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Lattice BGK simulations of flow in a symmetric bifurcation
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Abstract

Surgical planning as a treatment for vascular diseases requires fast blood flow simulations that are efficient in handling
changing geometry. It is, for example, necessary to try different paths of a planned bypass and study the resulting hemodynamic
flow fields before deciding the final geometrical solution. With the aid of a real time interactive simulation environment that
uses an efficient flow solver, this allows flexible treatment planning. In this article, we demonstrate that the lattice Boltzmann
method can be an alternative robust computational fluid dynamics technique for such kind of applications. Steady flow in a
2D symmetric bifurcation is studied and the obtained flow fields and stress tensor components are compared to those obtained
by a Navier–Stokes (NS) solver. We also demonstrate that the method is fully adaptive to interactively changing geometry.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Flow characteristics near branches and bifurcations
are quite important in hemodynamics. Cardiovascular
diseases, a leading cause of mortality in the western
world [17], localize in segments of the arterial system
where the shear stress is low. Frequently, treatment
of such diseases may involve planning for a new host
artery or design of suitable cardiovascular devices,
which are complex and patient specific.

Recently, two major developments in the field of
vascular surgery planning have made it possible to
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better and faster plan risk reduced surgeries. Firstly,
magnetic resonance angiography (MRA) has been
considerably enhanced to provide excellent and fast
depiction of the arterial tree and non-invasive dynamic
data acquisition is made possible[9]. Secondly, the
development of cheap computing power and inter-
active simulation environments have made real time
simulations of blood flow not far from reach[8,18].
With these in hand, an efficient and robust flow solver
has to be used in an interactive modeling environment
[1]. The field of computational fluid dynamics (CFD)
has also developed extensively during the last two
decades. New particle based methods such as dissipa-
tive particle dynamics, lattice gases and lattice Boltz-
mann methods have been developed and matured.
The lattice Boltzmann method with Bhatnagar, Gross
and Krook (BGK) simplified collision operator is a
discretization of a discrete velocity Boltzmann equa-
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tion that describes the evolution of particles in kinetic
theory. Due to its simple implementation, straight-
forward parallelization and easy grid generation, the
capability of the lattice Boltzmann method has been
demonstrated in various applications including Newto-
nian blood flow simulations[10], non-Newtonian and
suspension flows[11]. Throughout the rest of this pa-
per, we present the capability of the lattice Boltzmann
method as a robust technique for interactive blood flow
simulations by considering the case of a photo-typical
symmetric bifurcation with a changing geometry.

2. The lattice Boltzmann method

Different from the traditional CFD methods which
obtain the velocity and pressure by solving the
Navier–Stokes equations and computing the shear
stress from the velocity profiles, the lattice Boltzmann
method is a special finite difference discretization of
the simplified Boltzmann equation with BGK colli-
sion operator[2,6,15] which describes transport phe-
nomena at the mesoscale level. The dynamics of the
fluid is modeled by the transport of simple fictitious
particles on the nodes of a Cartesian grid. Simulations
with this method involve two simple steps; streaming
to the neighboring nodes and colliding with local
node populations represented by the probabilityfi of
a particle moving with a velocityei per unit time step
δt. Populations are relaxed towards their equilibrium
states during a collision process. The equilibrium
distribution function
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2v4
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2v2
u · u
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(1)

is a low Mach number approximation to the
Maxwellian distribution. Here,wi is a weighting fac-
tor, v = δx/δt is the lattice speed, andδx andδt are
the lattice spacing and the time step, respectively.
Values for the weighting factor and the discrete ve-
locities depend on the used lattice Boltzmann model
and can be found in literature[2,6,19]. The lattice
Boltzmann equation

fi(x + eiδt, ei, t + δt) − fi(x, ei, t)

= −1

τ
[fi(x, ei, t) − f

(0)
i (x, ei, t)], (2)

can be obtained by discretizing the evolution equation
of the distribution functions in the velocity space us-
ing a finite set of velocitiesei. In this equation,τ is the
dimensionless relaxation time. By Taylor expansion of
the lattice Boltzmann equation up to O(δt2) and appli-
cation of the multi-scale Chapman–Enskog technique
[6], the Navier–Stokes equations and the momentum
flux tensor up to second order in the Knudsen num-
ber are obtained. The hydrodynamic density,ρ, and
the macroscopic velocity,u, are determined in terms
of the particle distribution functions from the laws of
conservation of mass and momentum:ρ = ∑

i fi =∑
i f

(eq)
i andρu = ∑

i eifi = ∑
i eif

(eq)
i . The pres-

sure is given byp = ρc2
s and the kinematic viscosity

is ν = c2
sδt(τ − 1/2), wherecs is the speed of sound.

