a schematic representation of the components in the original CACE
system.

3.1.1 Data acquisition

Data acquisition in CACE is achieved by means of a special purpose module called the Direct
Memory Access (DMA) interface. The analog signals from the three light scattering detectors are
each amplified and then converted to 6 bit digital values by analog-to-digital converters (ADCs)
thus providing 2% = 64 possible values. The DMA interface uses these three 6 bit digital values as
an 18 bit pattern to address 2'® = 262, 144 memory elements that are each 16 bits wide. In total,
this results in an addressed memory area of 512 kilobytes.

By means of a read-modify-write (RMW) scheme, the DMA interface increments the contents
of the 16 bit memory element corresponding with each pattern occurrence (up to a maximum of
216 — 1) thus creating a three-dimensional histogram of data in memory. This histogram represents
the light scattering information of all particles that passed the laser beam while moving through the
flow chamber. When this memory area is thought of as a three-dimensional box of size 64 x 64 x 64
such a histogram can be visualized as shown in Figure 3.2.

This acquisition technique is different from regular “list mode” methods where the acquired
data is often stored as separate items for each occurring event [15]. The obvious advantage of the
technique used here is that it requires a constant amount of memory while all information that is
required for parametric and non-parametric analysis of the data remains available. In addition,

'"USA Patent 4939081 (1990).

10 CHAPTER 3. CACE: DESIGN CONSIDERATIONS

%
’ ‘
S e
' aser
) = Spectra Physics

HeNe, 632.8nm 20mN

cell mixture

anplifiers

ADC

cylindrical |enses

flow
ﬁlg bits \L chanber
DVA MC68000 512k 512k G aphi cs Net wor k
interface CPU DRAM DRAM board boar d
cust om desi gn Force Force Force ELTEC
sys68k/ CPU- 1 sys68k/ DRAM 1 sys68k/ DRAM 1 GRAZ- 1/ 68k

‘ VMEbus ‘
LoVME
N |:| | g
keyboar d D D |
e -

host conputer

Figure 3.1: Schematic representation of the original CACE equipment.

list mode data acquisition usually requires active participation of the central data processing unit
to gather data from the ADCs and store them in memory, at the same time preventing memory
overrun. The processing cycles used by such a process prevent the processing unit from performing
data analyses operations. The DMA interface however functions autonomously from the rest of
the system, allowing the central data processing unit to be used for analyses of the data. However,
a disadvantage of this method compared to list mode acquisition is that an increase in resolution
of the digital values obtained from the ADCs requires a rigorous redesign of the DMA interface.
Furthermore, list mode data allows a more detailed analyses, as all information on each individual
cell remains available [46, 53].

3.1.2 On-line monitoring primitives

A special purpose stand-alone operating system was implemented to control a separation exper-
iment, including data acquisition, data manipulation, graphical data representation and a user
interface. Using Modula II as its programming language, the operating system offers low-level
device access, event handling, and concurrent process scheduling [66].

The graphical data representation routines continuously provide the analyst with multiple si-
multaneous scatter and contour plots of the data buildup in memory. In addition, a “gating”
function allows subregions of particular interest to be specified within the memory area as a whole,
providing on-line quantitative information on the number of cells contained in a subregion.

3.1. HISTORICAL PERSPECTIVE 11

63 63 S

Figure 3.2: Visualization of data acquired during a typical separation experiment. All (FS,SS,BS)
points with contents > 2 are shown.

3.1.3 Off-line data analysis

A network connection provides an interface by which the acquired data can be dumped from the
CACE system to a host computer. Special purpose off-line statistical analysis software has been
developed for this host computer to analyze the acquired data using non-interactive methods [59].

It is possible to discriminate between various subpopulations using the acquisition system just
described [57]. Moreover, it has been shown that the subpopulations can be parametrically de-
scribed by multivariate normal distributions [55]. It is the objective of the CACE system to discrim-
inate these different distributions from the acquired data. In order to achieve this, the acquired
data is analyzed through the following data analysis steps:

Noise elimination

Due to inevitable instrumental noise introduced by the scatter detectors and the amplifiers, and
stochastic noise caused by the conversion of analog signals to digital values, the acquired data
contains a considerable amount of noise that needs to be removed before any subpopulations can
be identified. A three-dimensional convolution filter has been developed that eliminates this noise
from the data while preserving the information content of the raw data [58].

Subpopulation detection

Since it is assumed that the density functions that describe the individual subpopulations in a
mixture can be described by multivariate normal distributions, parametric analysis of the acquired
data is justified. A two phased approach was chosen; the first phase determines the number of
subpopulations and the initial estimates of the multivariate parameters. A second phase takes these
estimates as the initial parameters for a statistical optimization algorithm known as Ezpectation
Mazimization (EM). With this technique, the Mazimum Likelihood (ML) of the parameters that
describe the multivariate normal distributions is iteratively optimized [59].

12 CHAPTER 3. CACE: DESIGN CONSIDERATIONS

3.2 Outline of a CACE experiment

Figure 3.3 illustrates a typical sequence of actions that need to be performed during a CACE sepa-
ration experiment. First, the CE and FCM equipment are prepared. The flow rate through the CE
equipment is adjusted to a constant 18 ml/min and the separation chamber inside the centrifuge is
loaded with the mixture of interest. The rotor speed of the centrifuge is adjusted so that the first
cell fractions assemble close to the separation plane in the separation chamber. The sheath flow
rate through the FCM equipment is adjusted to a constant 6 ml/min and the cylindrical lenses
and flow chamber are aligned so that the flow chamber is in the path of the laser beam and light
scattering signals from passing cells can be measured. These preparations before an experiment
take approximately 5 minutes but little harm is done if it takes longer.

T

cells/s

repeat f
pr eparg}i on ;

-
L

® ® ®

I
FCM FCM

CE: X
+ rotate centrifuge + decrease rotor + start data
| oad , speed acqui si tion + cl ose sanpl ef | ow
+ |l oad separation ECM + downl oad dat a
chanber .
+ adjust flowate + open sanpl ef | ow + data anal ysis
FCM + adj ust sanpl ef | ow

.ot
+ coarse focus fine focus

+ adj ust sheat hfl ow
Figure 3.3: Time line of a typical CACE experiment (based on a Figure in [55, page 51]).

For each fraction that is to be elutriated from the mixture, the following actions are repeated
(the numbers below refer to those encircled in figure 3.3):

1. The rotor speed is decreased and the sample flow bypass is opened so that the next fraction
washes out of the rotor and in part through the detection equipment (+ 2 °/,,). Initially, there

3.2.

OUTLINE OF A CACE EXPERIMENT 13

will be some residual cells washing out of the rotor from the previously elutriated fraction.
After approximately 2 minutes, a new equilibrium is established and the new fraction can
be elutriated. Next, the sample flow rate must be adjusted so that not too many cells flow
through the detection equipment. Once this is done, the optical system must be fine focused
so that proper light scattering signals from passing cells can be measured. As the trajectory
of the cells through the flow chamber may change each time the flow rate is altered, this focus
adjustment needs to be repeated for each elutriated fraction [15]. All this should be done as
quickly as possible or too many cells will have left the separation chamber, making optimal
separation infeasible.

. Once the sample flow rate and focus are in order, data acquisition may commence when a few

hundred cells per second flow through the detection equipment. Data acquisition continues
until the cell rate descends to tens of cells per second. Normally, this occurs 8 to 10 minutes
after the sample flow bypass was opened.

. The sample flow bypass is closed to prevent the non-sterile sheath flow from flowing back into

the separation chamber. Next, the acquired data is downloaded to the off-line host computer
where the data may be subsequently analyzed. Downloading takes approximately 1 to 2
minutes using a simple data compression technique. Analysis of the data on the off-line host
computer in most cases takes place after the experiment has finished.

3.2.1 Experiences

Experiments with the CACE system have shown that it is capable of controlling a separation ex-
periment. The on-line graphical representation of the data buildup during a separation experiment
proved to be of great value to analysts that previously had to resort to standards and personal expe-
rience. In addition, the off-line data analysis software allowed non-interactive parametric analysis of

the experiment, providing qualitative and quantitative information after a separation experiment.

On the other hand, these experiments also revealed some issues of improvement:

e The overall use of the CACE system would significantly increase if quantitative information

could be obtained on-line, during an experiment instead of afterwards, downloading the ac-
quired data to an off-line system and analyzing it there.

Depending on the number of studied parameters and the number of subpopulations in a
mixture, analysis of the acquired data on the off-line system could take anything from a couple
of minutes to many hours 2. This makes off-line analysis during an experiment unviable.
Indeed, the requirement of an additional computer system for off-line data analysis can be
considered cumbersome if the goal is to achieve an embedded system for the control of a
separation experiment.

Most data analysis programs are limited to two dimensions; in order to increase flexibility
towards the number of studied parameters, the analysis programs would have to be uplifted
to their three dimensional counterparts.

Accurate data acquisition depends on a proper alignment of the optical system (in particular
the flow chamber and the lens system). Manual focusing of the optics requires expertise that

20n a LoVME 68010 (Microproject BV, the Netherlands) with floating point unit, running the Unix operating
system.

14 CHAPTER 3. CACE: DESIGN CONSIDERATIONS

often can not be expected from a typical user of the system. Moreover, focusing the optics
may not take too much time. To facilitate routine application, an automatic focus subsystem
must be added to the CACE system.

e Autonomous computer assisted cell elutriation can only be achieved if additional logic is
integrated into the system that is capable of controlled regulation of the complete flow system,
including the rotor speed.

e The inherent complexity of this type of expert systems used in a non-expert environment
requires a structured extendable design and a well considered user interface.

From this, it was concluded that the overall use of the CACE system would benefit greatly if it could
be improved on the above mentioned points.

3.3 New requirements

From the overview that has been presented on the CACE system and the experiences obtained
during experiments, described in the previous section, it becomes clear that the new requirements
impose strong demands on the design of both the hardware and software in such a system. The
need for on-line parametric analyses of the light scattering data obtained from the FCM equipment
in particular implies that an increase in computational power in the updated system is obligatory.
Furthermore, the additional requirements to control the optical system, the rotor, and the flow
system add substantial demands on the choice of new hard- and software.

Based on the overview of actions performed during an experiment with the original CACE system,
the requirements in terms of functionality and time constraints can be identified. From that, the
required changes in both hard- and software are discussed, including the choice in programming
languages.

3.3.1 The computational architecture

As explained in section 3.2, the elutriation of each fraction from the separation chamber takes
approximately 10 minutes. During this time, the analyst should be provided with frequent up-
dates on the progress of the separation experiment to ensure that optimal cell separation can be
achieved. Experiences with the CACE system showed that an updated display once every 30 to 60
seconds during the elutriation of each fraction provides the analyst with sufficient information to
achieve this. The information provided to the analyst should, at the least, consist of a graphical
representation of the data buildup in memory.

Furthermore, a parametric representation of the subpopulations detected by the data analyses
software allows the analyst to obtain valuable quantitative and qualitative information on the
elutriated fractions and the relative occurrence of these fractions in the mixture as a whole. In the
original CACE system, the acquired data was transferred to the off-line host computer (which could
take 1 to 2 minutes) where it was then analyzed (which could take many minutes to hours). Given
the objective of attaining a parameterized representation of the data within less than a minute, it
is clear that the computational hardware should be closely coupled to the acquisition system and
must be of sufficient strength to complete data analyses within this time. Moreover, the upgrade
of the data analyses programs from two to three dimensions imposes an additional demand on the
required computational power which must be taken into consideration.

3.3. NEW REQUIREMENTS 15

Parallel processing

Provided a problem can be decomposed into smaller disjoint subproblems, a parallel computing
platform should, ideally, allow problems to be solved faster than on a sequential computing plat-
form. The decomposition method of a problem has a direct relation with the algorithmic and data
properties of the underlying algorithms, thus the most common methods are known as algorithmic
(or functional) and data decomposition.

A point of careful consideration before parallelizing a program however, should always be the
anticipated efficiency of the resulting program. Efficiency is defined as the ratio of the obtained
speedup of a program to the number of processors employed. Speedup is defined as the ratio of
the program’s execution time on a uniprocessor system to the execution time on a multiprocessor
system [29].

Once a suitable decomposition of a problem into disjoint subproblems has been found, the
subproblems can be computed by subprocesses on separate processors. Communication between
these subprocesses either takes place using a shared common memory or via a communication
network using message passing. While an advantage of shared memory communication over message
passing systems is that the copying of memory structures can often be avoided, it should be noted
that the access bandwidth of memory on most architectures is limited by the bus that interfaces
the processors to the shared memory. This bandwidth limitation can have a severe impact on the
scalability of a program when more processors are employed.

In message passing systems, the amount of communication between processes and the delay
caused by the communication (the so-called latency) can have a severe impact on the efficiency of a
program. Load balancing techniques, either static (before run-time) or dynamic (during run-time),
can aid in minimizing the effects of this communication. However; communication overhead should
always be minimized as much as possible.

Architecture requirements

Since the data analysis programs have an inherent parallelism that can be exploited when imple-
mented on a parallel architecture, it was decided to substitute CACE’s processing unit (a Motorola
68000) for an architecture by which a programmer can express this parallelism. In choosing this
new architecture, careful consideration must be taken to ensure that the custom designed DMA
interface can still be used. This means that the architecture must interface to the vMEbus for which
the DMA interface was designed. One particular issue in this respect is that the new architecture
should be capable of taking over the role of VMEbus arbiter from the substituted processing unit.
This device arbitrates accesses to the VvMEbus made by so called masters (such as the DMA inter-
face) to prevent simultaneous accesses to the bus and to schedule requests from multiple masters for
optimum resource use [1]). Furthermore, the new architecture should be scalable so that any future
computational demands can be met by adding more processors to the system. As the VMEbus
bandwidth is limited to 7 Mb/s [1], the architecture’s communication model should be based on a
separate, message passing communication network.

