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Chapter 1

Introduction

Physiology has widely been practised throughout time: along China’s Yellow River
long before the Chinese Civilisation, by the Indians along the Guanges River and
by Egyptians and Nubians along the River Nile. It flourished during the time of
Hippocrates (460–370 B.C.), the father of Western medicine and through the period
of Aristotle (384–322 B.C.) who tutored Alexander the Great. Galen (130–200 A. D.)
developed the first theories of anatomy and physiology and Ibn Sina (980–1037) made
further contributions with his Al-Qanoun. Ibn Ul -Nafis (1210–1288) became the
founder of coronary arteries circulations as we know it today and in his description of
pulmonary circulation. He was the main forerunner of Servetus, Vesalius, Colombo
and Harvey who in many ways proved the existence of the circulation1 (Harvey, 1628).
From this, a lot is known about how blood flows. The available literature is far too
extensive to be cited in a short introduction. The book of Hippocrates on aphorisms,
that of Aristotle on the Parts of Animals (384–322 BC), the Chinese book Nei Jing (the
Internal Classic) during 472–221 BC, Ibn Ul-Nafis commentaries on medicine, and
Harvey’s book On the Circulation of the Blood (1628) are a few treasures to mention.
However, all these attempts described the circulation in a qualitative way. The rules
of mechanics were not yet formalised.
The seventeenth and the eighteenth centuries witnessed considerable development
in mathematics, physics and related sciences. The concepts of calculus, instanta-
neous velocity and acceleration were introduced. Works on number theory and cal-
culus by Fermat (1601–1665) were published for the first time as was the follow-
ing three axioms of Newton (1642–1727) who also recorded the concept of viscosity
(Newton, 1687). Euler (1769) formulated the use of differential equations to describe
fluid flow. Cauchy (1823) introduced the concept of stress which continues to be at
the basis of today’s mechanics. Investigations of circulatory function in a Newtonian

1Ibn Ul-Nafis’ book on Sharh Tafseer al Qanoun was translated by Andrea Alpago in 1547. In this
book he stated that “The heart has only two ventricles ... and between these two there is absolutely
no opening. Also dissection gives this lie to what they said, as the septum between these two cavities
is much thicker than elsewhere. The benefit of this blood (that is in the right cavity) is to go up to the
lungs, mix with what is in the lungs of air, then pass through the arteria venosa to the left cavity of
the two cavities of the heart ...”
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sense by Hales1 established new quantitative and experimental concepts in the field
of haemodynamics, the science dealing with blood flow. During the time of the French
Revolution, Navier (1822) and Stokes (1845) derived the still accepted Navier-Stokes
(NS) partial differential equations that fully describe incompressible viscous fluids.
Following this, Poisson developed a theory that also holds for compressible fluids.
Meanwhile, the nature of elasticity attracted Thomas Young who studied the relation
between the velocity of propagation of the arterial pulse and the elastic properties of
arteries.2

It did not take long for the Navier-Stokes equations to be accepted as the equations
governing fluid flows. Nevertheless, these equations were, and still are very difficult
to solve, except for a few idealised cases. Therefore, the approach was still highly the-
oretical. Moreover, with the NS solution the fluid dynamic limit (at vanishingly small
mean free path) is singular at the shock regions. Thereafter, with the development of
research in partial differential equations and numerical analysis, it was possible to
extract useful information by finding numerical solutions to the NS equations.
During this period, relaxation methods and finite-element-like solutions were re-
ported (Schellbach, 1851). Bessel functions were fully developed by Bessel in 1824.
Hagen (1797–1884) and Poiseulle (1797–1869) established the experimental relation
between flow rate and pressure gradient for steady viscous flows, which has since
been worked out by Hagenbach in 1860 (see e.g. McDonald, 1974) who solved the
Navier-Stokes equations for a tube flow. The Webers’3 works on the influence of ves-
sel elasticity and the dynamics of wave motion on blood flow, together with Moens,
Korteweg and Résal has been a great contribution to understanding wave propa-
gation in the circulation (McDonald, 1974). Formation of differential equations for
problems of biological interest and attempts to solve them analytically or numerically
appeared by the end of the nineteenth century. As the computational need increased,
Charles Babbage (1792-1871) proposed the idea of an analytical engine as a comput-
ing machine. These are just a few of the great names associated with the historical
development of haemodynamics before the start of the twentieth century.
Theories on atomic constituents of matter and sooner, laws of statistical mechanics
and thermodynamics were under control since the beginning of last century. Clausius,
Maxwell and Boltzmann (1844-1906) are to be regarded as the founders. Statistical
mechanics explains how the properties of atoms such as mass, charge, and structure
determine the visible properties of matter such as viscosity, thermal conductivity,

1Hales, among other achievements, measured the arterial blood pressure (in the horse) for the first
time. He also introduced the concept of peripheral resistance. For his many achievements, he deserves
the title ’father of haemodynamics’, as suggested by McDonald, a pioneer in haemodynamics of the last
century.

2It is worth noting that Young, who was a practising physician as well as a physicist, gave an
interesting lecture to the Royal Society on the function of the heart and arteries (Young, 1809) in
which he said “ The mechanical motions, which take place in animal body, are regulated by the same
general laws as the motions of inanimate bodies... the circulation of the blood depends on the muscular
and elastic powers of the heart and of the arteries, supposing the nature of those powers to be known,
must become simply a question belonging to the most refined departments of the theory of hydraulics.”

3Weber brothers also pioneered in electrophysiology.
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pressure, and diffusion. Instrumentation enhanced as a consequence of war demand.
In the mean time, a new era of haemodynamics has flourished.
The early twentieth century started with a clear theoretical and experimental idea
about the mechanics of the circulation. Manometers capable of measuring pulsatile
flow were invented by Otto Frank (1903), leading to a huge accumulation of mea-
sured data on pressure pulse. Before and during World War I, sophisticated calcu-
lations, with the aid of a Pascal calculator, and reasonably precise measurements
of the macroscopic world have been made. The discovery of the string galvanome-
ter and its use in electrocardiography (het tele-cardiogram) by Willem Einthoven in
19061 opened a new chapter in the study of haemodynamics. Just before World War
I, vascular anastomosis and transplantation to treat stenosis and thrombosis were
remarkably successful (Carrel2, 1912). Thereafter, Frank (1927), Womersley (1955a,
1955b; 1955c) and McDonald (1955; 1960) introduced Fourier harmonics and came
up with the Womersley solution for pulsatile flow. From there on, theoretical develop-
ment about pulsatile flow has been completed; the Womersley solution well describes
the macroscopic nature of pulsatile flow in arteries. Interests were then shifted to-
wards closer investigation of blood rheology, and fluid-structure interaction. Theories
on non-Newtonian fluids and effects were developed and questions on high and low-
shear-limits were raised.
Since the middle of the twentieth century, the arterial system has been treated as
being in a steady-state oscillation produced by repeated heart beats and the cardiac
pulse was represented by its Fourier harmonics.
Computers of the first generation were hardly used by physiologists since they were
not widespread. Physiologists, like other researchers in fluid mechanics started to
think of modelling flow in more complex geometries. A need for computer simula-
tions was then realised. However, the history of computing during the 1950’s and
the 1960’s is of less importance to the development of haemodynamics, although it
is not the case for fluid mechanics. For instance, one of Mark I’s applications was to
solve ordinary differential equations by the Runge-Kutta method. Iterative solutions
of multidimensional partial differential equations were reported (e.g. Stone, 1968).
Numerical fluid dynamics, later called computational fluid dynamics (CFD) was iden-
tified (see Garrett Birkhoff in Nash (Ed.), (1990) for extended survey), but mostly
engaged in developing and understanding the fluid mechanics of war machines and
in space dynamics. However, shortly after the availability of computing facilities,
mathematical models and simulations of a biological nature began to develop (e.g.
Turing, 1952; Lindermayer, 1968). With the development in computer power, finite
difference method and the finite volume method were then ready to solve flow in
complex geometries. Primitive versions of the finite-element method were introduced
during the 1950’s (e.g. Argyris, 1952; Turner et al., 1956; Clough, 1960) and land-
marks in its development were established during the 1960’s (Przemieniecki et al.,