Different lattice Boltzmann models differ in the choice
of the distribution functions, the number of moving
particles and the speed of sound inside the system. In
our study, we have used an improved incompressible
D2Q9i (two-dimensional, nine particles, incompress-
ible) model[19], which has three types of particles on
each node; a rest particle, four particles moving along
x and y principal directions with speeds|ei| = ±1,
and four particles moving along diagonal directions
with speeds|ei| = √

2. The stress tensor can be com-
puted from the non-equilibrium parts of the distribu-
tion functions

σαβ = −ρc2
sδαβ −

(
1 − 1

2τ

) ∑
i=0

f
(1)
i eiαeiβ, (3)

which is independent of the velocity fields, in contrast
to the NS solvers for which a need to get the derivatives
of obtained velocity profiles is not avoidable.

3. Simulations

We have carried out two different benchmark simu-
lations. The first benchmark considers steady flow in a
symmetric bifurcation and validates the results against
a conventional NS solver. The second benchmark uses
this bifurcation to study the robustness and response
of the lattice Boltzmann method to a changing geom-
etry. The general aim of these benchmark simulations
is to demonstrate that the lattice Boltzmann yields ac-
curate and robust results for applications related to
hemodynamics and biomedical engineering. The two
benchmarks are discussed below.
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3.1. Steady flow in a symmetric bifurcation

We are interested in the symmetric bifurcation as
a 2D simplified model for arteries. As we mentioned
above, there is a direct relation between the shear stress
and Atherosclerosis, which is a highly localized dis-
ease in areas of the carotid, coronary and femoral ar-
teries and abdominal aorta. All these locations have
complex geometry, such as branching and bifurcation,
complex flow patterns, secondary flow and complex
shear stress. Several numerical and experimental mod-
els of fluid flow in large arteries and bifurcating tubes
were previously studied[3,12–14,16]. However, in all
these, authors used NS solvers to obtain the flow fields
and approximated velocity gradients to get the shear
stress. Studying the symmetric bifurcation as a bench-
mark for blood flow problems gives us a clearer idea
about the complexity of the flow field and the shear
stresses at locations of interest and allows us to inves-
tigate implementation of several boundary conditions
before using them for more complex geometry.

In this study, we consider a simplified model of a
two-dimensional symmetric bifurcation that consists
of one main tube of diameterD and lengthL and two
branches at the end of the main tube, each of which
has an outer lengthL and diametera = D/2. The
angleθ between each branch and the centerline AB
that passes horizontally across the divider is 30◦. The
geometry of the symmetric bifurcation is illustrated
in Fig. 1, in which the centerline AB and the cross
line CD will be reference axes for measurements and
comparisons of the flow fields and the components of
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Fig. 1. Geometry of the simulated symmetric bifurcation.

the stress tensor. The total vascular bed (i.e. the total
cross-section) and consequently the average velocity
of this bifurcation does not change in the daughter
branches than those in the mother branch [13]. The
geometry of the symmetric bifurcation whose vascu-
lar bed does not change, makes the region just be-
fore the divider an expanding region. This additional
area has to be filled by the fluid. As a result, both
the pressure and the velocity drop near to the divider
before they enter the branches, where the velocity ac-
celerates towards the fully developed flow and the
pressure drops faster than the pressure in the main
branch.