Programming language requirements

Beside the hardware requirements, careful consideration should also be taken in the choice of
programming language that is used to actually implement the software on this architecture. Given
the discussed requirements for this particular embedded system so far, the following issues have to
be considered [11, 54]:

16 CHAPTER 3. CACE: DESIGN CONSIDERATIONS

e Multitasking support and scalable multiprocessor support — Modula II, the programming
language used in the original CACE system provides constructs for expressing concurrency,
but not parallelism. As the new architecture will consist of multiple processing units, a
programming language must be selected that allows a system designer to express parallelism
in his algorithms.

e Structured design — Software on an embedded rarely consists of one single omniscient pro-
gram; such “monolithic programs” would be hard to understand and maintain. Instead,
the programming language should provide constructs by which the task at hand can be de-
composed into simpler subtasks that can be implemented relatively independently from each
other.

e Maintainability — A programming language should help in writing programs that are easy to
read, easy to understand, and easy to modify.

e Error checking and fault handling — The language should protect the programmer from making
common programming mistakes, such as the incorrect use of typed variables. The language
should be able to detect these faults and provide methods to handle them.

e Low-level device handling — The programming language must contain provisions to directly
access the hardware devices that are under the control of the embedded system. Closely
related to this is the programming language’s handling of interrupts that are generated by
these devices in situations of urgency.

e Efficiency — The compiler that translates the programs to the architecture’s native object code
should be able to produce efficient code. Some programming languages allow a programmer to
include assembly code into a high level program to compensate for inefficiencies in a compiler.
As assembly code is hard to produce and, quite frankly, impossible to maintain, this should
be avoided at all cost.

e Availability and portability — A trivial question to consider, but important nevertheless; what
programming languages are available for the selected architecture? The vice versa question
however, is far less trivial for reasons of portability; for what architectures is the language
available? As the architectures we use today may not be a suitable choice for the future, it
is a wise decision to choose a programming language that will still be in use in the future so
that a redesign of the software can be avoided.

It should be noted at this time that it is not the aim of this work to implement a “hard real-time
system” which has to respond to externally generated input stimuli within a finite and specifiable
delay [67]. In this case, the objective is to design and implement an on-line system that allows for
rapid data analysis while controlling a separation experiment. However, some of the techniques
applied in real-time programming languages and systems can be employed here.

Transputers and occam

Very few alternatives were available that could meet the above requirements at the time this decision
had to be taken (1989), but a satisfactory solution was found nevertheless: The computational
architecture that has been selected for the embedded architecture consists of multiple VMEbus
based transputer modules. Transputers are versatile microprocessors that can easily be coupled to
form a parallel computing platform. The selected programming language is occam, which provides

3.3. NEW REQUIREMENTS 17

a powerful methodology to implement parallel software on a parallel architecture, the transputer
in particular. Chapter 4 discusses both the transputer and the occam programming language in
detail.

3.3.2 Automatic alignment and focusing of the optical system

As discussed in section 3.2, the cylindrical lenses and the flow chamber must be properly aligned
before data acquisition may commence. This alignment must be repeated for each elutriated fraction
as the trajectory of the cells through the flow chamber changes each time the flow rate through the
chamber is altered. In the original CACE system, the proper location of the cylindrical lenses and
the flow chamber was obtained through visual inspection of the FS detector signals generated by
passing cells. As this required that cells exit the elutriator, the correct focuspoint had to be found
quickly, i.e. within approximately two minutes, or the cell fraction would be lost. Furthermore,
visual inspection of the FS detector signals requires expertise that can not be expected from a
typical user of the system. It was therefore decided to design and build a focus subsystem that
could achieve this automatically.

To allow the cylindrical lenses and the flow chamber to be positioned under software control,
they have each been mounted on a servo controlled table. A vMEbus based servo controller (based
on the Motorola 68010 processor) has been added to control these servos. In addition, a special
purpose VMEbus card has been designed and built to amplify and sample signals from the FS
detector. Based on these signals, the autofocus software automatically focuses the laser beam onto
the particles that flow through the channel of the flow chamber.

The autofocus software runs as a separate subsystem on the servo controller board which allows
this system to operate autonomously from the CACE-II system. Communication from this system
to CACE-II takes place via the VvMEbus. For the implementation of the software, the C programming
language and 68000 assembly language were used. The unfortunate use of assembly language was
necessary in order to access the on-board routines provided by the servo controller board. Chapter 6
describes the autofocus subsystem in detail.

3.3.3 Automatic control of the flow system

Two flow paths are important for the correct operation of the CACE system (also recall Figure 2.1 on
page 6): The sheath flow rate through the flow chamber should be adjusted to a constant 6 ml/min.
The sample flow rate is adjusted so that approximately 200 cells per second pass through the flow
chamber. The exact sample flow rate depends on the number of cells that elutriate from the CE
system per second, but experience has shown that the sample flow rate generally lies between 0.05
to 0.1 ml/min. The special construction of the flow chamber and the order of magnitude difference
in the sheath and sample flow rates cause the cells in the sample fluid to be pulled through the
center of the flow chamber, without touching the edges (this technique is called hydrodynamic
focusing).

To automatically control the flow system, a device is required that is able to measure flow rates
while another device adjusts the flow rate. At the department of Biophysics at the Netherlands
Cancer Institute, some research has been done on the design of a device to measure flow rates
through Laser Doppler methods. Unfortunately, this project has recently stopped. In Chapter 7
I will briefly touch on this subject again and provide some ideas that may compensate for this
omission, including the control of the rotor speed.

18 CHAPTER 3. CACE: DESIGN CONSIDERATIONS

3.3.4 The user interface

In the original CACE system, the interface to the user was implemented through a VME based
graphics board that was controlled by the operating system running on the central processing unit.
Although this interface worked quite well, a change in the interface required recompilation of the
complete software for the embedded system.

Over the last years, programming environments have become available that allow powerful,
flexible and portable user interfaces to be built relatively quickly [48, 65]. In Chapter 5 a brief
description will be given on the user interface that has been developed for the CACE-II system.

Chapter 4

Building blocks of the embedded

architecture

4.1 Introduction

In the previous chapter, the design requirements for the new embedded architecture were discussed
from which the building blocks were selected. In this chapter, a detailed discussion will be provided
on these building blocks and their use in implementing the CACE-1I embedded architecture.

4.2 The Transputer

In 1984 a company named INMOS! launched a new microprocessor which became known as the
transputer (derived from transmitter and computer). The most innovating aspects about this pro-
cessor? at its time of introduction was that besides its 32 bit architecture and fast on-chip static
RAM it also featured hardware multitasking support for the execution of concurrent tasks (capa-
ble of switching processes in less than a microsecond) and it had four independent bidirectional
serial communication interfaces (“links”) for the communication with other transputers or exter-
nal devices. These communication links allow engineers to construct parallel computing systems
containing many interconnected transputers. Several families of transputers have been produced
ranging from the T2 series to the T9, each with slightly different characteristics. Table 4.1 shows
an overview of these families.

| family | CPU | FPU | SRAM | MIPS | MFLOPS | link speed |

T2 16 bit | no | 2/4 kb | 30 0.5 5/10/20 Mbit /s
T4 32bit | no | 2/4 kb | 25 0.5 5/10/20 Mbit/s
T8 32Dbit | yes |4kb |25 3.6 5/10/20 Mbit /s
T9 32Dbit | yes |16 kb | 120 |8 160 Mbit /s

Table 4.1: Some of the characteristics of the four transputer families [31]. Both MIPS and MFLOPS
are peak performance figures.

By far the most popular transputer is the IMS T800 and its later derivative, the IMS T805. Its
popularity is mostly due to the fact that this transputer was the first with an on-chip 64-bit floating

"INMOS is now a member of the SGS-THOMSON Microelectronics group.
2The words transputer and processor are used promiscuously throughout this chapter.

19

20 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

point unit capable of a sustained performance of approximately 0.9 MFLOPS (million floating point
operations per second) [50] allowing it to be used in serious number crunching applications. Also,
it is worth mentioning that the IMS T800 was probably the first processor that was proven to
be correct through formal design methods [44]. A block diagram of this processor is shown in
Figure 4.1.

floating point unit

= system
] services 32-bit

processor

@KE>

4k bytes

(S)EAI(\:/IIp @ @ in
(w2 ik

s (o)

link 3

= mMenory @
1 interface L

ﬁ external nenory bus

Figure 4.1: Block diagram of the IMS T800 Transputer.

event

H
1l

The transputer’s communication links allow multiple processors to be coupled to form a parallel
computing platform. Only 8 wires are required to connect two processors so that compact parallel
systems can be built quite easily. Many manufacturers have taken this processor as the basic
building block to construct Massively Parallel Processing (MPP) platforms, some of which contained
in excess of 1,000 processors. Much of the software development for CACE-11 was done on a Meiko
CS1 system containing 64 IMS T800 transputers.

The communication links can only be used for point-to-point communication between two pro-
cessors. The larger transputer systems often contain crossbar switches that allow the network
topology to be configured by software prior to loading a program.

4.2.1 Reduced Instruction Set Computing

The transputer is essentially a Reduced Instruction Set (RISC) processor. Each instruction is one
byte (8 bits) long and is divided into two 4 bit parts. The most significant 4 bits of a byte represent
a function code, the least significant bits a data value [39]. This representation allows sixteen basic
instructions, each with a data value ranging from 0 to 15. Some function codes represent prefixes

4.2. THE TRANSPUTER 21

for building larger instructions, allowing for a total of approximately 150 instructions (including
floating point instructions).

The transputer contains six registers, each one word long. Three of these (the Areg, Breg,
and Creg registers) are used as data registers and implement a three level evaluation stack. Each
loaded variable or constant is pushed onto this stack. Every time an operation is performed, the
two values at the top of the stack are popped and used as operands for the operation, and the
result is pushed back onto the stack. Operating with a data stack removes the need to add extra
bits to an instruction to specify which register is accessed. As a result, instructions can be packed
in smaller words so that program code fits tighter in memory, and less time is spent fetching the
instructions from memory. The remaining three registers in the transputer consist of the program
counter, the stack pointer and an operand register.

4.2.2 Programming transputers

The key concept in programming transputers are Communicating Sequential Processes (CSP, first
introduced by Tony Hoare who was partly inspired by Dijkstra in [14]) [24]. The basic idea in
CSP is that multiple concurrent (or parallel) processes synchronize by communicating with each
other: a process A states that it is ready to send a message to a specific process B, and process
B states that it is ready to receive a message from process A specifically. If either process starts
synchronizing before the other, it is put on hold until both are ready. After communication, both
processes continue their execution independently.

Conceptually, CSP is quite simple and yet it provides a good solution to many of the more
common synchronization problems (such as the Dining Philosophers and Producer-Consumer prob-
lems). But it has some drawbacks. For example, the requirement of CSP that two communicating
processes need to be explicitly named and the lack of message buffering so that communicating
processes always block. The latter shortcoming can however often be solved by the programmer.
Of special importance for the design of hard real-time systems is that CSP offers no temporal
provisions that allow timing constraints to be specified. Extensions to CSP have been proposed in
the form of Timed CSP [51], but it is unlikely that these extensions will be incorporated into future
designs of the transputer.

Concurrency

The transputer includes hardware multitasking support for the execution of multiple concurrent
tasks on one processor. Multitasking allows a process to execute when others on the same processor
are idle. This allows a processor to be used more efficiently when, for example, a process is waiting
for a delayed event to take place. The maximum number of concurrent processes on one transputer
is bounded only by available memory.

The transputer’s scheduler grants time slices of approximately 1 ms to all active processes in a
round-robin fashion. Context switches occur in less than 1 us. When a task eventually terminates
it is removed from the list of processes. At any time, new tasks may be created and added to this
list.

Process communication

The transputer essentially has two instructions that allow processes to communicate: in and out.
Both take three arguments: the memory address to communicate at, the address of a message
buffer and the message length. There are four “special” memory addresses that allow processes

22 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

to send messages over one of the external communication links to processes on other transputers
and, likewise, four addresses that can be used to receive messages from the external links. The
external communication links are DMA driven so that the transputer can continue the execution
of concurrent processes while communication takes place.

The one-way path from one process to another is commonly referred to as a channel. Any
location in memory can function as a channel thereby allowing a process to communicate with a
process running concurrently on the same transputer in exactly the same way as with a process
running in parallel on another. This allows programs consisting of multiple processes to execute
on one processor in the same way as when these processes are distributed over multiple processors
(see Figure 4.2).

o i
\ .

Figure 4.2: On the left: three processes running concurrently on the same processor. On the right:

the same processes running in parallel, each on a separate processor.

Parallel processing

Concurrency is the lowest level of parallelism that is offered by the transputer. Using the trans-
puter’s high speed links, multiple processors may be coupled together allowing the execution of
parallel message passing subprocesses.

Once a suitable decomposition for an algorithm is found, the disjoint subprocesses must be
mapped onto the target architecture. In a dedicated system, the configuration of the network that
connects all processors together (the network topology) may directly reflect the logical intercon-
nections that result from the chosen decomposition (this was already suggested in Figure 4.2). In
general purpose systems or in situations where no direct mapping of processes to processors is pos-
sible, a more general topology is often used (see Figure 4.3). A consequence of the use of a general
topology is that routing techniques must be applied to relay messages between logically connected
processes over the physical network.

4.3 The occam programming language

Most high level programming languages are available for the transputer, including C, Fortran and
Pascal. To gain most benefit from the transputer’s architecture however, the language of choice is
known as occam [38]. The basic principle behind this language is to avoid unnecessary duplication of
mechanisms to write programs. It thanks its name to William of Occam, a 14th century philosopher
who proposed that new entities should not be duplicated beyond necessity®, a proposition that later

3 Entia non sunt multiplicanda praeter necessitatem.

4.3. THE occAM PROGRAMMING LANGUAGE 23

Figure 4.3: Examples of network topologies. From left to right: ring, grid and torus.

became known as “Occam’s razor”.