1The first cardiogram can be seen at http://www.einthoven.nl/images/fotos/eh002.jpg
2Carrel is also known with his “Man the Unknown” book (1935) in which he said “We must arise and

move on. We must liberate ourselves from blind technology and grasp the complexity and the wealth
of our own nature.”
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1965). Although the finite difference (e.g. Roache, 1972) and finite volume methods
(e.g. Spalding, 1981) were the ones most commonly used, significant difficulties in
modelling complex geometries and applying local grid refinement techniques to re-
solve flow in regions of large velocity gradients were faced until the finite element
method was matured in the late 1970’s (e.g. Girault and Raviart, 1979). However,
it was believed that the finite element method could not be applied to un-symmetric
operators, and therefore, use of the methods for solving fluid flow problems was not
realised until the first works on solutions of NS equations with the finite element
methods appeared (e.g. Oden, 1970; Oden and Somogyi, 1968, Aziz, 1972). There-
after, the mathematical theory, including priori error estimates was fully developed
and from that time the finite element method has become popular in solving many
engineering problems.
Until the middle of 1980’s, finite elements methods were not fully formulated to deal
with unsteady flow simulations in realistic geometries (van de Vosse, 1987). It is
worth noting that till that time, it was not possible to measure time-dependent flow
in vivo with the available techniques. This gave computational modelling a chance to
grow in order to fill this gap. During this period, hypotheses on arterial wall shear
stress and its relation to atherosclerosis were tested (e.g. Caro et al., 1969; Zamir,
1977). It may be stated that in vitro, idealised models, and animal experiments were
the main modes of cardiovascular investigations during the 1970’s.
During and since the 1980’s, a new era of computational haemodynamics has been
initialised, associating the dramatic increase in computational power, and enhance-
ments in imaging techniques and computational methodology. The localisation of
cardiovascular diseases in certain segments of hydrodynamic complexity has been re-
ported (e. g. DeBakey et al., 1985; Thubriker and Robicsek, 1995). Since then, the
finite element methods have become adequate and widespread in solving fluid flow
problems. In this thesis, most of the cited literature about computational haemody-
namics involve the finite element method as a flow solver.
However, the finite element method consumes both memory and computational time.
This is attributed to the time consuming generation of the body fitted computational
grid, and to the explicit nature of solving the Poison equation. With the development
of computer power and advances in parallization methods, the computational time
for finite element methods was significantly reduced. Nevertheless, a high demand
on interactive simulations is raised. The finite element methods are still far from
being interactive. An average simulation time for solving flow in a geometry like
the abdominal aorta may take half a day on a single processor of today’s technology.
Since the computational grid is body fitted, parallization of finite element method is
not straightforward as it is for Cartesian grids. Therefore, a tendency to prefer Carte-
sian grids is slowly growing. In addition, recent years have seen a growing interest
in developing numerical algorithms for compressible multi fluids with the need to
model multi-component flows. The difficulty in measurement of multi-component flow
properties (e.g. Baker, 1991) with traditional computational fluid dynamics solvers,
as they are faced with a challenge to produce physically correct solutions (e.g Igra
and Takayama, 2002; Fedkiw, 2002) raised a high demand in adopting new robust
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Figure 1.1: Evolution of lattice Boltzmann models in terms of applications (text) and
annual number of publications (columns). The graph is generated using the ISI Web
of Science and Science Direct digital databases.

techniques. Mixed finite elements techniques (Raviart, 1984) is now being used as a
standard way of deriving high-order conservative approximations.
New particle based methods such as dissipative particle dynamics, lattice gases
and lattice Boltzmann methods have been developed and matured (McNamara and
Zanetti, 1988; Higuera and Succi, 1989; Qian et al., 1992; Aharonov and Rothman,
1993; Behrend, 1995). These mesoscopic techniques have been proved successful in
many applications (see Fig. 1.1) and may be quite useful for haemodynamic research,
as, among other features, they are more flexible in modelling suspensions.

1.0.1 Going Mesoscopic

It is well known that accurate predictions of the behaviour of fluids is possible with
the standard macroscopic representation in which the continuum hypothesis1 and lo-
cal thermodynamic equilibrium are assumed. The validity of a macroscopic approach
holds only if all macroscopic length and time scales are considerably larger (a few

1Matter is assumed to occupy every point of the space of interest, regardless of how closely the
material is investigated.
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hundreds) than the largest molecular length and time scales1 (e.g. 60 nm and 0.1
sec for nitrogen). The Navier-Stokes equations treat the fluid macroscopicly. There-
fore, they are only valid when the length and time scales are such that the fluid is
in local thermodynamic equilibrium. With large spatial and temporal gradients, local
thermal equilibrium may not be guaranteed over the macroscopic time sclaes and the
NS equations would not be an accurate mathematical model to solve. For a better
understanding of macroscopic behaviour, and for more accuracy, one may investigate
the microscopic world of cells and atoms. The question of whether it is time to go mi-
croscopically in haemodynamics may be argued for some time to come, but it may be
realised, even now, that microscopic details about rheology of blood and the nature of
cardiovascular diseases are needed, and the only way to understand that is by avoid-
ing idealistic simplifications when investigating blood mechanisms. For instance, the
non-Newtonian behaviour of blood flow, the chemical interaction with the enzymes
produced in the arterial system and the drug-blood relation are all challenging us.
It can be argued that this is enough to try different approaches in haemodynamics.
Solving the NS equations, which are based on Newtonian mechanics of the macro-
scopic world, is not enough to handle this problem. Unfortunately, the computational
power is far behind performing molecular dynamics simulations2 even in a tiny arte-
rial segment3. As one cannot construct a fully deterministic theory of many particles
in motion, the introduction of statistical mechanics by Maxwell (1866) and Boltzmann
(1872)4 provides an alternative approach with which the high abstraction of macro-
mechanics is limited. Statistical mechanics suggests Boltzmann transport equation
as an alternative mesoscopic approach to Newton’s laws of motion. This has been
recognised as a real breakthrough in theoretical physics.

The Boltzmann equation is still hard to solve and only perturbative approximations
are used in fluid dynamics (Caflisch, 1983). Numerical solutions of the Boltzmann
equation have many applications, ranging from nuclear reactor design, through med-
ical radiation physics, to high energy physics. Both deterministic and stochastic ap-
proaches are widespread. Deterministic solutions are fast, but are usually associated
with discretization errors. Monte Carlo methods are more accurate but are quite slow.
Recently, considerable efforts have been made in both directions.