We have carried out a number of lattice Boltzmann
simulations for steady flow in the symmetric bifurca-
tion at Re = 1, 200 and 1250, where Re = DU0/ν

is the Reynolds number. The diameter of the main
branch is represented by 40 lattice points on the
coarsest grid and 320 lattice points on the finest grid.
At the inlet, we have set a flat velocity U0 of magni-
tude corresponding to the required Reynolds number.
Once the velocity is known at the inlet, the pressure
and the unknown values of the incoming (to the fluid)
particle distributions can be computed from the out-
going (to the inlet) distribution functions in a simple
way [20]. For the outlets, we have assumed fully
developed flow. Finally, for the walls, we have imple-
mented a simple bounce back scheme in which par-
ticles hitting the walls simply reverse their direction
towards the fluid. Again a number of more accurate
schemes are available to satisfy the non-slip condi-
tion, but the bounce back rule seems good enough
for this benchmark and is more suitable for com-
plex arterial systems, since it is adaptive, simple and
fast.

The velocity profiles and the shear stress as obtained
by LBM are shown in Fig. 2 for the three Reynolds
numbers. As shown from these figures, the flow fully
develops just after the inlet region for Re= 1. How-
ever, for the larger Reynolds numbers, the flow is not
yet fully developed when entering the divider region.
At the outlets, the flow is fully developed for Re= 1
and 200. For Re= 1250, it appears that the flow is not
fully developed at the outlets, but this does not have
significant effects on the flow near to the divider (test
simulations of varying lengths of the branches did
not show significant difference (data not shown)). We
also observe that the flow near the divider becomes
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Fig. 2. Contours of velocity magnitudes (left) and shear stress (right) in lattice units for Re= 1 (dx/dt = 0.0091 m/s),Re= 200 (dx/
dt = 0.0912 m/s) and Re= 1250 (dx/dt = 0.5706 m/s).

complex. As the region before the divider is an ex-
pansion region, the velocity flow pattern drops before
entering the branches. The velocity skews towards
the inner walls inside the daughter branches and each
of the two streams are bent because of the influence
of the secondary motion, with higher velocities near

the outer walls of the bend. All these features are
in agreement with the literature [5] and with the so-
lutions of the finite volume results, to be presented
below.

The σxy components at the inlet are very close to
zero, because of the imposed flat velocity profile. The
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corner points C and D and the divider region show
higher stress values. The stress in the inner walls of
the daughter branches is larger than that at the outer
walls. As the Reynolds number increases, the shear
stress behaves more complex, especially around the
divider.

Next, results obtained from the LBM are quan-
titatively compared to those obtained by a finite
volume method [7]. A similar boundary conditions
were used. The comparison is made along the cen-
terline AB and the cross line CD. We have achieved
acceptable agreement between the results obtained
from the LBM and the results obtained from the finite
volume method (FVM) for the two components of
the velocity (Fig. 3(a)–(d)). The two methods show
that the maxima of vx are shifted towards the outer
walls before entering the expansion region and these
maxima approach the wall as the Reynolds number
increases (since the velocity component increases).
As it is shown in Fig. 3(a) for Re= 1, the maximum
difference in the x-component of the velocity occurs
at the center point which faces the divider for Re= 1.
That is because of the flexibility of the finite volume
method in performing local grid refinements at com-
plex regions. For Re= 200 and 1250, the differences
are less than 1%. We also observe that the LBM
solution approaches the FVM solution as the grid is
refined (see e.g. Fig. 3(a)).

The shear stress component, σxy, shows good agree-
ment for both methods, as it is shown in Fig. 3(e)–(g)
for the three Reynolds numbers. It is worth noting that
the bounce back rule yields good results for the shear
stress close to the wall, since σ not affected by the
constant slip velocity.

While looking at the results along the centerline
AB, we have observed good agreement for vx (data
not shown). Due to symmetry, vy must be zero along
AB. Fig. 3(h) compares the pressure drop along the
centerline AB for the three Reynolds numbers. In this
case, discrepancy in the pressure drops has been ob-
served. The maximum difference between the two so-
lutions is about 20%, which occurs at low Reynolds
number, near to the divider.