The simplicity of the language makes occam useful in the specification and verification of pro-
cesses that must be free of deadlocks, livelocks and starvation. The language can even be used for
the description of processes that later need to be implemented in hardware [45]. Indeed, the design
and implementation of the transputer has gone hand in hand with the development of the occam
language and thus the transputer can be seen as an occam machine (occam has for this reason often
been called “the assembly language of the transputer” although the actual assembly language of
the transputer is quite different from occam). Unfortunately, the development environments that
have been available for occam rarely enforce the strict adherence to paradigms that are required
for the development of applications that can be proven to be correct. One exception is the occam
Design Tool (ODT) by the University of Kent at Canterbury which, when used properly, “guaran-
tees freedom from race-hazards and aliasing problems” [6, 7]. Unfortunately, ODT still lacks some
important features that prevent it from being used in the design of serious applications.

The language occam 1 was a direct derivation from Tony Hoare’s CSP and David May’s Ez-
perimental Programming Language (EPL). This prototype language was extended with floating
point numbers, functions and a data typing system to form occam 2 (this language was used in
the design of all programs in CACE-1I). In 1992 INMOS released yet another version (occam 3, of
course) that introduced structured datatypes, remote call channels, shared communication chan-
nels and modules into the language [4]. From this point on, each mention of occam refers to occam 2.

Without going into too much detail, the following two subsections provide a global overview of
occam’s syntactic and semantic characteristics. For a detailed description, see [38].

4.3.1 Occam’s syntax

Processes

All occam programs are built from processes. From the lowest level to the highest, processes can
either be:

1. actions — an assignment, an input, an output, SKIP or STOP, for example:

x :=1 -- assignment
from.process.a 7 result —-- input over channel
to.process.b ! x -- output over channel
SKIP -- do nothing and terminate

STOP -- do nothing and never terminate

24

CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

2. constructions — sequences, parallels, alternations, conditionals, selections or loops of actions,

for example:

-- do the following in sequence

SEQ
x :=1
from.process.a 7 result
to.process.b ! x

-- first; assignment
-- second; input over channel
-- third; output over channel

-- do the following in parallel

PAR
x := 100
from.process.a 7 result
to.process.b ! 10

-- do one of the following
ALT
from.process.a 7 result
from.process.b 7 result

—-—- conditional: do one or more

IF
x < 10
value := 1
x > 10
to.process.b ! 10
TRUE

STOP

—— selection: do one of the
CASE letter

)a)’)e7’ 7i)’ 107’ 7u)
vowel := TRUE
ELSE
SKIP
-— loop
WHILE x < 10

from.process.a ? x

assignment, and
input over channel, and
output over channel

input from process A, or
input from process B

of the following

if this is true

do this assignment
if this is true

do this channel output
otherwise

stop execution

following

—-- if one of these is true
-- do this assignment
-- otherwise

do nothing

-- while this is true

do this channel input

3. instances — a new process built from constructions, for example:

PROC decrement (INT x)

x :=x -1

-- definition of name and argument(s)
-- body of the instance
-- a colon ends an instance declaration

Occam processes running concurrently on the same processor may have different priorities. Lower
priority processes execute when all higher priority processes are idle. Prioritized processes are
spawned using the special keyword PRI with the keyword PAR or ALT, for example:

4.3. THE occAM PROGRAMMING LANGUAGE 25

PRI PAR
process.AQ) -- highest priority process
process.B()
process.C() -- lowest priority process

Unfortunately, the implementation of occam for the transputer limits the number of processes within
a PRI PAR or PRI ALT construct to only two, thus allowing only high and low priority processes.

Layout rules

Indentation in occam programs is important. All processes that are to be part of the same con-
struction must be indented two spaces with respect to the construction keyword. The following
examples for instance, are radically different:

1: BSEQ 1: BSEQ
2: x :=3 2: x :=3
3: PAR 3: PAR
4: x := 10 4: x := 10
5: y := 2 5: y =2
! 6: to.process.b ! x + y ! 6: to.process.b ! x + y

The main difference here is that in the code on the left there are three sequences and two parallels
while in the code on the right there are two sequences and three parallels. There’s more to this
example than just that, as will be shown in the discussion on Parallel disjointness in Section 4.3.2.

Replication

At first glance it might seem there’s a construction “missing” from the language that is equivalent
to the for loop so familiar from other languages. In occam an even more powerful mechanism is
available known as “replication”. The SEQ, PAR, ALT and IF constructions may be replicated using
the following syntax:

construct name = base FOR count
construct = SEQ | PAR | ALT | IF

For example, the construction SEQ i = 0 FOR 10 is equivalent to our familiar sequential for loop,
but using this construction it is now also possible to do things like this:

-— start 3 worker processes
PAR i = 0 FOR 3
worker (i)

In occam this is effectively the same as:

-- start 3 worker processes
PAR

worker (0)

worker (1)

worker(2)

26 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

The replicated construct allows a programmer to start a specified number of parallel processes in
just two lines. Similarly, the following example on the left uses a replicated alternative to monitor
the input from a number of processes and serve whichever process is ready to transmit a value.
The example on the right uses a replicated conditional to compare two strings:

ALT i = 0 FOR 10 IF i = 0 FOR length
from.process[i] ? value stringl[i] <> string2[i]
to.process[i] ! 2 * value equal := FALSE
Data types

Occam programs act on variables and channels. A variable may be assigned a value through an
assignment or a channel input. Channels communicate values. The primitive data types available
in occam and their representation are shown in Table 4.2.

data type ‘ values ‘

BOOL TRUE or FALSE

BYTE 8 bit unsigned integer value from 0 to 255

INT implementation specific, most efficient twos complement signed integer
INT16 16 bit twos complement signed integer

INT32 32 bit twos complement signed integer

INT64 64 bit twos complement signed integer

REAL32 ANSI/IEEE 754-1985 floating-point number with 8 bit exponent,
23 bit fraction, and 1 sign bit

REAL64 ANSI/IEEE 754-1985 floating-point number with 11 bit exponent,
52 bit fraction, and 1 sign bit

Table 4.2: Primitive data types in occam.

Communication channels are declared using the keyword CHAN OF followed by a protocol. A
protocol may be a primitive type or the name of a protocol definition defined using the keyword
PROTOCOL:

-- simple protocol channel
CHAN OF BYTE terminal :

—-- sequential protocol definition and channel declaration
PROTOCOL COMPLEX IS REAL64; REAL64 :
CHAN OF COMPLEX c :

—-- variant protocol definition and channel declaration
PROTOCOL EVENT
CASE
error; BYTE
start; INT16; BOOL
record; INT::[]IBYTE
halt

4.3. THE occAM PROGRAMMING LANGUAGE 27

CHAN OF EVENT e :

A special form of communication channel are the timers. Timers behave as channels except
that they have 3 important differences over process communication channels:

1. timers only provide output (i.e. they can not be set to a value),
2. timers may be accessed by any number of concurrent processes, and
3. timers are always ready to communicate.

The rate at which a timer is incremented is implementation dependent. Using occam on a trans-
puter, two types of timers available; one with a period of 64 us (available only to low priority
processes) and one with a period of 1 ps (available only to high priority processes). Timers are
declared via the special keyword TIMER:

PRI PAR
-- high priority process:
TIMER clock : -— 1 us resolution timer
INT now :
SEQ
clock ? now -- get current timer value
clock 7 AFTER now PLUS 1000000 -- wait one second

-- low priority process:

TIMER clock : —-— 64 us resolution timer
INT now :
SEQ
clock 7 now -- get current timer value
clock 7 AFTER now PLUS 15625 -- wait one second

The only non-primitive types in occam are arrays. Arrays are formed from the primitive data
types and may have any number of dimensions:

[4]INT vector : -- a four component array of integers
[64] [64] [64]INT16 cacedata : -- CACE data can be represented this way
[n]CHAN OF INT sensors : -- n channels of type integer

[4]TIMER clock : —-- four timers

4.3.2 0Occam’s semantics
Parallel disjointness

Please recall the boxed occam code examples on page 25 in which I discussed the significance of
indentation in an occam program.

There is nothing wrong with the code on the left; x and y are assigned literal values in parallel
in line 4 and 5, the sum of which is output to process B in line 6. In the code on the right however,
the variable x is assigned while its value is used in an output to process B in parallell To put this
in other words, the variable x is shared between two processes thereby creating a dependency. As

28 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

the order of execution of processes in a PAR construct is undefined, this code will be rejected by
an occam compiler. If this were not the case, process B could receive the value 3 + 2 = 5or 10 +
2 = 12, we really can’t say. The general rule in occam is that parallel processes must be disjoint,
meaning they may not share resources by which they can influence each other’s execution other
than through synchronization via communication channels.

An array may be used in more than one parallel process if and only if the indices used to select
the items of the array can be determined at compile time. The compiler determines whether the
accesses to the array are non-overlapping (i.e. disjoint). Occam allows an array to be decomposed
into non-overlapping, disjoint parts using abbreviations:

[1000]INT array :
lower IS [array FROM O FOR 500]
upper IS [array FROM 500 FOR 500]
PAR
process.A(lower)
process.B(upper)

Note the fundamental implication parallel disjointness has on an occam programs: all commu-
nication between processes must take place through channel communication (i.e. message passing).
Occam does not directly allow processes to communicate via shared memory.

IF and CASE must be closed

Now please recall the boxed occam code on page 26 which gives an example of a replicated IF
statement on the right.

Assuming that the variable equal was assigned the value TRUE before we entered the code in this
example, what happens when, say, string1[4] equals string2[4]7 Indeed, there is no expression
in the conditional that states what to do in this situation, only what to do when string1[4] not
equals string2[4]. Conventional languages like C, Pascal and Fortran would simply do nothing so
that the variable equal would just remain unchanged so that at the end of execution this variable
would reflect whether the two strings are equal or not.

In occam however, the conditional (and also the selection) must be closed which means that if
all expressions in the conditional evaluate to FALSE, the process will behave as the primitive process
STOP: further execution of the process will cease. It is therefore convenient to add an expression
that is guaranteed to be performed. The previous example would in this case look like this:

IF
IF i = 0 FOR length
string1[i] <> string2[i]
equal := FALSE
TRUE
equal := TRUE

This “feature” of occam forces a programmer to asses all possible situations that may occur
while writing a conditional or selection statement. While this can aid in the construction of better,
perhaps even correct programs, it is very easily forgotten.

The behaviour of a program (which may consist of more than one process) as a whole when one
of its processes behaves as the primitive process STOP is specified at compile time. See Section 4.4.2
for more details.

4.4. EMBEDDED SYSTEM DESIGN USING TRANSPUTERS AND 0CCAM 29

4.4 Embedded system design using transputers and occam

The new requirements for the CACE-11 computational architecture and programming language were
addressed in Section 3.3.1. In the following subsections, the adherence of the transputer and the
occam programming language to these requirements is assessed.

4.4.1 The transputer

The transputer forms a good building block for the construction of an embedded parallel archi-
tecture. As shown in Section 4.2, the on-board math unit and the powerful RISC processor allow
the transputer to be used as a high performance stand-alone processor. In addition, the multi-
tasking support in hardware and the high speed communication links allow an easy expression of
concurrency and parallelism.

A suitable candidate for integration into the CACE system was found in the Parsytec BBK-
v2 [13]. The Parsytec BBK-V2 is a VME module containing a 20 MHz T805 transputer with 2
megabytes of dual-ported (DP) dynamic RAM. In CACE-1I the DMA interface can be configured in
such a manner that it addresses a 512 kilobyte memory area on the BBK-v2. The use of dual-ported
memory on the BBK-V2 transputer module allows the DMA interface to access memory locations
without interfering with accesses that are performed by processes running on the main transputer
in its remaining memory. The BBK-V2 is also capable of performing VMEbus arbitration.

Additional transputers were added using the Parsytec vMTM [43]. This VME module contains
four 20 MHz T805 transputers, each with 1 megabyte of private dynamic RAM. The network
configuration between the four transputers can be software configured using an on-board crossbar
switch (an IMS C004). The BBK-V2 and the VMTM can be coupled using RS-422 buffered interfaces
on the front panel of each module.

4.4.2 QOccam

Section 4.3 provided an overview on the syntax and semantics of the occam programming language.
In the following, these properties are compared to the requirements that have been put down in
Section 3.3.1.

Multitasking support and scalable multiprocessor support

The transputer’s unique hardware multitasking support allows multiple processes to be executed on
the same processor very efficiently and without any additional support by an operating system. In
addition, the communication links provided by the transputer allow parallel systems to be built on
which processes can execute in parallel, communicating with each other through message passing.
Occam provides direct support both for expressing concurrency as well as message passing.

Structured Design

The concept that everything in occam is a process makes an Object Oriented Design (OOD) of a
program follow quite automatically. Using a top-down design, a program is split up into several
logical independent subprocess (which may be considered objects) that communicate with each
other via channels. This type of abstraction allows an embedded system to be decomposed into
disjoint objects, each consisting of input channels to which events can be sent to activate an object,
after which the object sends the response over an output channel. These event-driven objects can
be implemented relatively easy and allow the construction of efficient and manageable systems [49].

30 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

A disadvantage of occam over most high level programming languages is that occam does not
support structured data types. Structured types are composed of elements that are each of different
type and help in the natural abstraction from the information that needs to be represented [54].
Although data structures can always be rewritten into occam$ simple data types and arrays, this
has a negative impact on the readability of a program.

Maintainability

The abstraction of a program into independent subprocesses in occam results in a reduction in
complexity that makes it easier to understand and maintain a program. On the other hand, the
strict layout rules of occam impose an often frustrating restriction on a programmer’s freedom to
create an easily readable program. A ruler is an indispensable tool in reading a large occam program
in order to figure out what construct a specific statement is part of.

Error checking

The purpose of type checking is to prevent errors [54]. Type checking systems enforce that opera-
tions on data items properly adhere to the defined types of those items. Type errors occur when a
function is applied to a data item of incompatible type. In occam, type checking is performed both
statically (at compile-time) and dynamically (at run-time).

Statically determined type errors are signaled by the compiler when an operator is applied
to data items of incompatible types (such as adding a floating point value to an integer value).
Operands may explicitly have their data type converted. Run-time errors occur when the result of
a process does not “fit” the destination variable (so called range errors). A process that generates
a run-time error behaves as the primitive process STOP.