1The length scale is usually taken as the mean free path between collisions while the time scale is
represented by the time between successive collisions.

2In molecular dynamics, the interaction between individual molecules is computed for the whole
system.

3For 100k atoms, it takes a week to simulate a nanosecond on an Athlon cluster of 32 processors with
NAMD, a molecular dynamics code designed for high-performance simulation of large biomolecular
systems. See http://www.ks.uiuc.edu/Research/namd/

4Boltzmann was the first to show that the entropy increases with time. His atomic hypothesis gave
him a hard time that he didn’t survive to see being proved one year after his death.
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1.0.2 Choice of the Numerical Method
Just after World War II, the ENIAC computer was built. This changed the world
of computing in many aspects. The early Monte Carlo calculations1 and sampling
techniques were made possible (e.g. Richtmyer and Metropolis, 1949) and with the
introduction of the cellular automata by von Neumann in 1948 (the universal com-
puting machine, to mimic the complexity of nature), computers have been recognised
as a kind of experimental laboratory rather than just number processing devices.
Since then, Lattice Gas automata (LGA), a special category of cellular automata,
were developed and have been proved to model hydrodynamics in a much simpler
way than the conventional computational fluid dynamics solvers. Although it may be
considered as a particular class of cellular automata with some additional constraints
(Rivert and Boon, 2001), lattice gases can be described, from a physical point of view,
as a simple fully discrete microscopic model of a fluid in which fictitious particles
reside on finite regions of a regular Bravais lattice. It is therefore a particle-in-cell
method, in which the continuous physical domain is broken-up into a number of dis-
crete states. Particles move with discrete velocities, stream to neighbouring sites
where they collide under collision rules and stream again in a continuous way till a
predefined equilibrium state is reached. Currently there are a considerable number
of lattice gas models, being adapted to simulate specific applications. More details on
lattice gas hydrodynamics were described in the recent books of Rothman and Zaleski
(1997), Chopard and Droz (1998), and Rivet and Boon (2001).
Although they proved successful in returning the elegance of Physics, lattice gas mod-
els were met with two major difficulties: they are very noisy due to their Boolean
nature2, and they do not satisfy Galilean invariance3 due to the velocity dependent
density in the equations of motion.
Being established to overcome these problems, the lattice Boltzmann method (LBM)
may be considered as an attractive alternative to conventional computational fluid
dynamics solvers such as the finite elements and the finite difference methods. This
is due to its simple implementation, straightforward parallelism, easy grid genera-
tion and its proven capability in simulations of multi-component flows and complex
geometry. The lattice Boltzmann method is nowadays considered as a matured com-
putational fluid dynamics flow solver. The method competes with traditional Navier-
Stokes solvers by directly obtaining the pressure without a need to solve the Poisson
equation and obtaining the stress tensor without using simulated velocity gradients.
This strong argument is not yet taken seriously since the method is still developing
while the conventional solvers are quite mature.
This motivated us to test the capability of the method in the field of haemodynamics,
in which it is hardly used, although it has often been argued that the method has
many capabilities that may attract researchers in haemodynamics. Pioneering work

1It is believed that Enrico Fermi (1901-1954) was the first to use what was to be called later the
Monte Carlo method in studying the moderation of neutrons in 1930’s in Rome (see Nash (Ed.), 1990).

2The lattice gas intrinsic fluctuations may be used to capture the essentials of actual fluctuations
in real fluids. For more details see Rivet and Boon(2001).

3A frame of motion is Galilean invariant if the equations of motion do not change in all other frames.
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in this direction was done by Krafczyk et al. (1998).

1.0.3 Objectives of This Study
As the complex nature of blood flow in the human arterial system is still gaining more
attention, and since cardiovascular diseases are considered a leading cause of death
in the developed world and are now becoming more prevalent in developing countries
(World Health Organisation, 2002), the main objective of this thesis is to better under-
stand the nature of blood flow in realistic geometry (namely patient specific geometry
produced from medical scanners) through solving the mesocopic Boltzmann transport
equation with a simple to generate grid via the lattice Boltzmann method. Other ob-
jectives include testing capabilities, robustness, accuracy and performance of the lat-
tice Boltzmann method for unsteady flows and development of tools to enhance them
towards interactive simulations. Relevant flow quantities will be validated through
experimental and/or macroscopic numerical data. The outcomes of the study will be
used to develop a computer-aided surgical planning environment in a Grid-supported
virtual environment.

1.0.4 Thesis Overview
In Chapter 2, we briefly review the basics of haemodynamics, focusing on recent devel-
opment in mathematical modelling of blood flow circulation. Then we present model
considerations. This chapter is based on available literature which may be referred
to for further details.
A derivation of the lattice Boltzmann method from the Boltzmann equation and the
discussions on its benefits and drawbacks are dealt with in Chapter 3. Formal er-
ror analysis and its relation to hydrodynamics non-dimensional parameters for time-
dependent flows is presented. The advances in the theory of lattice Boltzmann meth-
ods are highlighted with a special focus on features related to time-dependent flows.
As the grid is Cartesian, discretization errors are eliminated in a two-dimensional
benchmark simulations, aiming at understanding the error behaviour of the lattice
Boltzmann method in detail. This is presented in Chapter 3 which involves steady
flow in simple 2D geometries. A comparison with a conventional computational fluid
dynamics solver is made.
Although the lattice Boltzmann method is easy to implement, it is not yet fully de-
veloped to deal with boundaries different than fluid ones. There are a number of
boundary conditions that may be used but they are highly sophisticated and may vi-
olate the conservation laws and the stability of the system. However, there are some
boundary conditions that are now popular due to their robustness in dealing with
complex geometries. In this study, we focus only on those boundary conditions we
believe can be used without difficulty in computational haemodynamics. In Chapters
4, 5, 6 and 8 initial and boundary conditions are studied.
In Chapter 5 three-dimensional pulsatile flow benchmarks are investigated. The
Womersley solution is recovered within a very high accuracy.
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One objective of this thesis is to seek a possibility of using the lattice Boltzmann
method as a core for an interactive simulation environment believed to be useful in so
called predictive medicine. Reasonably, computational aspects of the standard lattice
Boltzmann method are discussed in Chapter 6, while Chapter 7 discusses acceleration
techniques for time dependent flows.
Simulation results of steady and unsteady flow in a model of the human aortic bifur-
cation reconstructed from Magnetic Resonance Angiography are presented in Chap-
ter 8 as a typical haemodynamic application. Velocity profiles and shear stress are
presented and visualised. Qualitative and quantitative analysis of the flow fields and
the shear stress are presented.
Although some studies on flow in elastic tubes were investigated by the author and
others (Hoekstra et al., 2003), results on flow in elastic structures are not discussed
in this thesis.
Chapter 9 concludes the thesis with a brief summary, concluding remarks and plans
for future work. Acknowledgement is given at the end of the thesis.
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Chapter 2

Model Considerations

“Life is short, Art is long”