3.2. Changing geometry

During vascular surgical planning, we envision that
different geometrical solutions need to be tested on

the patient anatomical image provided by a suitable
imaging technique. Conventionally, with NS solvers,
for each newly suggested geometrical solution SN , the
previous solution SO is discarded, a new grid GN has
to be generated and the simulation has to be restarted
to obtain the solution SN . This may take consider-
able amount of simulation time. However, there ex-
ists some CFD methods which are fully adaptive, such
as the finite difference methods. In this section, we
present primitive results on adaptivity of lattice Boltz-
mann method. Given a geometry G(t0) at time t0,
we first run the lattice Boltzmann solver towards ob-
taining the solution S(t0) while monitoring for a new
geometry, not too different from the previous geom-
etry. If at time ti the user introduces a new geome-
try G(ti), the simulation instantaneously adapts to the
new grid and resumes towards obtaining the solution
S(ti) without a need to restart. The user may end up
with a solution SN for the geometry G(tN). If the lat-
tice Boltzmann method is robust enough, the simula-
tion time from t0 to tN could be less than the sum of
convergence times T 0

i for each individual simulation,
i.e. tN − t0 <

∑N
i=0 T

0
i . Moreover, the accuracy in SN

must be the same as the solution SN(restart) which is
obtained by restarting the simulation. This is shown
consequently.

We have conducted a number of 2D simulations on
the bifurcation benchmark introduced in the previous
section, but allowing the bifurcation angle θ to change
during the simulation after equal number of time steps.
We have selected this benchmark for its similarity to
the planning of a bypass for a diseased artery, where,
the surgeon tries different paths to implant the host
artery.

The simulation starts at t0(θ) at θ = 20◦ and the
system evolves towards the solution S(0) a number of
time steps i. At time t = i, the angle is increased by δθ
and the simulation resumes towards the solution S(i)

for the geometry G(i) another i number of time step
after which the geometry G(2i) is introduced and so
on, till we end up with θ = 80◦ as our final G(N)
geometry. The simulation then converges to the solu-
tion S(GN(ni)). In lattice Boltzmann method, the sys-
tem converges directly after the mass and momentum
reach a given tolerance, chosen to be less than 10−5

for momentum and less than 10−9 for mass.
Technically speaking, the initialization and the

update of the new geometry are the critical factors
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Fig. 3. Comparison of LBM velocity profiles (upper four graphs) and shear stresses (lower left) with the FVM solution along the line CD
of the symmetric bifurcation for Re= 1, 200 and 1250 with different grid resolutions. The lower right graph shows the pressure drop
along the centerline AB.

which have direct influence on the total simulation
time, while the choice of boundary conditions affects
both stability and simulation time. In this experiment,
we have tested two simple initialization techniques.
In both methods, only if the status of a node in the

simulation box is changed from fluid to solid or from
solid to fluid, the node needs initialization. One way
to initialize is to put these nodes to their equilibrium
distributions which involves more computational time
than the other simpler initialization method such as
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Fig. 4. A lattice Boltzmann comparison between interactive sim-
ulations and restarted simulations in terms of simulation time for
a symmetric bifurcation benchmark.

assign them to an average value. It is noted that
the system forgets about the initialization method
in a short transitional time ttrans. Fig. 4 shows the
total number of nodes, the number of nodes to be
updated and the total simulation time for interactive
and restarted simulations. As shown in this figure, the
total simulation time during an interactively changing
geometry is in general smaller than the total simula-
tion time for each individual simulation. This reflects
a nice feature of the lattice Boltzmann method and
makes it quite suitable for interactive simulation en-
vironments. However, the computational gain is less
than 10% in this specific case. Application of accel-
eration techniques has proven to be feasible [4]. It is
noted that other Cartesian grid CFD techniques may
share this feature with the lattice Boltzmann method,
but the body fitted grid solvers such as the finite el-
ement methods will be faced with the time it takes
to adapt the new mesh. We are now using the lattice
Boltzmann as a core simulation system for an inter-
active virtual vascular treatment environment using
high level architecture (HLA)and a virtual 4D CAVE
environment for interaction and visualization [1,18].

4. Summary

In this study, we have shown that the lattice Boltz-
mann method can be used to simulate flow in fixed and
changing geometry of common interest to hemody-

namics. Steady flow in the symmetric bifurcation has
been studied and the results are compared to a finite
volume Navier–Stokes solver. The capability of the
lattice Boltzmann method for interactive simulations
has shortly been demonstrated by studying flow in a
changing geometry. It is found that the lattice Boltz-
mann solver can be an adaptive flow solver without
considerable difficulties.
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