Fault handling

An occam process that causes a run-time error is mapped to the primitive process STOP. Run-time
errors in occam are handled in one of three ways (specified at compile time) [30, page 50]:

e HALT mode — In this mode, all run-time errors bring the whole system to a halt. This prevents
an errant process in the system to corrupt any other part of the system.

e STOP mode — In this mode, only errant processes are mapped to the primitive process STOP
again ensuring that no errant process in the system can corrupt any other part of the system.
As the remaining processes are still allowed to continue, the system can detect that another
process has failed (e.g. via watchdog processes) thus allowing gracefully degrading systems to
be constructed.

e UNIVERSAL mode — In this mode, processes may behave as either HALT or STOP mode depend-
ing on the transputer’s Halt-On-Error flag. When a library compiled in UNIVERSAL mode is
linked with modules in HALT mode, the processes in the library behave as if compiled in HALT
mode. Mutatis mutandis for STOP mode.

Low-level device access

Occam provides access to memory mapped hardware devices by placing variables over locations in
memory. In addition, occam allows these placed variables to be specially typed as if they were
channels, allowing processes to access devices in a way similar to communicating over channels:

4.4. EMBEDDED SYSTEM DESIGN USING TRANSPUTERS AND 0CCAM 31

INT16 control.register, value :
PORT OF INT16 command.register :

PLACE control.register AT #FFE00100 : -- map INT16 onto memory address
PLACE command.register AT #FFE00102 : -- map PORT onto memory address
SEQ
control.register := #0000 (INT16) ~-- reset interface (memory mapped)
command.register ! #1234 (INT16) -- initialize (port mapped)
command.register 7 value -- read result (port mapped)

The explicit definition of data types with a defined number of bits helps in the construction of
programs that need to access memory mapped hardware devices, which in most circumstances must
be accessed using specific data widths. With many other languages, such as C [36], the width of
data types is not explicitly defined by the language, but depends on the compiler implementation.
This makes it hard to write hardware accessing programs that are portable over different compilers.

Interrupt handling

The interrupt handling mechanism in the transputer is slightly different from that seen on other
processors. The transputer’s event channel merely signals the occurrence of an event by unblocking
an event handler process that attempts to read from it:

CHAN OF BYTE event :

PLACE event AT 8 : -- map to transputer event channel
BYTE dummy :
WHILE TRUE -- repeat ’till doomsday
SEQ
event 7 dummy -- wait for event to happen
handle.event () -- recognize and handle it

The event handler is assumed to be able to recognize the origin of the event from the hardware
resources available elsewhere in the system and handle the event. Fortunately, the BBK-v2 module
provides ample support to achieve this.

The event handler should be a high priority process to ensure that events are quickly serviced
once they occur.

Efficiency

As already stated in Section 4.3, the transputer can be considered an occam machine. The use of
occam on the transputer provides the equivalent efficiency to programming a conventional computer
in assembly language [38].

Portability

Although the occam language is not restricted to execution on a transputer, very few compilers are
available for the compilation of occam programs to other platforms. Until this date, the following
portable occam compilers are now available:

e Southampton’s Portable Occam Compiler (SPOC) translates occam source into ANSI C and
then uses the native C compilers to generate the target code [12]. This approach allows a

32 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

portable occam compilation system to be produced and allows back-end optimization to be
performed by the C compiler in a manner optimized to the target processor. The implemen-
tation of an occam-to-C translator is not a trivial task since occam supports many features
that have no direct equivalent in C. Preliminary performance results have shown that the
level of efficiency that can be achieved is reasonable. In fact, on some processors the results
exceeded those of the T800 transputer, but it should be noted that these processors were not
of comparable performance (translated code running on a 40 MHz SuperSparc was compared
to the original occam code running on a 25 MHz T800 and showed an increase in performance
of approximately 30%).

e The occam For All project is an effort by industrial end-users, technology suppliers and
academic researchers to provide occam compilers for all major computing platforms [47]. This
project was funded by the UK Engineering and Physical Sciences Research Council (EPSRC)
as part of its Portable Software Tools for Parallel Architectures (PSTPA) programme. The
formal duration of this project was from February 1st, 1995 to May 31st, 1997, but work is
said to continue.

The Kent Retargetable Occam Compiler (KROC) is a development of the occam For All
project, now providing a portable occam compiler for Sparc (with SunOS 4.1.3 or Solaris 2.5)
and Alpha (with OSF/1 3.0) processors 4.

4.5 Conclusions

In this chapter the basic building blocks for the CACE-11 embedded architecture have been pre-
sented. It has been shown that the transputer and the occam programming language fulfill most
of the requirements that have been discussed in Section 3.3.1. In Chapter 5 the CACE-11 embedded
architecture and the software that has been implemented will be presented.

During the development of the CACE-II system, lots of experience was obtained that shed addi-
tional light on both the transputer and occam. The following subsection address some of the most
important problems that have been encountered during that time.

4.5.1 No dynamic memory allocation

One particular problem that is very hard to escape from in occam is the lack of a dynamic memory
allocation mechanism. This omission from the language was deliberate as dynamic memory alloca-
tion makes formal reasoning about programs difficult. All memory in occam programs is statically
declared at compile time so that a program’s memory usage is known at runtime. For more serious
applications this shortcoming results in tedious efforts by most programmers to either implement
dynamic memory allocation primitives themselves, or otherwise use static memory structures that
are big enough for most cases, thereby wasting memory.

No recursion

A consequence of the lack of a dynamic memory allocation mechanism is that occam does not allow
recursion. Recursive procedure calls require stacks to maintain the data structure for each called
level which can not be deduced at compile time. The difficulty with recursion is computing the
stack size required. This is not possible in the general case (similarly, it is not possible, in general,

“Version 0.9 Beta, released into the public domain on March 31, 1997.

4.5. CONCLUSIONS 33

to confirm that programs containing WHILE loops will ever terminate). Therefore occam does not
allow recursion. The implementations of the C language for the transputer offer the potential for
recursion, but requires the programmer to manually specify the size of the stack for every process,
and allow a safety margin.

There exist mappings for all real recursive programs such that the recursion is replaced by
iteration. It then falls to the programmer to provide an array for the data structures which, in the
recursive version, would be provided by the compiler using the stack.

4.5.2 No non-blocked communication

Timers allow occam programmers to implement semi non-blocked channel input when no data from
channels is available. Using the ALT construct it is possible to let a channel input instruction
time-out after a specified interval, as illustrated in the following example:

CHAN OF INT input
TIMER clock :
INT value, now :
VAL timeout IS 1 : —- 64 us for standard priority processes
SEQ

clock 7 now

ALT

input 7 value
do.something.with(value)

clock ? AFTER now PLUS timeout
SKIP

This construction is especially useful in situations where processes only need to revert their
execution when input is available from other processes. Unfortunately, it not possible in occam to
implement non-blocked channel output. This is due to the way that communication is handled by
occam and the transputer: once a process offers to output data, this offer can not be withdrawn

[33].

4.5.3 Process scheduling on the transputer

In the case of low priority processes, it is important to realize that (in contrast to common belief)
the transputer’s process scheduler is not a true pre-emptive scheduler in the sense that a process
can be suspended at an arbitrary instant, without warning [61]. Low priority processes are pre-
empted only when a process is idle. A process is idle when it has suspended itself (by executing a
SKIP instruction) or when it initiates synchronization (i.e. channel communication) with another
process that is not ready to synchronize. This is especially important to consider in the design of
hard real-time systems where it is essential that running processes can be descheduled in favour of
processes that have to meet a deadline.

4.5.4 Multidimensional arrays

Most programming languages provide multidimensional arrays as a method to clearly express the
structure of multiparameter homogeneous datasets. A disadvantage with these arrays however,
is that some run time overhead can not be avoided each time an item in the array is referenced.

34 CHAPTER 4. BUILDING BLOCKS OF THE EMBEDDED ARCHITECTURE

The compiler needs to insert program code to translate the array indices into a memory position
relative to the start of the array. The amount of time that is required to evaluate these expressions
depends on the number of dimensions in the array. Especially in cases where the entire array must
be traversed (which is typical for many processes in the CACE-1I system), the total overhead caused
by this may substantially accumulate.

1e+06 T T T T T T T T T

100000

10000

1000 |

100 2D array access —+—-
2D linear access ---x---
3D array access ---*---
3D linear access &

4D array access —-m--
4D linear access --&- -

full traversal time (microseconds)

10 |

l 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024
number of items in each dimension

Figure 4.4: Traversal time required to access different sized multidimensional arrays using either
multidimensional array indexing or linear access in occam. Note the logarithmic scale on both axes.

Figure 4.4 shows the effect of this overhead in occam for 2, 3 and 4 dimensional arrays of various
sizes. As can been seen in this figure, the overhead is quite substantial, in some cases even well
over twice the time required to linearly access the same array. Part of the occam programs that
were used to measure this difference is shown here for a three-dimensional array; on the left array
indexing is used, on the right linear access:

[N] [N] [N]INT array : [N] [N] [N]INT array :
SEQ i=0 FOR N [JINT linear RETYPES array :
SEQ j=0 FOR N SEQ i=0 FOR (SIZE linear)
SEQ k=0 FOR N linear[i] := 0
array[i]l [j1[k] := 0

The main cause for the difference in access times is the limited set of registers that are available
in the transputer. The array indexes need to be calculated into an address using the transputer’s
stack evaluation based instruction set. As the number of dimensions in an array increases, more
indexes need to be pushed and pulled from the register stack which accounts for most of the time
in a single access to an array item. This overhead is significantly reduced in a linear array.

Wherever possible, linear array accesses were used in CACE-II processes. However, this did have
a very negative influence on the readability of the programs.

4.5. CONCLUSIONS 35

4.5.5 ALT implementation on transputer is unfair

The semantics of the ALT instruction permit that any of the alternatives is chosen as the path
of subsequental execution, provided the alternative is ready. Unfortunately, if all alternatives in
the ALT construct are ready all the time, the transputer implementation guarantees that the first
alternative is executed. This makes a fair scheduling of processes using the ALT construct difficult

[5, 34].

Chapter 5

The CACE-I1I embedded architecture
and implementation

In the previous chapters, the requirements and building blocks for the new CACE-II system were
discussed. This chapter describes the new architecture and the software that has been implemented
on the CACE-II system for the on-line analysis of data obtained during a separation experiment.

5.1 The CACE-II architecture

Figure 5.1 shows a schematical representation of the CACE-11 embedded architecture. A comparison
of this figure with Figure 3.1 shows that the 68000 CPU and the dynamic RAM modules have been
substituted for the BBK-v2 and VMTM modules. The graphics interface and the network board
have been removed. The DMA interface and the FCM equipment are unchanged.

The interface from the embedded system to the outside world consists of an Apple Macintosh
IT computer which has a TPM-MAC transputer card inserted into one of its slots [64]. The TPM-
MAC card contains a 17.5 MHz T805 transputer with 1 megabyte of dynamic RAM. This card
is connected to the embedded system via the transputer’s communication links. The Macintosh
functions as a gateway to an Ethernet network ! so that the CACE-II system can be accessed from
workstations located anywhere on the network.

A TSVME-440 motor controller and a sampler module were added for the autofocus subsystem,
which is described in Chapter 6.

5.2 A parallel convolution filter

Apart from the instrumental noise that is known to be present in the analog signals from the
scatter detectors and amplifiers, quantizing the analog data during the conversion by an analog-to-
digital converter also adds stochastic noise to the acquired data that needs to be removed before
any subpopulations can be identified. This additive noise signal can be regarded as composed
of frequency components with no preference to any special frequency (i.e. white noise), while the
signals generated by the light scattering cells are basically low frequency. The frequency content
of the N-channel histogram function (represented by f(z)) can be studied by means of spectral

!With thanks to Jos Vermeulen of NIKHEF who graciously provided the adapted software for this.

37

38 CHAPTER 5. THE CACE-II EMBEDDED ARCHITECTURE AND IMPLEMENTATION

cell mxture

Spectra Physics
HeNe, 632.8nm 20mW

Mot or FS ADC
interface controller &
aut of ocus
2 W tor
Dual Port ed 4:} ﬂ not o
RAM buffers
| DVA | BBK- V2 | VMM |TSVNE440 sanpl er
| VMEbus |
E ~["]> : Innps T805 transputer
— < FS: EG&G Reticon HUV-1100BQ
— SS: Hamanmat su R1635 photonul tiplier
TPM Mac host BS: SD225-23-21-040 Quadrant Silicon

Figure 5.1: Schematic representation of the CACE-II architecture.

decomposition. This is accomplished by calculating the Fourier transform F(w) from f(z):

N-1
F(w) = Z f(z)exp (—imzw).
=0

Here F'(w) is a complex number; the normalized frequency 0 < w <1 is defined by w = fT where
T is the interval between the N datapoints; and 0 < f < 2.

The frequency content of the acquired histogram f(z) can be described by a signal function
s(z) containing low frequency components which form the response from the relevant information
function, and a noise function n(z):

f(z) = s(z) + n(z).

The frequency content of the data is extremely regular [58]; N(w), the Fourier transform of n(z),
will be mostly constant while S(w), the Fourier transform of s(z), will be a decreasing function.
From this spectrum, a cut-off frequency w. can be deduced from which a low-pass filter function
h(z) can be constructed that removes the noise and guarantees consistency of the data contents.
Convolution of the histogram function f(z) with a function h(z) is represented by

s(z) = (s(z) + n(z)) * h(z)

where * represents the convolution operator. Convolving two signals in the time domain results in
a Fourier transform that is the multiplication of the Fourier transform of the two original signals.
Fourier transformation results in

S(w) = (S(w) + N(w)) - H(w).

5.2. A PARALLEL CONVOLUTION FILTER 39

For the construction of the filter function h(z), the kernel of a very simple Lancsoz window is
used to facilitate the implementation. The application of such a kernel is necessary to reduce the
“ringing” effect that would be present otherwise, i.e. if a rectangular filter function was used.