Hippocrates

Haemodynamics comprises three major problems: the physics of pressure and flow in
the circulation, its role in the living systems and the use of this knowledge for diag-
nostic and clinical activities. This chapter is concerned with the physical principles
of the mechanics of the circulation in large blood vessels. The governing equations of
motion are studied and major flow characteristics in simplified geometries are inves-
tigated. Most of the brief treatment in this chapter follows some of that available in
literature (McDonald, 1974; Pontrelli, 1998)

2.1 Blood
Blood is a suspension of formed blood cells and some liquid particles (the chylomi-
crons) in an aqueous solution (the plasma). The most important mechanical property
of blood that influences its motion is the apparent viscosity η, which relates the shear
rate γ and the shear stress σ. If this relationship satisfies the Newton’s law of viscosity

σ = −η γ (2.1)

where the viscosity η is independent of the shear rate γ, the fluid is known to be New-
tonian. In this sense, blood is a non-Newtonian fluid, especially when the shear rate is
small, in small vessels and arterioles. Experimentally, it has been reported that when
the shear rate is about 1000 sec−1, a typical value in large vessels, the non-Newtonian
behaviour becomes insignificant and the apparent viscosity asymptotes to a value in
the range 3 – 4 cP1 (Caro et al., 1978), while for low shear rate (γ < 1 sec−1) it rises
steeply. The red cells are in part responsible for the non-Newtonian behaviour. More
details can be found in literature (e.g. Caro et al., 1978). The rheological properties of

1The poise (P) is the CGS unit of viscosity. 1P = 1 g cm−1sec−1. The centipoise (cP) is one hundredth
of a Poise.
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non-Newtonian fluids are quite different from those of the Newtonian ones. The shear
rate dependent viscosity, normal stress differences, secondary flows, stress relaxation
and creep are all challenging behaviours that need to be handled carefully. Numer-
ous empirical models for the viscosity of non-Newtonian fluids have been proposed
(e.g. Chrochet and Walters, 1983; Pontrelli, 1997). These can be categorised into
two main groups (see e.g. Bird, Stewart and Lightfoot, 1960); two-parameter mod-
els (e.g. Bingham model and Ostwald-de Waele model, known as the power law) and
three-parameter models (e.g. Ellis model and Reiner-Philippoff model). For blood, the
viscosity depends mainly on the protein concentration of the plasma, the deforma-
bility of the blood cells, and the tendency of blood cells to aggregate (Fung, 1993).
Consequently, the viscosity of blood varies with the shear rate of the flow. It increases
with decreasing shear rate1, increasing haematocrit, decreasing temperature, and
with the tendency of cells to aggregate. Additional factors may affect the viscosity in
micro-vessels.
For some unsteady flows, such as blood flow in the human circulation, the liquid gen-
erally demonstrates both a viscous and an elastic effect, both of which determine the
stress-strain relationship. Such liquids are called viscoelastic. Blood plasma shows
viscosity, while whole blood is both viscous and elastic. The viscosity is related to the
energy dissipated during flow, while elasticity is related to the energy stored during
flow due to orientation and deformation of red blood cells (Thurston, 1972; Lowe and
Barbenel, 1988; Kasser et al., 1989; Sharpa et al., 1996). The Newtonian model can
be generalised into σ = η(A)A where A = L+LT with L = ∇~v and

η(A) = η∞ +(ηo −η∞)

[

1+ log(1+ Γγ̇)
1+Γ γ̇

]

(2.2)

where γ̇ =

√

tr(A2)
2 , ηo and η∞ are the asymptotic apparent viscosities as γ̇ → 0 and ∞ re-

spectively, and Γ is a positive material constant (dimension of time) representing the
degree of shear-thinning. The dot over a variable denotes the substantial derivative
D/Dt given by D/Dt = ∂/∂t +~v ·∇.
Another model for viscosity is the Oldroyed-B model (Oldroyd, 1950 and 1958) three-
parameter shear-thinning model, given by

σ+λ1 (σ̇−Lσ−σLT ) = η(A+λ2(Ȧ−LA−ALT )) (2.3)

in which η is a constant, λ1 and λ2 are two constants usually known as the relaxation
and retardation constants, respectively.
A recently accepted model for blood viscosity is that proposed by Pontrelli (1998),
which combines the generalised Newtonian model with the Oldroyd-B model which
considers the creep, the normal stress and the stress relaxation effects with constant
viscosity. This yields

σ+λ1 (σ̇−Lσ−σLT ) = η(A) A+η0λ2(Ȧ−L A−A LT ) (2.4)
1In some fluids, known as shear-thickening fluids, viscosity increases with shear rate. In others,

known as shear-thinning fluids, viscosity decreases with increasing shear rate. In blood, both thicken-
ing and thinning behaviour is observable.
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where σ is the extra stress1, L = ∇~v,A = L+LT and the viscosity η(A) is computed from
the Generalised Newtonian model, as given by Eq.(2.2). This generalised Oldroyd-
B model (GOB) captures most of the important characteristics of blood. For de-
tails on evaluations of these models, we refer to the Ph. D. thesis of Yeleswarapu
(Yeleswarapu, 1996).

2.1.1 Simplifications
Experimentally, three main regions that categorise the relationship between shear
rate and blood viscoelasticity have been observed:

• at low shear rate (γ < 10 sec−1) the cells are clustered in large aggregates with
diminishing nature as the shear rate is increased. The viscosity and the elastic-
ity are of O(10−1) Poise. In this region, blood is absolutely non-Newtonian.

• at medium shear rate (10 < γ < 100 sec−1), the clusters are disintegrated and
forced to be oriented. The viscosity is of O(10−3–10−2) Poise, decreasing with
increasing shear rate. The elasticity is of O(10−1) Poise but slightly less than at
low shear rate.

• with increasing shear rate (γ > 100 sec−1), the cells are deformed and they tend to
form layers that slide on plasma. To a fair approximation, blood can be treated
as Newtonian in this region.

In this study our focus is on large blood vessels, such as the abdominal aorta in which
the shear rate exceeds 100 sec−1 and therefore, to the first approximation, we consider
blood to be Newtonian. Available numerical studies on non-Newtonian behaviour
have shown minor influences on the flow in large vessels (e.g. Gijsen et al., 1999; Cole
et al., 2002). We also assume that blood is an isotropic, homogeneous and incompress-
ible fluid.

2.2 Fluid-Structure Interaction
The walls of an artery are distensible tubes of complex elastic behaviour. The diame-
ter of the vessel varies with the pulsating pressure. Being elastic, it also propagates
pressure and flow waves generated by the heart at a velocity of magnitude mainly de-
termined by the elastic parameters of the wall and the pressure gradient. It is to be
noted that, the distensibility of wall vessels is essential for the wave to propagate, as
for a fluid like blood flowing in a rigid tube, the wave would unrealistically propagate
with the speed of sound in blood (about 1500 m/sec) (McDonald, 1974).
However, fluid-structure interaction is rather a challenge in haemodynamics. This is
due to the complex structure of the arterial wall (fibrous elastin and collagen sup-
ported in a fluid) and its elastomer behaviour2. With the advances in Computa-

1The Caushy stress tensor is T = −pI +σ with p the pressure.
2Elastomers are easily extensible
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tional Fluid Dynamics (CFD) and development of computing power, studies on fluid-
structure interactions have been reported. In lattice BGK models, this field is under
development (Chopard and Marconi, 2002) and only a few applications are present
in the literature (e.g. Fang et al., 2002; Hoekstra et al., 2003). The promising future
of new imaging techniques such as magnetic resonance elastography (Weaver, 2001)
may allow accurate estimation of elastic properties of the vessels and motivate the
need for more complex simulation models. However, the Poisson ratio1 for arterial
walls is approximately 0.5, making the deformation nearly isovolumetric.
In large vessels, such as the aorta and the carotid, a maximum change of 10% in
the vessel diameter is expected. This results in the same change in the Womersley
parameter (α = R

√

ω
ν , with ω the angular frequency and ν the kinematic viscosity)

and the Reynolds number (Re = UD/ν with U the velocity and D the diameter). For
the aorta under resting conditions, the Womersley parameter is 16 if the wall is rigid
and is in the range 14.5−17.6 under elastic assumption, while the Reynolds number
is 1150 for rigid wall approximation and is in the range 1035–1265. The effect is
therefore quite minor for large arteries. Therefore, to first approximation, rigid wall
assumption is reasonably valid in large arteries.