5.2.1 Basic function requirements

The parallel filter performs a three-dimensional Fast Fourier Transform (FFT) on the raw data
acquired by the DMA interface. The transformations to the Fourier domain can be done without
restrictions to the dependency of the data [58]. After transforming the data, the filter function in
the Fourier domain is executed. This function multiplies the first Nc + 1 and last N¢ (where Nc¢
is the cut-off channel, determined from w.) elements of an array by the filter function and sets the
other elements to zero. After the inverse Fourier transformation in all dimensions, the convolution
is completed. For these operations, the following Fourier transformation primitives are required:

o rFFT - a real-to-complex FFT, used for the transformation in the first dimension;

e FFT - a complex-to-complex FFT, used for the following transformations;

e iFFT - a complex-to-complex inverse FFT, used for the inverse transformations;

e HiFFT - a complex-to-real Hermitian inverse FFT, used for the last inverse transformation
(see section 5.2.3).

5.2.2 Problem decomposition

The parallel digital filter is built on the single program multiple data (SPMD) paradigm, meaning
that the same program is spread over the available processors, each working on a different portion
of the input data. This method of decomposition is commonly referred to as data decomposition:
the input data is split into equally sized sections that are spread out over the available processors
(see Figure 5.2). If the N planes can not be evenly divided over all processors, the remaining planes
are each divided over the first N mod P processors.

|ast processor

64 planes

second processor

first processor

Figure 5.2: Data decomposition used in the parallel digital filter.

A slight exception to the SPMD model must be made for the first processor in the network that
executes the root process; apart from performing filter operations, the root process is also concerned
with “scattering” the raw input data acquired by the DMA data acquisition module over the worker

40 CHAPTER 5. THE CACE-I11 EMBEDDED ARCHITECTURE AND IMPLEMENTATION

processes. The root process reads this raw data and spreads it over all available processes, including
itself. When the filter processes are ready, the root process “gathers” the results back. Furthermore,
as communication with the other processors occurs via the CSP model, the root process essentially
synchronizes the rest of the network. The worker processes only perform filter operations.

5.2.3 Description of the filter process

An overview of the execution structure of the filter process is shown in Figure 5.3. This structure
is explained in some more detail below. The numbers below refer to those in Figure 5.3.

. initialize tables of complex e-powers
. scatter raw data over all processes
. transform and filter in x direction

transform and filter in y direction

1

2

3

4

5. forward reorder
6 transform and filter in z direction
7 inverse transform in z direction

8 backward reorder

9. inverse transform in y direction

10. inverse transform in x direction

11. gather the filtered data and store

12. (repeat from step 2)

Figure 5.3: Global execution structure of the filter process.

1. The tables of complex e-powers which are required for the Fourier transform primitives are
pre-calculated at process startup. Computing these tables at this point greatly reduces the
number of calculations that need to be executed when the filter process is executed repeatedly
as now they only need to be performed once.

2. The root process starts the filter process by first distributing the data as blocks over the
available transputers. Depending on the number of transputers available, a number of two-
parameter planes will be passed to each of the workers on each of the transputers (as explained
in Section 5.2.2).

The raw input data for the parallel filter is built up out of 16 bit integers. As the Fourier
transform primitives operate on real data, all processes first convert their data to real num-
bers right after they have received their data from the root process. Looking at the structure
of the input data as a box of N X N x N items, it would seem logical to store this data into a
three-dimensional array. However, since occam is notoriously inefficient at accessing multidi-
mensional data arrays, the data is linearized into a one dimensional array. All administrative
work on accessing this array is performed in the filter processes.

3. In each process, a real-to-complex rFFT procedure transforms the data in x direction. We
are concerned with a low-pass filter, so the (high) noise frequencies to be removed are easily

5.2. A PARALLEL CONVOLUTION FILTER 41

located in the transformed arrays (they reside in the middle of the array). Therefore, this
part of the data can be skipped in the following steps of the transformation (see Figure 5.4).

Nc N 2 N-1
0

I Filtered in x-direction
[Resettozero

Figure 5.4: A single data plane after x-transformation. By filtering directly after the first transformation,
the non-shaded area does not have to be transformed in the proceeding steps. In the next step, only the
shaded area has to be transformed.

Also, the input data of the filter consists of real numbers, i.e. the imaginary part is zero. As a
consequence, the transformed data is now Hermitian. This implies that half of the data can
be skipped in all further operations due to the symmetry in the data (see Figure 5.5) [9].

4. For the y-transformation, each column of each data plane is copied and rotated into a buffer.
For each column this buffer thus contains each of the N¢ consecutive columns but only those
that have not been set to zero by the previous filter phase. After each column is copied into
this buffer, the transformation in the y direction is performed by a complex-to-complex FFT
procedure. Right after that, all elements between the cut-off frequencies are set to zero (both
for the real and the imaginary part) whereafter the line is restored back into the original
arrays.

After the x and y transformations, each data plane looks like Figure 5.5.

Nc N 2 N-1
0

Nc

N-Nc

N-1

I Filtered in both x- and y-direction
I Filtered in x-direction
[7 Resettozero

Figure 5.5: The data plane after x and y transformations. By skipping the right half of the data after the
first transformation, the second transformation has to be performed through the whole shaded box and the
third transformation only through the black shaded boxes.

42 CHAPTER 5. THE CACE-I11 EMBEDDED ARCHITECTURE AND IMPLEMENTATION

5. Before the transformation and filtering in the z direction can take place, a reordering must
take place as some of the data required for this transformation resides on the other processes.
This concerns the black shaded boxes in Figure 5.5: each process contains part of this data
but requires it all before z transformation can be performed. To achieve this, all processes
send the black box to their right neighbours while receiving and storing the data coming in
from the left. This is repeated for as many times as there are processors, after which all
processes have all data to perform the z transformation.

6. Once the transformations in all three dimensions are performed and the data is filtered in all
three dimensions, the data needs to be transformed back to the spatial domain in reverse order
as the transformations took place. First, the data is inverse-transformed in the z direction by
a complex-to-complex iFFT procedure.

8. Before the inverse transformations in the y and x direction can take place, the data has to
reordered again so that each process contains its respective data plane again as before for-
ward reordering. This backward reordering is essentially the inverse operation of the forward
reordering mentioned previously.

9. After reordering, another complex-to-complex iFFT procedure inverse-transforms the data in
the y direction.

10. A Hermitian complex-to-real iHFFT procedure inverse-transforms the data in the x direction
and completes the basic filter operations.

11. Recall that the input data was converted from a 16 bit integer array to a linear array of real
numbers. It is necessary to convert the resulting filtered data back into this format so that
it can be processed by other processes in the data analysis pipeline. All worker processes
convert their part of the data right before they send it off to the root process. The root
process collects all data from the worker processes and stores it in the correct order.

12. In circumstances where the filter process is used in a digital analysis pipeline or in a running
separation experiment where the DMA interface continuously acquires new data, the filter
process is restarted.

5.2.4 Results

Figure 5.6 shows a parametric representation of a single plane extracted from a three-dimensional
dataset which was acquired with the CACE-1I system. The noise is clearly visible in this picture
and it is hard to discern how many normal distributions are present in this plane. Figure 5.7 shows
the same plane after the dataset has been filtered. Most of the noise is gone and it is clear to see
that there are two overlapping normal distributions in this plane. Figure 5.8 shows the result of
the parallel filter when the dataset shown in Figure 3.2 is used as input.

Performance of the parallel filter

Figures 5.9 and 5.10 respectively illustrate the execution time and speedup of the parallel filter
process. This timing was performed on a Meiko CS-1 system containing 64 T800 transputers. As
the operations in the filter process are not data content dependent, execution time shows a decrease
as the number of processors employed increases.

5.3. SUBPOPULATION DETECTION 43

63 63 S5

Figure 5.8: Filtered dataset of Figure 3.2. All (FS,SS,BS) points with contents > 2 are shown.

The “staircase” patterns in these figures show the influence of the domain decomposition strat-
egy used in the filter process: As the occam programming language used for the implementation
of this process adheres to the CSP model, the complete filter process is only finished when all
processes in the network have finished. In cases where the number of data planes can not be evenly
divided over the available processors, some processors need to work longer than others because of
the additional planes.

5.3 Subpopulation detection

Once the noise has been removed from the raw data, the different subpopulations in the acquired
data may be detected. Unfortunately, this is not a trivial task. Especially in cases where sub-
populations overlap one another because of similar light scattering characteristics in one or more
detector directions, problems arise in deciding which elements belong to one subpopulation and
which to another. An example of this can be seen in Figure 5.7 where two normal distributions

44 CHAPTER 5. THE CACE-I11 EMBEDDED ARCHITECTURE AND IMPLEMENTATION

1.8e+07 T T T T T T 70

1.6e+07 |-

1.4e+07 -

1.2e+07 |-

1e+07 q 40

speedup

8e+06 -

6e+06 -

execution time (micro-seconds)

4e+06 -

2e+06 -

0) | | | | | 7 \)) . I I
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
number of processors number of processors

Figure 5.9: Execution time of the parallel filter Figure 5.10: Speedup of the parallel filter pro-
process. cess.

overlap one another.

5.3.1 Design issues

The histogram that is created during a CACE-II experiment consists of a mixture of multivariate
normal distributions. The complete dataset can be described by:

m—1
P(qu)) = Z Q5 pz(F|¢z)7F = (:CayaZ)T € Rs’o S Z,Y,z S 63 (51)
=0

Here m is the number of distributions and «; the fraction of each population. Each distribution is
furthermore characterized by ¢; = (f;, ;) in which f; represents the vector of the mean and ¥;
represents the (co-)variance matrix.

A two phased scheme has been devised in which first rough estimates are determined as to how
many multivariate normal subpopulations reside in the data and what the approximate parameters
are that describe these populations. These parameters are then optimized using a statistical method
know as Expectation Maximization/Maximum Likelihood (EM/ML). Ultimately, these parameters
then provide detailed information about a mixture such as the number of populations in a mixture,
the total number of cells that have been detected, the number of cells in a particular subpopulation
and the relative percentage in the complete mixture. In theory, the system could even identify the
different kind of cells in each population given some prior knowledge about the mixture.

It should be noted that the EM /ML algorithm described in the next section is not able to create
new distributions. Therefore, it is of utmost importance that the cluster process at least correctly
determines the number of distributions in a dataset. Unfortunately, this has proven to be a difficult
task.

5.3.2 Cluster analysis

Cluster analysis is the process of classifying objects into subsets that have a high degree of similarity
to each other while the different subsets are relatively distinct [2, 17, 20, 32]. This definition
implies that a distance (or proximity) measure needs to be devised in order to obtain a successful

5.3. SUBPOPULATION DETECTION 45

classification of a set into different subsets. Here, a specialized algorithm is described that assumes
that each individual cell population can be described by a multivariate normal distribution [59].

For a clustering operation in three dimensions, the data produced by the parallel filter process
is divided over the available processors using exactly the same method as described for the filter
process in Section 5.2.2. Each of the clustering processes makes an estimation of the parameters
describing the populations in all two-dimensional planes by scanning each for local maxima in
both directions. Once all planes have been scanned, neighbouring cluster processes negotiate on
which distributions may be connected, and then combine their maxima to form a skeleton in all
three directions of maxima for each detected distribution. Local maxima are then eliminated (i.e.
considered not to be part of a distribution) according to the following criteria:

e each distribution that has a density less than a predefined value is discarded,
e cach distribution that has a width less than a predefined value is discarded,

e two distributions that are closer to each other than a predefined value are “merged” to one
distribution.

After this, the percentage of overlap between neighboring distributions and their relative orien-
tation is estimated. This overlap is used to determine the “purest” part of a distribution. After this,
the initial parameters for every distribution can be determined by fitting the maxima to normal
distribution functions.

Performance of the parallel cluster process

The clustering algorithm described in this section performs fairly well, although it was observed
that it is not always successful in detecting all distributions in a dataset containing randomly
generated distributions. In all these cases, the distributions that were missed had some form of
overlap with others. This is an important point to stress, as the statistical optimization algorithm
that is described shortly is only able to optimize detected distributions; it is not able to create new
distributions. Alternative algorithms have been reported in literature, but with these either the
number of distributions must be known beforehand [23, 40], or they require other preknowledge
about a mixture [60], or they also have problems with overlapping distributions [37].

The next figures illustrate the performance and speedup of the parallel cluster process. Note
however that the data shown here is for one particular dataset. As the operations in the
cluster process are clearly dependent on data content, this timing should be averaged over multiple
different (i.e. randomly generated) datasets. Time constraints have inhibited me to do this.

5.3.3 Parallel Statistical Optimization

The result of the clustering process consists of an estimation of the number of distributions, and
the parameters that describe each normal distribution in a mixture. The optimization process
optimizes these parameters by means of a mazimum likelihood (ML) technique called ezpectation
mazimization (EM).

The Expectation Maximization algorithm

The maximum likelihood technique estimates the parameters of a density function. The expectation
maximization algorithm is a special iterative procedure which can be used to numerically estimate
the ML of multivariate mixture densities while preserving statistical consistency [35].

46 CHAPTER 5. THE CACE-11 EMBEDDED ARCHITECTURE AND IMPLEMENTATION

70

5e+06

4.5e+06
60
4e+06 [
50 [
3.5e+06

3e+06 aor

speedup

2.5e+06 30

execution time (micro-seconds)

2e+06
20

1.5e+06 -

10 |
1le+06

500000 : .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
number of processors number of processors

Figure 5.11: Performance of the parallel clus- Figure 5.12: Speedup of the parallel cluster
ter process. process.

From equation 5.1, the log-likelihood function can be derived. By setting the partial derivatives
of this function to zero, the parameter values that maximize this function can be calculated by:

5 (@) =0 (5.2)

Solving equation 5.2 results in the following iteration schemes for «;, p; and Z:z

oY = o, mOT "

7 i

) (5.3)
—(r r) —(r ==(r)
m Y = f(of”, m 0D) (5.4)

w0 = f el wR) (55)

Within the iteration, the integration areas are used which were estimated by the cluster process.
However, the iteration schemes imply that the data decomposition in two-dimensional sets of planes,
as was used in the filtering and clustering process, can no longer be applied. A different strategy can
be applied to parallelize this algorithm by devoting a processor to the iteration of the parameters
for one distribution. o

However; as can be seen from equation 5.5, 3J; is dependent on 7z; from the current iteration step
instead of the previous step. This would imply that 3; can not directly be calculated in parallel to o;
and f7;. One way to solve this implicit set of equations is to resort to matrix elimination techniques,
but these are very computationally intensive. However, it can be shown that substituting 7z;("
in equation 5.5 still provides an accurate estimate of all parameters at a cost of slightly slower
convergence. But as the three iteration processes are now made explicit, they can be executed in
parallel which still results in a faster iteration process.