2.3 Equations of Motion
Even with the above simplifications, it is still difficult to mathematically describe the
mechanics of the circulation for the whole body. One way to study this complex system
is to consider flow in an isolated single segment. The whole system may be studied
using electric network similarity (see e.g. Berger, 1993).
For an isothermal fluid, the equations of conservation of mass and momentum fully
describe the macroscopic behaviour of the viscous flow. The rate of mass accumulation
is always equal to the difference between the rate of incoming and outgoing masses.
This leads to the well known equation of continuity

Dρ
Dt

+ρ(∇ ·~v) = 0 (2.5)

which simplifies to
∇ · ~v = 0 (2.6)

for incompressible fluids. The conservation of momentum follows from Newton’s sec-
ond principle: Mass per unit volume times acceleration is equal to the sum of three
forces; the pressure force, the viscous force and, if exists, the external force, all per
unit volume

ρ
D~v
Dt

= −~∇p−~∇ ·σ+ρ~G (2.7)

In these equations, ρ is the density (ρ = 1.05gm/cm3 for blood), D/Dt is the substantial
derivative, p is the pressure, σ is the stress tensor (symmetric and second order) and

1It is the ratio of transverse to longitudinal strain
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~G is the external force. There are five unknowns (velocity components, pressure and
density) in four equations. It follows that one more equation is needed to uniquely
determine the solution of the system. This equation is provided by applying a bound-
ary condition. Boundary conditions are equations in the unknowns, holding only in
three dimensions (any three of x,y,z, t in Cartesian coordinate system). The general
specifying equation for the boundary conditions may be written in the form

F(p,ρ,~v,x,y,z, t) = 0 . (2.8)

Assigning a boundary condition to the equations of motion results in a simplified set
of equations suitable for a specific type of flow problems. For example, assuming
constant density and viscosity results in the celebrated Navier-Stokes equations for
incompressible Newtonian fluids

ρ
D ~v
D t

= −~∇p+µ~∇2~v+ρ~G, (2.9)

and for negligible viscous effects, ~∇ ·σ = 0, this reduces to the Euler equation

ρ
D~v
Dt

= −~∇p+ρ~G. (2.10)

The energy equation will not be used in this study and therefore, is not presented
here. We assume that the system is isothermal. In this study, analytic solutions
for the used benchmarks will be presented whenever needed. It is understood that
the equations presented here are the fundamental equations used to derive these
solutions and therefore, it will not be necessary to derive the analytical solutions for
these benchmarks.

2.3.1 The Boltzmann Equation
From a CFD point of view, the Navier-Stokes equations are adequate enough to de-
scribe macroscopic fluid flow phenomena through simple structures. As mentioned in
the introduction, there is always a need to go more complex in order to understand
the complexity of nature. Going complex may involve a choice of going microscopic up
to the molecular dynamics, or even more.
In kinetic theory, an alternative description for monatomic gas dynamics is given
through the Boltzmann equation (Boltzmann, 1872)

∂ f
∂t

+ ~ξ · ∂ f
∂~x

+ ~G · ∂ f

∂~ξ
= Q( f , f ) (2.11)

where f = f (~x, ~ξ, t) is the distribution function, ~x and ~ξ are the position and velocity
vectors of a molecule, ~G is the force per unit mass acting on the molecule, Q( f , f ) is
the quadratic collision operator and t the time. This equation can be used to describe
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fluids in the limit of small mean free path between molecular collisions, which en-
ters the equation as a collision rate. This implies that f should not be far from the
Maxwellian1

g = ρ(2πRT )−D/2 exp[− (~u− ~ξ)2/2RT ] (2.12)

where R is the ideal gas constant, T the absolute temperature of the fluid, D the
spatial dimension and~u−~ξ is the peculiar speed. The speed of sound in kinetic theory
is defined as (Chapman and Cowling, 1970)

cs =
√

γR T (2.13)

with γ = 1+2/D the ratio of specific heats. By applying conservation laws to the Boltz-
mann equation, and assuming that f is Maxwellian, one can derive the compressible
Euler equation for the hydrodynamic variables.

2.3.2 Solution of the Boltzmann Equation
As it is difficult to solve the Boltzmann equation, numerical perturbation approaches
have been introduced. There are a few different ways to find asymptotic solutions
for the Boltzmann equation and bridge the link between the mesoscopic Boltzmann
equation and the macroscopic hydrodynamic. Examples are:

• Hilbert expansion: The Boltzmann equation is solved by expanding both the
velocity distribution function and the macroscopic variables in a power-series of
the Knudsen number (Cercignani, 1971; Sone et al., 2000). The leading terms of
the resulting equations involve the Euler equations but not the Navier-Stokes
equations.

• Chapmann-Enskog expansion: Here the velocity distribution function is ex-
panded while the macroscopic variables are not. The leading terms of the result-
ing equation include, in addition to the Euler equation, compressible Navier-
Stokes equations, which approximate to incompressible Navier-Stokes equa-
tions in the limit of low Knudsen numbers. Higher order defects are reported
(Sone et al., 2000). This technique is still the most popular in the lattice Boltz-
mann community and will be adopted in this study, although it is more complex
than the other approaches.

• Diffusive scaling: By considering the finite discrete velocity model of the Boltz-
mann equation and scaling of~x →~x/ε and t → t/ε2, the generalised lattice Boltz-
mann equation is obtained. Adopting the diffusive scaling and equivalent mo-
ment techniques lead directly to the incompressible Navier-Stokes equations
(Inamuro et al., 1997; Junk et al., 2002). This way, the accuracy of the lattice
Boltzmann equation can be realised as second order in space and first order in
time.

1The Maxwellian distribution function describes equilibrium states as characterised by no heat flux
or stresses other than the isotropic pressure. The Maxwellian is not an exact solution of the Boltzmann
equation.
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In addition to variational methods (Cercignani, 1983). More details on the solution of
the Boltzmann method by means of the Chapmann-Enskog expansion are discussed
in the next chapter.

2.3.3 The Hydrodynamic Stress Tensor
For its importance in haemodynamics, it is worth adding a short note about the hydro-
dynamic stress tensor. If a fluid is viscous, energy is dissipated during its motion due
to thermodynamic irreversibility of internal friction and thermal conduction. This
will affect the fluid motion. Dissipation of energy is always associated with momen-
tum flux whose density can be described by the symmetric tensor Πik which gives the
ith component of the amount of momentum flowing in unit time through unit area
perpendicular to the xk-axis. The momentum flux density tensor in a viscous fluid of
mass density ρ and viscosity η moving with velocity ~vi takes the form (Landau and
Lifshitz, 1975)

Πik = ρvivk −σik , (2.14)

where
σik = −pδik +η(

∂vi

∂xk
+

∂vk

∂xi
) = −pδik +2ηSik, (2.15)

is the stress tensor for an incompressible fluid, p is the scalar pressure, δik denotes
the unit tensor, and

Sik =
1
2
(

∂vi

∂xk
+

∂vk

∂xi
) (2.16)

is the strain rate tensor. In order to estimate the stress tensor components of an in-
compressible fluid, derivatives of the corresponding velocity profiles are convention-
ally computed from the measured or simulated velocity profiles. However, the lattice
Boltzmann methods obtains it directly, as will be seen in the next chapter.

2.4 Specifying Simulation Parameters
In order to simulate flow in a model representing a segment of the cardiovascular
system, different input parameters must carefully be selected. Some of them are
addressed here.

2.4.1 Flow Rate
As it is patient specific, choosing a flow rate for a study is not an easy task. How-
ever, for a new computational method like the lattice Boltzmann model, validation
with existing studies is needed. Therefore, we have selected two existing flow rates,
recently studied by Moore et al. (1994a) and Taylor et al. (1998). The two flow rates
are similar in shape and their average does not differ. The shape of the flow rate will
be shown together with simulation results produced by it.
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It is more important to remark that the flow is derived mainly by the pressure gradi-
ent and not the pressure itself. It is to be noted also that the Poiseulle formula, which
relates the pressure gradient and the flow rate for steady flows, is not valid here (see
McDonald, 1974 for valid relationships). In our simulations of realistic geometry, the
flow rate waveform is Fourier transformed up-to the 8th harmonics (a constant + 8
sines + 8 cosines). Frequently, we also use the oscillatory components of a pressure
gradient derived from a measured aortic pulse to reproduce oscillatory Womersley
solution.

2.4.2 Viscosity
In a Newtonian sense, viscosity may be defined as the force required to move a unit
area through a fluid to create a unit velocity gradient. Viscosity is also patient de-
pendent and is quite sensitive to many parameters, especially the haematocrit and
temperature. The value taken for blood, with a haematocrit of 45%, is acceptably
taken as 4.0 cP at 37o.

2.4.3 Dimensionless Numbers
In fluid flows, each of the pressure, viscous and transient forces dominates under
certain conditions. In order to investigate the importance of each of these forces, the
equations of motion are written in a dimensionless form, through defining dimension-
less parameters. The major dimensionless numbers used in this study are

• The Reynolds number which indicates the relative significance of the viscous
effect compared to the inertia effect. It is defined as

Re =
UD

ν
(2.17)

where D is a characteristic length (such as the tube diameter), ν = µ
ρ is the kine-

matic viscosity and U is the maximum velocity1. A large Reynolds number in-
dicates that the convective inertia forces are dominant, while at low Reynolds
numbers the shear forces influence the flow. The Reynolds number gives an
idea about how far from turbulence we are. Experimentally, three regions can
be recognised: laminar flow at low Reynolds numbers (0 < Re < 2300), transient
flow (2300 < Re < 4000) and turbulent flow (Re > 4000). For the flow in the cir-
culation, since the geometry is not regular, the characteristic length is defined
as D = 4m = 4A

C where m is the mean hydraulic depth, A is the cross section of
the vessel (the vascular bed) and C is its circumference. Typical Reynolds num-
bers in the circulation are Re = 6000 in the ascending aorta, Re = 1150 in the
abdominal aorta, Re = 500 in the carotid artery, and can be as small as one in the
arterioles. It is to be noted that, in the circulation, the Reynolds number should
not be used as the only measure of the stability of the flow, as early turbulence,

1The Reynolds number may be also defined in terms of the average velocity.
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flow mixing, vortex formation and back-flow may occur due to the complex ge-
ometry of the arterial system. The best way to describe qualitatively flow in the
circulation is to call it “disturbed flow”.

• The Womersley Number which is the ratio of the transient inertia force to the
shear force

α =
D
2

√

ω
ν

(2.18)

where ω = 2π f = 2π
T is the angular frequency, with f the frequency and T the

period of oscillation. If α is large, the transient inertia force dominates, while
the viscous force dominates at low Womersley numbers. Typical values for the
Womersley number in the circulation are α = 16 in the abdominal aorta and
α = 9 in the carotid artery under resting conditions. Under exercise conditions,
the Womersley parameter increases as a consequence of the increase in the heart
rate.

• The Strouhal Number which determines the time available for vortex forma-
tion to occur. It is defined as

St =
D f
U

(2.19)

which can be rewritten as St = 2 α2

πRe
. It therefore combines the influence of

Reynolds and Womersley numbers. Typical values in the circulations are St =
0.14 in the abdominal aorta and St = 0.10 in the carotid artery.

• The Mach Number which measures the velocity of a fluid relative to the speed
of sound in the fluid. It is only important when dealing with compressible fluids.
Although it is accepted that blood is an incompressible fluid, the Mach number
plays an important role in this study due to the compressible nature of the used
lattice Boltzmann solver (see Chapter 7).

There are many other non-dimensional parameters that are useful in fluid mechanics,
but in this study we will deal only with the above mentioned.
In the next chapter, we review the numerical method involved and discuss the influ-
ence of these parameters on the error behaviour of the method.
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Chapter 3

Numerical Method

“It is the People’s method.”

Li-Shi Luo, Shanghai, Discrete Fluids Conference, 2002.

“Reaching full maturity is just a matter of time and labour, no conceptual hurdles in
sight.”

Sauro Succi, 2001.

In this chapter, the theory of lattice Boltzmann methods is reviewed. The advantages
and drawbacks in comparison with the classical computational fluid dynamics (CFD)
techniques are highlighted. The accuracy and performance of the method are briefly
discussed.

3.1 Introduction
For many years to come, a necessity for efficient and robust numerical CFD solvers
will be demanded by computational scientists who work at the edge of available com-
puter power. It has been realised by many authors that transport phenomena can
be studied from a kinetic theory point of view (e.g. Caflisch, 1983; Ramaswamy,
2001), where an alternative description is given through the Boltzmann equation
for the density function f (t, ~x, ~ξ) for particles of velocity ~ξ at point ~x and time t.
The Boltzmann equation is derived from Newton’s laws of motion in the limit of a
large number of particles. Although the Boltzmann equation was mainly developed
for ideal gases, nevertheless, in the limit of small mean free path between molecu-
lar collisions, a gas may be considered as a continuum fluid1. The main advantage
over solving the Boltzmann equation instead of the Navier-Stokes equations is that
Navier-Stokes equations are not adequate to model flows in which the local Knudsen
number lies in the continuum regime, since they are based on small deviation from
local thermodynamic equilibrium, while the capability of the Boltzmann solution to

1The number of gas molecules in a cubic centimetre is given by Loschmidt number N = p/kT .