As a stop criterion for the iteration, the Bhattacharyya distance measure was used to determine
the distance between two consecutively iterated distributions P; and Ps:

dB(Py, Py) = —ln/jO PL(FI91) - Pa(rlgo)dr.

Since this distance measure includes all significant statistical parameters of the distributions, it can
be applied as a non-ambiguous condition for the termination of the iteration process.

5.4. PROCESSOR NETWORK TOPOLOGY 47

Functional decomposition

The iteration schemes just presented can each be executed on a separate processor. In this func-
tional decomposition, three processors are used to calculate the iteration schemes of respectively
equation 5.3, 5.4 and 5.5 (see Figure 5.13). A fourth processor controls which distribution is iter-
ated and calculates the Bhattacharyya distance between the consecutively iterated distributions.
Clearly, this functional decomposition scheme can not be run on more than four processors and is
therefore not scalable.

Figure 5.13: Functional decomposition used in the parallel statistical optimizer process.

Performance of the parallel statistical optimizer

The current version of this software still has some problems with convergence. In some cases the
algorithm does not converge at all, while in others the stop criterion seems to be reached while in
reality it isn’t. Reasons for this have as of yet not been found.

Some tests were performed using a sequence of automatically generated datasets containing one
random generated normal distribution. The initial parameters of this distribution were determined
using the cluster process described in the previous section and then passed to the parallel statistical
optimizer process. The average time until convergence (if the algorithm converged at all) was 2.11
seconds. The worst and best case times were respectively 3.22 seconds and 2.05 seconds. A
sequential version was also tested which, on average, took 3.58 seconds to reach convergence. The
average speedup figure given these figures is 1.7.

5.4 Processor network topology

The decomposition methods used in the filter and cluster processes are the same. This method
of decomposition can be easily mapped onto a ring topology (recall Figure 4.3 on page 23). The
optimization process however uses a very different form of decomposition which requires a network
configuration that can not directly be mapped onto the same ring topology (recall Figure 5.13).
One way to solve this is to map three optimizer processes onto the same ring topology used by the
filter and cluster processes, and put the fourth process on a fourth processor. A routing process is
then needed to relay messages out to the fourth process. However, this was considered cumbersome
and would unnecessarily complicate the system’s design.

Figure 5.14 shows the topology that has been built for the CACE-1I system. The network
basically consists of a ring, but an additional “short-cut” connection has been provided to access
the fourth optimizer process.

48 CHAPTER 5. THE CACE-I11 EMBEDDED ARCHITECTURE AND IMPLEMENTATION

Host | i nk

BBK. t VMIM t [A] VMIM t [B]
pLO] pl1] pL2]
Clusterroot
0 Eg%ﬂ?}d 1 ool 0| Filterworker 1 oWl 0| Filterworker
device control - Clusterworker P=S— Clusterworker
Hostserver ccw 0] Iter.apha cewf 1] Iter.Mu
Sequencer
3 3
2 1
control.to. M
—
-
Mu. to. control
cw 5] T \LCCV\{S] CCW{ZIT \LCV\{Z]
1 0
p[5] pl4] (3]
i cew 4] cew 3]
(FilllLtjgg\cl)vrlo(Flzer 0 = 1 Filterworker 0 — 1 Filterworker
Iter.Sigma <CM q Clusterworker %C w3l Clusterworker
TPM t VMIM t [D] VMIM t[C]

Figure 5.14: Processor network topology used in CACE-II.

5.5 The parallel data analyses pipeline

The parallel data analysis tools are configured into a “parallel data analysis pipeline” (see fig-
ure 5.15) so that results of an analysis process are passed on to the next process in the pipeline
and immediately restarts. The first process in this pipeline reads its input from the raw data area
accessed by the DMA data acquisition interface.

Filter Cluster Optimizer Filter Cluster >

Filter Cluster Optimizer Filter >

Filter Cluster Optimizer -

"ttt 11— =
startup time cycletime

Figure 5.15: Execution model of an ideal data analysis pipeline.

When all processes in such a pipeline have at least started execution once (startup time) all
processes run in parallel at the same time producing a steady throughput of data through the
pipeline to the output. In order for such a structure to work properly however, all processes in the
pipeline would have to take exactly the same time to execute to get the pipeline in balance. In
practice this is not the case since some processes are finished sooner than others. Furthermore, since
the execution times of the cluster and optimization algorithm are data content dependent, their
execution time may vary constantly. The filter algorithm is not data dependent, so its execution
time is constant.

5.5. THE PARALLEL DATA ANALYSES PIPELINE 49
5.5.1 The parallel digital analysis pipeline sequencer

The operation of the parallel data analysis pipeline is controlled by a process called the “sequencer”.
The sequencer controls the operation of each process, detecting the state each process is in and
signaling each when a process should start executing. During an online experiment, the sequencer
automatically guides each process through the pipeline process in such a way that the throughput
of the pipeline is optimal.

-«——» interprocessor |P channels sequencer SQ channels

<> |server SP channels multiplexor MX channels

" '

DMA .control ‘ ‘ sampler.control ‘ autofocus.control

‘ terminal .server ‘ ‘ event.handler ‘

4% Sequencer }

<——lﬂnonitor ‘]
1
é filter.root T
- % T—
=
% cluster.root &
> iter.control ‘ L
mux [down]

Figure 5.16: Process configuration on the root processor. The complete system is governed from

this processor.

The sequencer plays a central role in the control of all software in the CACE-II system, as can be
seen from Figure 5.16. The sequencer keeps track of the state each of the data analysis processes are
in. The data analysis processes provide this information to the sequencer by sending messages at
predefined positions during their execution. The sequencer sends confirmations in reaction to each
of these messages to allow the analysis processes to proceed execution. This allows the sequencer
to stall a process so that another process may have exclusive access to a resource in the system.
For example, the filter process may not be allowed to store its resulting data while the clustering
process is at the same time loading this data and spreading it over its worker processes. In this
case the sequencer must stall the cluster process until the filter process has finished.

The sequencer is controlled from the user interface.

50 CHAPTER 5. THE CACE-II EMBEDDED ARCHITECTURE AND IMPLEMENTATION

5.6 The CACE-II user interface

A user interface should allow a user to control an experiment and to see the results on screen
whilst at the same time protecting him from any awkward details that are not of interest. The user
interface is the part of CACE-II most users will see and work with.

The Tcl/Tk environment that was used to implement the CACE-II user interface provides an
extremely powerful set of tools to create graphical user interfaces consisting of “widgets” (buttons,
windows, menus, etc.) [48, 65]. Tcl/Tk is freely available for most common computer platforms and
operating systems such as Unix, Windows or Macintosh systems so that programs are consistent
and portable across these platforms. The CACE-II user interface exploits the network capabilities
of Tcl/ Tk to access the CACE-11 embedded system via a TCP/IP oriented network. This allows the
CACE-II system to be controlled from any location as long as there is a network connection.

Figure 5.17: The CACE-II startup screen.

Figure 5.17 shows the main interface to the CACE-II system. An attempt was made to provide
a clear representation of the devices under control, including the flow system, the rotors, the
autofocus system and data analyses. This user interface has been used frequently during tests of
the embedded system, with satisfying results.

Chapter 6

The autofocus subsystem

During a separation experiment it is essential that the optical detection system is properly aligned.
A system has been built to facilitate some of the steps of this alignment process where previously
expert knowledge was required. This automatic focus equipment (or autofocus equipment for
short) has been developed as a separate subsystem that operates independently from processes on
the CACE-1I system. This chapter describes how the autofocus system works and how to use it
during CACE-II experiments.

6.1 Introduction

The optical system in CACE-1I consists of the following components (see also Fig. 6.1):
e a laser,
e a lens system consisting of two crossed cylindrical lenses (f = 75 mm and f = 15 mm),
e a flow chamber (5 X 5 mm quartz with a 0.5 X 0.5 mm channel in the center),
e the forward, side and back scatter detectors.

Of these, the laser must be manually adjusted so that the beam passes the lens system unobstructed
(i.e. the beam must be at water level with respect to the lens system) and the FS detector must be
manually positioned such that the beam hits a vertical “beamstop” in front of the detector. These
manual adjustments need normally be performed only once just before the start of an experiment.

The position of the lens system and the flow chamber need adjustment for each fraction that
is elutriated during an experiment as the particle trajectory through the channel may change with
variations in the fluid flow rate [15]. Recall from Figure 3.3 (page 12) that elutriation of each
fraction takes approximately 10 minutes and that data acquisition for each fraction commences
when a few hundred cells leave the elutriator per second. This implies that the lens system and
flow chamber must be in the new focuspoint before data acquisition commences.

To enable the components of the optical system to be positioned automatically, the lens system
and BS detector are mounted on a movable table, controlled by a servo, allowing the lenses to be
positioned over a range of 20 mm along the laser beam’s path. Likewise, the flow chamber holder
and SS detector are mounted on a movable table that allows the flow chamber to be positioned into
the laser beam’s path. Both servos are controlled by a VMEbus servo controller! allowing them to

!Themis TSVME-440, based on the Motorola 68010 processor.

51

52 CHAPTER 6. THE AUTOFOCUS SUBSYSTEM

chanber hol der

unf ocused beam f ocus point

\

\

fl ow chanber

channel

cylindrical |enses

servo control | ed
novabl e tabl es
>
aut of ocus
sof tware

<|_

A

TSVME440 sanpl er

Figure 6.1: Configuration of the optical detection system.

be positioned with an accuracy of 1 pm [63]. In addition, a special purpose VMEbus card has been
designed and built to amplify and sample signals from the FS detector. Based on these signals, the
objective of the autofocus software is to automatically focus the laser beam onto the particles that
flow through the channel of the flow chamber.

6.1.1 Properties of the focus point

The incident beam waist w of the laser used in CACE-II is 1.9 mm. This beam must be focused on
the particles that pass through the channel in the flow chamber such that no particles are missed
(i.e. the beam may not be narrower than the width of the flow chamber’s channel) and no more
than one particle passes the beam at once (i.e. the height of the beam may not exceed the diameter
of a particle). To achieve this, a lens system consisting of two crossed cylindrical lenses focuses the
beam into a line of light to produce a “slit” of laser illumination through which the cells flow. An
optical system using this technique is commonly called a slit-scan cytometer [15]. In our case the
lenses have focal lengths of 75 mm and 15 mm and are 60 mm apart. The first lens “narrows” the
beam in vertical direction while a second lens “flattens” the beam in horizontal direction into the
flow chamber’s channel (see Fig. 6.2). The beam waist radius wq in the focus point is proportional
to the focal length f [55, page 151]:

wy = %gf (6.1)

In this case the wavelength of the laser A = 632.8 nm, so from Eq. 6.1 we can deduce that the

focused laser spot has a width of w, = %% +7.5-1072 = 32 pm, and a height of wy =
%% +1.5-1072 = 6.4 pm. In practical situations the focused laser spot will be somewhat
larger due to inevitable misalignment and impurities in the lenses. When moving away from the
focus point, w, and wy of the laser spot will increase while the total integrated intensity of the spot
remains the same.

The intensity of the laser beam inside the spot is Gaussian distributed [55]. The intensity Ipeqm

6.1. INTRODUCTION 53

lcell flow

| aser f = 75m (@]
f = 15mm O
= O
-7 /1O
/ ™ channel

/

line focussed
| aser beam

Figure 6.2: The lens system focuses the laser beam using two crossed lenses.

at any point in the spot can be calculated using Eq. 6.2:

, (&) &)
Lveam = E. 14+4Y2 14+4Y) 2
b 0l 1rar2° 1+4v2° (62)
where N \
Y, = Y, = .
2mw? y27rw§

Here Ej is the intensity of the incident beam, z and z define the position inside the spot with the
center of the spot taken as the origin.

The FS pulse profile as a function of time resulting from a particle traveling through the focus
point at a certain speed is expressed by [15]:

Tps(vt) = / / / Cla, vt — £, 2)H(¢)dwdedz (6.3)

where v is the velocity of the particle along the y axis (which is approximately the same as the
flow rate through the channel), H(y) the slit irradiance profile as a function of y and C(z,y, z) the
distribution of light emission sites in the particle. It can be shown that H(y) and, for homogeneous
particles, C(z,y, z) are both Gaussian functions [26]. Convolution of two Gaussian functions, as in
Eq. 6.3, yields a new Gaussian function with a variance that equals the sum of the variances of the
original functions. Therefore the width of Irg(vt) can be expressed as:

width(Ipg(vt)) = \/width(C(x,y,z))2 + (width(Ipeam))?- (6.4)

Realistic light scattering simulations performed within the Parallel Scientific Computing and Sim-
ulation Group have shown that for biological particles this is indeed the case [22].

Eq. 6.3 shows that the signals obtained from the F'S detector as light scatters from these particles
is also Gaussian distributed [15, 21, 41, 42]. Moreover, as the focus point moves closer to the track
followed by the particles, the signals obtained from the FS detector will become higher and narrower
(see Eq. 6.4). So, at the focus point the value at mean from the obtained signals will therefore be
maximal while the variance is minimal.

54 CHAPTER 6. THE AUTOFOCUS SUBSYSTEM

6.2 The autofocus process

From what is presented in the previous sections it is clear that the autofocus process should fulfill
two tasks: position the flow chamber’s channel in the path of the laser beam and position the
lens system so that the focus point is situated at the particles flowing through the flow chamber.
However, if these two tasks are to be based on signals derived from the FS detector as particles pass
through the laser beam, we are faced with an interesting dilemma: if the lenses are out of focus,
the signals from the FS detector will be too low in intensity to make it possible to locate the flow
chamber’s channel, but at the same time it is not possible to focus the lenses if the flow chamber’s
channel is not placed in the path of the laser as it is simply not possible to register any particles.

Through experiments we have been able to develop a reliable method that allows us to locate
the flow chamber’s channel using the refractive properties of the quartz material from which the
flow chamber is built. The resulting position for the flow chamber is not optimal, yet it provides a
good starting point from which a refinement is possible.

The autofocus process described in the following subsections is split into three phases: the first
phase manoeuvres the channel within the flow chamber in the path of the laser beam, the second
phase adjusts the position of the lens system so that pulses are registered caused by particles
moving through the channel, the third and final phase optimizes the positions of the flow chamber
and lenses obtained from the first and second phase.

6.2.1 Locating the flow chamber’s channel

The flow chamber is made from quartz, a transparent material that has the advantage over conven-
tional glass that it has virtually no impurities and its refraction index is similar to that of water.
Experiments have shown that, provided the amplification of the FS signal is high enough, it is

FS detector

beanst op

f1 ow chamber fl ow chamber
left edge right edge
\ ’

channel
edges
™

i i
I I
I I
I I
I I
I I
I I AN

-, v
| |]
| | flow chamber width: 5 mm
! ! channel width: 0.5 nm
I I

I

I I

,,,,,,,,,,,,,,,,,

| »
I g

initialization end position
posi tion (range: 20 mm)

| aser beam

| ensesystem

Figure 6.3: Refraction of light on the flow chamber as it passes through the laser beam.

possible to discriminate the edges of the flow chamber and the channel by looking at amplitude
variations of the F'S signal as the chamber moves through the laser beam at a constant speed (see

6.2. THE AUTOFOCUS PROCESS 55

Fig. 6.3). This phenomenon is probably caused by refractive effects when the laser beam “graces”
the edges of the flow chamber and channel, and from diffractions from the corners of the channel
[27]. Moreover, it can be shown that it is important in this case to use servo motors to control
the tables and not stepper motors (which are more suitable in situations where discrete spacing
intervals are required). This can be explained from the fact that the pre-amplifiers used for the
scatter detectors are AC-coupled, meaning that only changes in amplitude are amplified. If we
were to use discrete stepping motors, the distinct features of the flow chamber would not be so
apparentz.

1000

T T
flow chamber scan

900

ht edge chiannel left ed

o]
[T
! (H
. I
TRV

WAV KA\ SV SV

100
5000 5500 6000 6500 7000 7500 8000 8500 9000 9500
servo position (in 2 pm units)

2
@

average FS amplitude

Figure 6.4: FS signal response of flow chamber moving through laser beam.

A typical example of the FS signal response as the flow chamber moves through the laser beam
is shown in Fig. 6.4. In this case the amplification of the FS signal was set to 100X, the flow
chamber moved through the laser beam at a speed of approximately 0.5 mm/sec and an average
over 10 samples per units of 2 ym were taken. Using knowledge of the physical dimensions of
the flow chamber and the channel, both the edges and the channel within the flow chamber can
be clearly distinguished from this figure. The channel locator algorithm used in this stage of
the autofocus process filters the signal obtained from this scan and then determines the first order
derivatives. Based on prior knowledge of the physical dimensions of the flow chamber the algorithm
then determines the most likely candidates for the channel position upon which the flow chamber
is moved to the most likely candidate.

Using this method, an incorrectly inserted (i.e. slightly rotated) flow chamber shows up as a
curve where the slope of the tops is diagonal rather than horizontal (data available on request).
The curve is presented on the autofocus user interface which allows an analyst to recognize this
situation and take appropriate action.

Elaborate tests have been performed on the implemented algorithm, including situations where
artificial noise was imposed by banging ones fists on the table, yet the algorithm was still able to
correctly detect the channel.

2Experimental data that shows this is available on request.

56 CHAPTER 6. THE AUTOFOCUS SUBSYSTEM

6.2.2 Focusing the lens system

The channel localization routine described in the previous section orients the flow chamber such
that the channel is in the path of the laser beam. As the channel is 500 pm wide while the theoretical
width of the laser spot in the focus point is 32 pm (see Eq. 6.1), the position of the chamber can
hardly be sufficient. Furthermore, the position of the lens at this point is completely arbitrary.
Given the length of the laser dot at the focus point of 6.4 pm, finding the correct position for the
lens is like searching for a needle in a haystack.

However, from the flow chamber position obtained with the first phase, we are now able to
refine the positions of both the flow chamber and the lens system by analyzing the signals from the
FS detector caused by particles flowing through the channel. To limit the time required to focus
the lenses, the lens focus process is split up into two phases; the first coarse focus phase intends
to decrease the initial search area in which the focus point lies by means of relatively fast, but
coarse method. The second fine focus phase iteratively refines this search area towards the final
flow chamber and lens positions. These two steps are described in detail in the following sections.

Coarse focus

The first coarse focus step moves the lens system from its initialization position towards the flow
chamber, meanwhile registering the signals from the FS detector, until Gaussian type signals are

registered.

-250 FS-pulse height
_ 9%5% —
€ 5% - - -
2 100 10%
&

g o - Pre-focus position

&

S @

E 100 ;

r\/:’ j/ 4 $wchamber
250 L L
-2000 0 1000 2000
lens axis (um)

Figure 6.5: The coarse focus algorithm.

The algorithm is illustrated in Figure 6.5. From the position that was found using the channel
localization algorithm described in the previous subsection, the area in which the focuspoint resides
is defined by the width of the flow chamber’s channel (500 pm) and the range over which the lenses
can be moved (4000 pm). Assuming that pulses at 10% of maximum intensity can be detected,
the area the coarse focus algorithm attempts to find is (using Eq. 6.2) wehampber = 100pm by
wiens = 1200pm. The coarse focus algorithm searches this area using a criss-cross search pattern
in which the velocities of the servos are constantly adjusted so that this area can not be missed.
During this search, the signals from the FS detector are constantly monitored for Gaussian type
signals. Once these are detected, the algorithm stops.

At this point the lens system is sufficiently closer to the focus point to further refine both the
flow chamber and the lens system locations.

6.3. CACE-II IMPLEMENTATION DETAILS 57

Fine focus

The second and final fine focus step employs an optimization algorithm which is similar to the
familiar steepest-descent method to reduce the dimensions of the search area in which the focus
point must be located.

-0 a FS-pulse height
_ 99 % ——
E e 90 % - - -
s Or 50 % -----
% c . "y 25 %

= -

o) / |
_g 0 \ /1 ‘
5 . f
E 20 — be e

50 | | |

-500 -250 0 250 500
lens axis (um)

Figure 6.6: The fine focus algorithm.

This algorithm is illustrated in Figure 6.6. From the position that was found using the coarse
focus step (point a in this figure), the flow chamber servo moves at a constant speed into an
arbitrary direction while constantly monitoring the signals from the FS detector. When the mean
amplitude of these signals decreases during this movement, the direction of the servo is reversed.
This movement continues until the mean amplitude has reached a maximum and decreases again.
When this is detected (point b), the servo is moved back to the position where the maximum
amplitude was found (point ¢) and the search area is reduced. Next, the process is repeated for
the lens servo. The algorithm stops when the search area descends a preset value.

Figure 6.7 shows an example of the convergence of the fine focus algorithm towards the focus
point. The figure shows the decrease in dimensions of the search areas after each iteration and the
trajectory of the estimated focus point which is located in the center of each search area.

6.3 CACE-II implementation details

Fig. 6.8 shows a more detailed picture of the components involved in the autofocus subsystem as it is
implemented on the CACE-II system. Three VME modules are involved in the autofocus subsystem;
the BBK-V2 transputer board, the TSVME-440 servo controller and the dedicated samplecard. The
samplecard also contains the buffers that are required to interface the TSVME-440 to the servo
motors. The TSVME-440 is capable of driving four axes simultaneously but only two of these are
used in the CACE-II autofocus subsystem.

While the BBK-V2 is the main processor in the analysis system, in the CACE-II autofocus sub-
system it plays an intermediate role between the user interface and the central autofocus software
which runs on the TSVME-440 servo controller. Two processes in particular are involved with the
autofocus software;

e autofocus control forms an interface between the autofocus software and the user interface.

58 CHAPTER 6. THE AUTOFOCUS SUBSYSTEM

center point ---x---

iteration

6r #
di ;
4
X\
3 F ><\><
2 ;
1+ v
0
12800
2600
2400
11750 ens position
11800 171850 11966 1&(&)300

9 116
flow chamber position11950 12000 37050 11400

Figure 6.7: Example of convergence in the fine focus algorithm; after 6 iterations, the search area
is reduced from 250 pm over the flow chamber axis by 1100 pm over the lens axis to an area of 6
pm by 206 pm.

Commands issued by the user in the user interface are “relayed” to the autofocus software
while the progress of the autofocus software is visualized back onto the user interface.

e sampler control allows the user to monitor signals from the FS detector, but this process
performs a more vital role in the autofocus subsystem which is described in a moment.

Data communication between these two processes and the autofocus software takes place via a
shared memory area on the TSVME-440 which is accessible both by the processor on this board (a
Motorola 68010) and master devices elsewhere on the VMEbus. The BBK-V2 is a so-called VMEbus
master, meaning that it can initiate data transfers over the VMEbus [1]. The TSVME-440 is a VMEbus
slave which means that it can only be accessed by bus masters; it can not read or write values from
a device elsewhere on the VMEbus, including the samplecard. As the autofocus software running on
the TSVME-440 requires samples from the samplecard to do its job, the sampler control process
on the BBK-V2 has been implemented to act as a mediator between the autofocus software on the
TSVME-440 and the samplecard. Each time the autofocus software requires a sample from the
samplecard, it sets the desired sampler settings in the shared memory area and signals the sampler
control process on the BBK-V2 by generating a level 3 interrupt request (IRQ). The event handler
process on the BBK-V2 directs this interrupt to the sampler control process which initializes the
samplecard with the requested settings. As soon as the samplecard has taken a sample from the
input signal it signals the sampler control process by generating a level 6 IRQ which copies the
sample from the samplecard to the shared memory area. The autofocus software is then signaled
of the availability of this sample by a level 5 interrupt.

6.4. CONCLUSIONS 59

VMXbus
BBK- V2 TISVME- 440 sappl ecard
aut of ocus sanpl er Kz& i&
control control servos
L
buf f
A rof ko (R0 A | | x| L0 LI
4 3 6 sanpl er
aut of ocus
event sof twar e FS signal
handl er
RO 5 MC68010
| RQs IRl A |IRQ | S
Y \/ 4] 3 Y 6

‘ VMEbus ‘

Figure 6.8: Detailed configuration of hard- and software in the autofocus subsystem.

6.4 Conclusions

In this chapter a subsystem has been described of the CACE-II system which aids in aligning the
optical system, based solely on signals obtained from the F'S detector. Although further experiments
still have to be performed on the accuracy and speed of the implemented algorithms, the results
thus far look very promising. The reduction of the problem as a whole into a channel localization,
coarse focus and fine focus algorithm have proven to be quite elegant. Indeed, it is believed that
the first two focus steps will only need to be performed at the start of a CACE-II experiment for the
initial alignment of the optical system. During the elutriation of a new fraction, corrections for the
new trajectory of the particles can then probably be performed by the fine focus algorithm alone.

6.4.1 Acknowledgments

I gratefully acknowledge the cooperation of the following people in the development of the autofocus
subsystem:

e Ruud Veldhuizen (Electronics department, University of Amsterdam) for designing and de-
bugging the samplecard hardware and motor buffers,

e Maarten Kreuger (Hogeschool Alkmaar) for debugging the samplecard hardware and the
development of the first version of the autofocus library,

e Steven Chan (Hogeschool Amsterdam) for his experiments with the samplecard and the aut-
ofocus library and the first implementations of autofocus algorithms,

e Bart Meeuwissen (Hogeschool Eindhoven) for his implementation of a reliable channel local-
ization routine and his ideas on a robust algorithm to focus the lens system,

e Michael Kleindieck (Hogeschool Alkmaar) for his implementation of the lens focus routines
and the autofocus user interface.

Chapter 7

Conclusions and recommendations

In this thesis, I described the design issues involved into the development of an embedded system
for the control of a cell separation experiment. Although the system still needs further refinement
and extensive tests in the laboratory environment for which it was aimed, initial experiments have
shown that the prospects are promising.

The transputer architecture and the occam programming language that were used in the de-
velopment of the embedded system provided the building blocks that allowed the construction of
an embedded system that is capable of rapid on-line data analyses while controlling an on-line
experiment. A flexible user interface enables easy access to the embedded system and provides
on-line monitoring primitives.

An autofocus subsystem was designed and implemented that is capable of aligning the optical
system where previously expert knowledge was required.

Some important issues still remain however, which I shall address in the following sections.

7.1 Cluster analysis

I have not been able to refine the cluster analyses process in such a manner that in all cases the
correct number of populations are detected. As was noted in Section 5.3, this is a very important
issue in the correct analyses of the acquired data. Although more and more literature becomes
available on the subject of cluster analyses, I have seen none that are capable of unsupervised
clustering.

Further investigation into this subject is required. Possibly, successful algorithms may be
found in fuzzy clustering techniques, neural-networks or new parameterized versions of the Hoshen-
Kopelman algorithm [28].

7.2 Portability

Although occam provides a solid basis for the construction of large parallel systems, its use over
the last years has come to an almost standstill. Furthermore, with the demise of INMOS quickly
after the introduction of the infamous T9000 transputer, the further development of occam is in
serious danger. The implication for the CACE-II system is that this could mean that the software
that has been developed can not easily be ported to other parallel computing architectures.

61

62 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

The occam compilers that target other architectures will need to be carefully evaluated to see
whether it is possible to port the CACE-1I software to a new platform. Also, the devices built by
other microprocessor manufacturers (such as the Motorola’s PowerPC and Digital’s Alpha) may
provide alternatives to the transputers used in CACE-II in the event that a new architecture must
be chosen when the transputer is no longer readily available.