26 Numerical Method

capture complex fluid behaviour even near shocks is a fact (see Cerignani (1975) for
details and Pareschi and Russo (2001) for recent developments). After the link be-
tween the Boltzmann equation and hydrodynamics was well established (Cercignani
1971; Caflisch, 1983), a need for efficient solvers was raised, since the Boltzmann
equation is hard to solve. Perturbation techniques such as the Chapmann-Enskog
and Hilbert techniques were the common numerical solvers (Cercignani, 1971), with
the solutions obtained as asymptotes to the Boltzmann equation, after simplifying
the collision operator.

Soon after Frisch, Hasslacher and Pomeau (1986) introduced the lattice gas cellu-
lar automata (LGCA), an automata that is capable of capturing complex fluid nature
by just obeying conservation laws, a few shortcomings of LGCA were recognised and
intensively investigated. Those are, among others, the lack of Galilean invariance,
statistical noise1, low Reynolds number (high viscosity) and exponential complexity
of the collision operator (Succi, 2001; Rothman and Zaleski, 1997; Chopard and Droz,
1998). The earliest lattice Boltzmann method was introduced by McNamara and
Zanetti (1988) and Higuera and Jimenez (1989) to circumvent these shortcomings.
Although the idea was simply to replace the Boolean LGCA occupation numbers ni

with ensemble-averaged populations fi =< ni >, the system became capable to cap-
ture many features in the evolving nature, but complex enough, due to the complex-
ity of non-equilibrium statistical mechanics, needed to understand it. In the next
section a brief review on the hydrodynamics of the lattice Boltzmann method will be
presented for completeness. More details on the theory behind the lattice Boltzmann
method and the developments in that direction are available in literature (e.g. Qian
et al., 1992; Succi et al., 1993; Qian, 1993; Flekkφy and Herrmann, 1993; Chopard
and Droz, 2001; Succi, 2001) and interested readers may consult the last two books
or the proceedings of the 9th (2000), the 10th (2001) International Conferences on
Discrete Simulation of Fluid Dynamics, the DFG and Konwihr Workshop on Lattice
Boltzmann methods (LSTM Erlangen, 2001) and the 11th International Conference
on Discrete Simulation of Fluid Dynamics and Condensed Matter Physics (Fudan
University, 2002). There exist a number of lattice Boltzmann models, based on more
complex collision operators (known as Generalised LBE models) than the BGK ap-
proximation. As a first step, however, we believe that the lattice Boltzmann BGK
(simply the lattice BGK) model is quite adequate for the recent study that deals with
Newtonian fluids under laminar regimes. Use of Generalised models is recommended
in future work.

1An insight can be gained from these ’physically sound’ fluctuations. For details see Rivet and Boon
(2001).
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3.2 The Lattice Boltzmann Model
Although the lattice Boltzmann model historically evolved from the lattice gas au-
tomata, it was soon realised as a special discretisation of the Boltzmann equation

∂ f
∂t

+~ξ ·~∇ f = −Ji( fi) (3.1)

with the collision term −Ji( fi) later simplified by Bhatnagar Groos and Krook (BGK)
in 1954
to describes the evolution of the single particle distribution function f ≡ f (x,~ξ, t) for
particles that move with a microscopic velocity~ξ, collide with collision relaxation time
λ till they relax to the Maxwell-Boltzmann equilibrium distribution function g. Equa-
tion 3.1 then becomes

∂ f
∂t

+~ξ ·~∇ f = −1
λ
( f −g), (3.2)

A numeric solution for f is obtained by discretising Eq. (3.2) in the velocity space ~ξ
using a finite set of velocities ~ei, i = 0,1, ...,N, without violating the conservation laws
of the hydrodynamic moments. This gives

∂ fi

∂t
+ ~ei ·~∇ fi = − 1

λ

(

fi − f (eq)
i

)

. (3.3)

where fi(~x, t) ≡ fi(~x, ~ei, t) and f (eq)
i = f (0)

i (~x, ~ei, t) are the distribution function and
the equilibrium distribution function of ~ei, respectively. The equilibrium distribution
function, obtained by Taylor expansion of the Maxwellian distribution, usually takes
the following form in the limit of low Mach number

f (eq)
i = ρwi

(

1+
3
v2~ei ·~u+

9
2v4 (~ei ·~u)2 − 3

2v2~u ·~u
)

, (3.4)

where wi is a weighting factor, v = δx/δt is the lattice speed, and δx and δt are the
lattice spacing and the time step, respectively. The values of the weighting factor
and the discrete velocities depend on the used lattice Boltzmann model (LBM) and
can be found in the literature (see e.g. Mei et al., 2000). In this chapter, without
loss of generalisation, we use the D2Q9 model (Chen and Doolen, 1998) and and its
incompressible candidate D2Q9i, which has three types of particles on each node;
a rest particle, four particles moving along x and y principal directions with speeds
|~ei|= 1, and four particles moving along diagonal directions with speeds |~ei|=

√
2. The

hydrodynamic density, ρ, and the macroscopic velocity, ~u, are determined in terms of
the particle distribution functions from

ρ = ∑
i

fi = ∑
i

f (eq)
i (3.5)

and
ρ ~u = ∑

i
~ei fi = ∑

i
~ei f (eq)

i . (3.6)
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Equation (3.2) is then discretised in space and time into the well-known lattice BGK
equation

fi(~x+~ei δt , t +δt) − fi(~x, t) = − 1
τ
[ fi(~x, t) − f (0)

i (~x, t)] (3.7)

where τ = λ
δt

is the dimensionless relaxation time. Taylor expansion of Eq. (3.7) up to
O(δ2

t ) and application of the multi-scale Chapmann-Enskog technique (e.g. Chopard
and Droz, 1998) by expanding fi about f (0)

i and introducing two time scales1 t0 = t and
t1 = tδt (assuming that λ ∼ δt ), we can write the evolution equation as

(∂t0 + ~ei ·~∇) f (0)
i = −1

τ
f (1)
i (3.8)

to the first order, and

∂t1 f (0)
i +(∂t0 +~ei ·~∇)(1− 1

2τ
) f (1)

i = −1
τ

f (2)
i (3.9)

to the second order. From the last two equations, the macroscopic density, ρ, and
velocity, ~u, can be obtained to the first and the second order in δt by taking the sum of
Eq.(3.8) over all directions and velocities to yield the continuity equation

∂t0ρ+~∇ · (ρ~u) = 0 (3.10)

to the first order. Also, by multiplying Eq.(3.10) by ~ei and taking the summation over
all directions and velocities, we reach

∂t0(ρ~u)+~∇ ·Π(0) = 0 (3.11)

where
Π(0)

αβ = ρ c2
s δαβ +ρuαuβ (3.12)

is the momentum flux tensor, to the first approximation. Here, cs is the speed of sound
which is given by

cs =
√

C v (3.13)

where C is a geometric parameter which depends on the used lattice Boltzmann
model. For the D2Q9 and D3Q19 models, C = 1/3. Similarly, from Eq.( 3.9) we get

∂t1ρ = 0, (3.14)

and

∂t1 (ρ ~u)+~∇ ·
(

1− 1
2τ

)

Π(1) = 0, (3.15)

1Using the full Taylor expansion of the Boltzmann equation does not need two time scales. A single
time scale approach is adopted by Holdych et al. (2002).
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where