7.3 Recommendations for future work

7.3.1 Automatic control of the flow system

The current CACE-II system provides no control over the fluid flows through the FCM equipment.
However, this flow control can be implemented using the remaining servo channels on the TSVME-
440 module. The sample card that has been implemented for the autofocus subsystem allows the
number of cells that pass through the flow chamber to be determined. Using this feature and the
remaining channels on the servo controller, a crude flow control system could be built.

7.3.2 The DMA interface

In the current design of the DMA interface, the analog signals from the three light scattering
detectors are first fed to three external amplifiers. Each time a top is detected in the forward
scatter signal, the three signals are sampled and converted into 6 bits values resulting in a 18
bit pattern. This pattern then travels over a flatcable into the DMA module which then uses this
pattern as a memory address on the VME bus to access a 128 kiloword (512 kilobyte) memory area
to build the histogram of pattern occurrences. The DMA module creates this histogram using a
read-modify-write scheme so that for each detected signal two accesses are required over the VME
bus (one read, one write).

Most of the logic on the DMA interface is built from PALs that date back to 1985 or so.
The current state-of-the-art in electronics allow the analog-to-digital converters, the memory and
perhaps even the amplifiers to be placed on a single module. When the memory on this module
is made dual-ported, the DMA processor can continue to operate while processors running data
analyses software make copies of the data locally. Placing all these components on a single module
results in a compact, self-contained and generic acquisition module.

Alternatively, a two channel DMA processor ! could be used where one channel performs the
read-modify-write cycles that create the pattern histograms while the second channel could be
instructed by the data analyses software to create a copy of the data onto the memory of a local
processor.

The proposed design has the following advantages;

e A ‘centralized’ design in which the ADCs, the memory and amplifiers are integrated into
one module is more logical and maintainable compared to the current multi-module design.
Provided that the structure of such a module is carefully designed, it should also be pos-
sible to add more channels or to increase the resolution of the converters. Todays modern
programmable logic may provide a key to this flexibility [10].

e Data acquisition is performed locally on the module so that there need not be VME bus accesses
for each detected signal. Instead, the data analyses software (or another DMA channel) copies
the data when it is required.

!The MC68440 and MC68450 devices from Motorola look like good candidates. For more information on Motorola
products, see http://motserv.indirect.com/.

7.3. RECOMMENDATIONS FOR FUTURE WORK 63

e In the case that a two channel DMA processor is used, copying the data onto a local processor
via DMA control is much faster compared to a software controlled copy.

7.3.3 List mode data acquisition

The advantages and disadvantages of both histogramming and list mode acquisition have been
discussed in Section 3.1.1 (page 9). One of the disadvantages that was mentioned on list mode
acquisition was the large amounts of memory that may be required. Today however, memory is
available in high density modules that are relatively cheap. In addition, list mode acquisition is
quite common in other research areas so that generic modules have become easily available.

List mode data can always be converted to histogrammed data (but not vice versa), so the
current data analysis software can still be used. Furthermore, software has been developed by
researchers in the area of flow cytometry for the analysis of list mode data which can also be applied
here [46, 53]. Note however that list mode data analyses programs are always non-deterministic
in time behaviour due to the variable sized datasets. This can have a negative influence for their
application in embedded systems, but should be investigated nevertheless.

7.3.4 The optical detection system

Detectors and lasers have continued to decrease in size and cost while increasing in performance
over the last years. Diode lasers in particular are currently available at wavelengths and optical
power comparable to the bulky laser used in CACE-1I [16]. This new technology can be exploited
to reduce both size and cost for this type of embedded systems.

An additional advantage of this type of system is that the complete optical detection system
can be contained into a solid-state construction in which all components can be fixed. This could
free the device of the need for an autofocus system.

64

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Bibliography

[1]

[11]

[12]

[13]

American National Standards Institute (ANSI). The VMFEbus Specification, ANSI/IEEE
STD1014-1987, IEC 821 and 297, 1987.

M.R. Anderberg. Cluster Analysis for Applications. Academic Press, NY, 1973.

H.F. Bao, H.C. den Harink, E.S. Gelsema, and A.-W.M. Smeulders. Automated white blood
cell classification revisited. Medical Informatics, 12(1):23-31, 1987.

Geoff Barret. occam 3 reference manual. Technical report, INMOS Limited, 1992. Draft -
March 31.

G. Barrett, M. Goldsmith, G. Jones, and A. Kay. The meaning and implementation of pri alt
in occam. In Charlie Askew, editor, Occam and the Transputer- Research and Applications
OUG-9, pages 37-46, Amsterdam, 1988. IOS Press.

D.J. Beckett. occam Design Tool User Manual, for ODT wversion 1.01. See
http://www.hensa.ac.uk/parallel /.

D.J. Beckett and P.H. Welch. A strict occam design tool. In C.R. Jesshope and A. Shafarenko,
editors, Proceedings of UK Parallel ’96, pages 53-69, London, UK, July 1996. BCS PPSIG,
Springer-Verlag. ISBN 3-540-76068-7.

M. Boasson. Control systems software. IEEE Transactions on Automatic Control, 38(7):1094-
1107, 1993.

R.N. Bracewell. Note on Hermitian data. Private communication with P.M.A. Sloot.

Steve Casselman. FPGAs for custom computing machines. Paper presented at IEEE workshop,
Napa, California, April 5-7 1993.

J.E. Cooling. Software Design for Real-time Systems. Chapman and Hall, 1991. ISBN 0-412-
34180-8.

Mark Debbage, Mark Hill, Sean Wykes, and Denis Nicole. Southampton’s portable oc-
cam compiler (spoc). Draft paper presented at WoTUG/OUG 17 conference at Bristol. See
http://www.hensa.ac.uk/parallel/occam/compilers/spoc/spoc.ougl?.ps.Z, 1994.

H.J. Denuell. BBK-V2: Transputer - Bus - Bridgehead for Interfacing VME-systems to
MEGAFRAME Transputer Modules, technical documentation. Parsytec GmbH, version 2.4
edition, November 1988.

65

66

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

BIBLIOGRAPHY

E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming Lan-
guages, pages 43-112. Academic Press, NY, 1968.

Marvin A. Dilla, Pillip N. Dean, Ole D. Laerum, and Myron R. Melamed, editors. Flow
Cytometry: Instrumentation and Data Analysis. Analytical Cytology series. Academic Press
Inc, UK, 1985.

R.M.P. Doornbos, E.J. Hennink, C.A.J. Putman, B.G. De Grooth, and J. Greve. White blood
cell differentiation using a solid state flow cytometer. Cytometry, 14:589-594, 1993.

B. Everitt. Cluster Analysis (2nd edition). Heinemann Educational Books, UK, 1980.

C.G. Figdor et al. Isolation of large numbers of highly purified lymphocytes and monocytes
with a modified centrifugal elutriation technique. Journal of Immunological Methods, 40(275),
1981.

C.G. Figdor et al. Rapid isolation of mononuclear cells from buffy coats prepared by a new
blood cell separator. Journal of Immunological Methods, 55(221), 1982.

A.D. Gordon. Classification. Chapman and Hall, NY, 1981.

Gérard Gousbet, Gérard Gréhan, and Bruno Mahue. Localized interpretation to compute
all the coefficients g(n,m) in the generalized Lorenz-Mie theory. Optical Society of America,
7:998-1007, June 1990.

Michel D. Grimminck. Computer simulation of light scattering of small particles in focused
laser beams. Master’s thesis, University of Amsterdam, September 1997.

Victor Hasselblad. Estimation of parameters for a mixture of normal distributions. Techno-
metrics, 8(3):431-444, August 1966.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, UK, 1985.

C.A.R. Hoare, editor. Developments in concurrency and communication. University of Austin
at Texas, Year of Programming Series. Addison-Wesley, 1990.

A.G. Hoekstra. Computer Simulations of Elastic Light Scattering (Implementation and Appli-
cations). PhD thesis, University of Amsterdam, Amsterdam, 1994.

Alfons Hoekstra. Note on light diffraction. Private communication.

J. Hoshen and R. Kopelman. Percolation and cluster distribution. i. multiple cluster labeling
technique and critical concentration algorithm. Phys. Rev., B14:3438, 1976.

Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill, Inc., 1993. ISBN 0-07-031622-8.

INMOS Limited. occam 2 toolset user manual - part 1 (User guide and tools), 72 TDS 275 02
edition. d7205 toolset.

INMOS/SGS-THOMSON Microelectronics Limited. 72, T4, T8 and T9 transputer family
datasheets, 1995/1996. See http://www.st.com/stonline/books/.

BIBLIOGRAPHY 67

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall International, UK,
1988.

Geraint Jones. On guards. In Parallel Programming of Transputer Based Machines, Amster-

dam, September 1987. IOS Press.

Geraint Jones. Carefully scheduled selection with ALT. occam user group newsletter no.10,
January 1989.

B. Charles Peters Jr. and Homer F. Walker. An iterative procedure for obtaining maximum-

likelihood estimates of the parameters for a mixture of normal distributions. Society for
Industrial and Applied Mathematics, 35(2), September 1978.

Brian W. Kernighan and Dennis M. Ritchie. The C programming language (second edition).
Prentice-Hall International, 1988. ISBN 0-13-110370-9.

S. Krishnan, K. Samudravijaya, and P.V.S. Rao. Feature selection for pattern classification
with gaussian mixture models: a new objective criterion. Pattern Recognition, 17:803-809,
1996.

INMOS Limited. occam 2 Reference Manual. Prentice-Hall International, UK, 1988.

INMOS Limited. Transputer Instruction Set (a compiler writer’s guide). Prentice-Hall Inter-
national, 1988. ISBN 0-13-929100-8.

Ja-Chen Lin and Wu-Ja Lin. Real-time and automatic two-class clustering by analytical

formulas. Pattern Recognition, 29(11):1919-1930, 1996.

James A. Lock and Gérard Gousbet. Rigorous justification of the localized approximation

to the beam-shape coefficients in generalized Lorenz-Mie theory. II: Off-axis beams. Optical
Society of America, 11:2516, 1994.

James A. Lock, Gérard Gousbet, and Gérard Gréhan. Partial-wave representations of laser
beams for use in light-scattering calculations. Applied Optics, 34:2133, 1995.

Juergen Loewenhag. VMTM: VME Multi Transputer Module, technical documentation.
Parsytec GmbH, version 1.1 edition, October 1987.

D. May. Compiling occam into silicon. chapter 3, in [25].

Peter Moller-Nielsen and Ole Caprani. Replacing an occam process by a chip. In P. Fritzson
and L. Finmo, editors, Parallel Programming and Applications, pages 396—404. IOS Press,
1995.

Robert F. Murphy. Automated identification of subpopulations in flow cytometric list mode
data using cluster analysis. Cytometry, 6:302—-309, 1985.

P. Welch (University of Kent), Cook (University of Keele), D. May
(INMOS Architecture Group), et al occam-for-all project. See
http://www.hensa.ac.uk/parallel/occam/projects/occam-for-all/.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994. ISBN 0-20-163337-X.

68

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

BIBLIOGRAPHY

John K. Ousterhout. Why threads are a bad idea (for most purposes), January 25 1996. See
http://www.sunlabs.com/people/john.ousterhout/.

University of Amsterdam Parallel Scientific Computing Group. Note on transputer floating
point performance. Based on experience.

G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes. In
ICALP’86, Lecture Notes on Computer Science, pages 314-323. Springer-Verlag, LNCS 226,
1987.

G.C. Salzman, J.M Crowell, J.C. Martin, T.T. Trujillo, A. Romero, P.F. Mullaney, and P.M.
LaBauve. Cell classification by laser light scattering: Identification and separation of unstained
leukocytes. Acta Cytologica, 19:374-377, 1975.

Tom C. Bakker Schut, Bart G. De Grooth, and Jan Greve. Cluster analysis of flow cytometric
list mode data on a personel computer. Cytometry, 14:649-659, 1993.

Ravi Sethi. Programming Languages (concepts and constructs). Addison Wesley, 1990. ISBN
0-201-10365-6.

P.M.A. Sloot. Elastic light scattering from leukocytes in the development of computer assisted
cell separation. PhD thesis, University of Amsterdam, Amsterdam, 1988.

P.M.A. Sloot, M.J. Carels, P. Tensen, and C.G. Figdor. Computer assisted centrifugal elutri-
ation I:1 detection system and data acquisition equipment. Computer Methods and Programs
in Biomedicine, 8:179, 1987.

P.M.A. Sloot and C.G. Figdor. Elastic light scattering from nucleated bloodcells: Rapid
numerical analysis. Applied Optics, 25:3559, 1986.

P.M.A. Sloot, P. Tensen, and C.G. Figdor. Spectral analysis of flow cytometric data: Design
of a special purpose low-pass digital filter. Cytometry, 8:545, 1987.

P.M.A. Sloot, E.H.M. van der Donk, and C.G. Figdor. Computer assisted centrifugal elutriation
II: Multiparametric statistical analysis. Computer Methods and Programs in Biomedicine,

27:37, 1988.

M.J. Symons. Clustering criteria and multivariate normal mixtures. Biometrics, pages 35-43,

March 1981.

Andrew S. Tanenbaum. Operating Systems (design and implementation). Prentice-Hall Inter-
national, 1987. ISBN 0-13-637331-3.

L.L.W.M. Terstappen, B.G. De Grooth, K. Visscher, F.A. van Kouterik, and J. Greve. Four-
parameter white blood cell differential counting based on light scattering measurements. Cy-

tometry, 9(39), 1988.
Themis Computer. TSVME 440 azis controller board, user’s manual, DOCA246-03 edition.

M. Vyskozil. TPM-MAC: Starterkit Module for Apple Macintosh II, technical documentation.
Parsytec GmbH, version 1.3 edition, December 1989.

BIBLIOGRAPHY 69

[65] Brent B. Welch. Practical Programming in Tcl and Tk (second edition). Prentice-Hall Inter-
national, 1997. ISBN 0-13-616830-2.

[66] N. Wirth. Programming in Modula II. Springer Verlag, NY, 1983.

[67] S.J. Young. Real time languages: design and development. Ellis Horwood Limited, UK, 1982.