Π(1)
αβ = ∑

i
f (1)
i ~eiα~eiβ

= δtv
2τ

[

(
c2

s

v2 −C)δαβ
~∇ · (ρ~u)−C(∂βρuα +∂αρuβ)

]

(3.16)

is the momentum flux tensor, to the second order approximation (e.g. Chopard and
Droz, 1998). For incompressible fluids, ~∇ · (ρ~u) = 0, and therefore Eq. (3.16) becomes

Π(1)
αβ = ρδtv

2τ
[

− C (∂β uα +∂α uβ)
]

(3.17)

or, equivalently,

Π(1)
αβ = − 2ρ δt v2 τ C Sαβ. (3.18)

The strain rate tensor is therefore

Sαβ = − 1
2 C δt v2 τ ρ

Π(1)
αβ . (3.19)

The Navier-Stokes equation can be derived from Eq. (3.7):

∂t ~u + (~u · ~∇)~u = −1
ρ
~∇ p+ν ~∇2 ~u (3.20)

where p = ρc2
s is the scalar pressure and ν is the kinematic viscosity of the lattice

Boltzmann model, given by

ν = C v2 δt (τ− 1
2
) (3.21)

Substituting these formulas for the pressure and viscosity into Eq. (2.15) yields

σαβ = −ρc2
s δαβ −

(

1− 1
2τ

)

∑
i=0

f (1)
i eiα eiβ. (3.22)

This equation gives the stress tensor components in lattice units and is valid for all
of the known lattice BGK models. We emphasise that the quantity f (1)

i eiα eiβ is usu-
ally computed during the collision process. Therefore, the stress tensor components
can be obtained without almost any additional computational cost. This significantly
enhances the lattice Boltzmann BGK method, as other CFD methods are more elab-
orate and estimate the stress tensor components from the simulated velocity field.
As this approximation is of second order in the Knudsen number, the stress tensor
components are also accurate up to the second order in the Knudsen number.
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3.3 A Priori Error Analysis

There have been many theoretical investigations on the analysis of the lattice Boltz-
mann method under study. Realisation of the error behaviour depends on the way it
is analysed. However, the method is in general of second order in space and first order
in time. The following paragraphs briefly attempt to analyse the lattice Boltzmann
equation.

3.3.1 Analytical Solutions

Analytical solutions for the lattice Boltzmann equation have been obtained for some
flows in the context of simple and exact boundary conditions. Luo et al. (1991)
solved the generalised hydrodynamics of two-dimensional lattice-gas automata in
the linearised Boltzmann approximation and derived the dependence of the trans-
port coefficients upon wave number. Cornubert et al. (1991) analytically solved the
Kramers problem1 and classified the boundary conditions into two categories, produc-
ing isotropic and anisotropic Knudsen layers. Ginzbourg and Adler (1995) computed
first and second order deviations of fi from their equilibrium. Machine accuracy was
obtained by Noble et al.(1995) for the plain Poiseuille flow with lattice BGK. This was
later analysed by Zou et al. (1995), He et al. (1997) and Luo (1997) who analytically
solved the lattice BGK for the Poiseulle and the Couette flow (see next chapter). Re-
cently, kinetic theory approach to the lattice Boltzmann methods has flourished (He
and Luo, 1997b and 1997c; Abe, 1997; Shan and He, 1998). These studies have re-
marked that the lattice Boltzmann schemes are directly connected to the mescoscopic
Boltzmann equation. A need to link lattice Boltzmann models to LGA is no more
needed, except for historical reasons. Although studies on formal error analysis of
the lattice Boltzmann methods for unsteady flows are quite rate (He and Luo, 1997a;
Artoli et al., 2001; Holdych et al., 2002), additional conclusions may be drawn from
studies on steady flows, especially those by Holdych et al., (2002). In the last-named
reference it was shown that the error varies with the product of ∆x2 and polynomials
in the relaxation time τ that multiply high order derivatives and suggested the roots
of these polynomials as optimum values for τ. The analysis is performed by inserting a
Taylor series expansion of the equilibrium distribution f eq

i into the lattice Boltzmann
equation. The compressibility error C.E. and the momentum error M.E. were then
computed for 2D models. Although a lot has been done in order to understand the
error behaviour in three dimensions, the most popular way is via performing bench-
mark simulations, as it is very difficult to isolate compressibility errors, momentum
errors and discretisation errors in three dimensional Cartesian grids. We will study
both approaches (see Chapter 4 and Chapter 5).

1A standard problem in kinetic theory caused by the modification of the bulk equilibrium by an
obstacle.
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3.4 Accuracy of the Lattice Boltzmann Equation
In numerical solvers, differential operators are usually replaced with corresponding
finite difference discretisations. The accuracy of a numerical method is said to be of
degree n (or nth order accurate), where n is the degree of the polynomial after which
the error vanishes (Succi, 2001).
It can be shown that the lattice Boltzmann equation is equivalent to a second order
discretisation of the Navier-Stokes equation if the viscosity is defined by Eq. 3.21 and
the pressure is defined as p = ρc2

s . Therefore, the hydrodynamic quantities can be
computed with the lattice Boltzmann equation up to second order accuracy in both
space and time1 (Succi, 2001). This accuracy may be enhanced by considering influ-
ence of more neighbours through adding further discrete speeds (Succi, 2001). On
the other hand, the accuracy of LBE is commonly degraded by four major sources.
These are the boundary conditions, the compressibility error, the discretisation error
and the momentum error. These errors will not be discussed here in details unless
necessary, depending on each benchmark case. Nevertheless, a short briefing would
complete the idea of the behaviour of this numerical scheme.

3.4.1 Discretisation Errors
Although Cartesian grids are quite comfortable to work with in parallel computing,
they produce large errors when representing fluid boundaries of non-uniform geome-
try such as vessel structures. Three ways to deal with discretisation errors are to con-
sider realistic models by the aid of scanning techniques (such as magnetic resonance
and Computed Tomography), to use curved boundary conditions or finite volume-like
LBMs, and to use fine grids at regions of interest. The first treatment is limited by
scanner resolution and the other two techniques exploit computational power. Never-
theless, even with a very coarse grid, the lattice Boltzmann solvers return acceptable
accuracy, far better than the required engineering accuracy, as will be seen in the next
few chapters.

3.4.2 Boundary Conditions
As mentioned above, Kramer’s problem arises when the fluid meets an obstacle.
Therefore, accurate boundary conditions are needed. The role of a boundary condition
in lattice Boltzmann schemes is to give the evolving fluid information from the obsta-
cle which is normally of different physical characteristics (solid, another fluid, gas,
etc.). This information is transported by particle distributions streaming from the
obstacle into the fluid bulk. As they are unknown (due to the fact that the number of
specifying equations is less than the number of the unknowns), heuristic assumptions

1First order accuracy in time may be theoretically argued. The lattice Boltzmann equation is a
first order in time discretisation of the original Boltzmann equation. I am grateful to Li-Shi Luo who
explained to me the potential for confusion in a short remark “It depends on the way you look at it.”



32 Numerical Method

are needed to close the system at the boundary. These heuristics depend on the na-
ture of the boundary, whether it is an inlet, outlet or a containing surface. Since this
issue is sophisticated, and since the boundary conditions are numerous, only the used
boundary conditions will be discussed in association with the models implementing
them. For an introduction on Boundary conditions the reader is referred to a chapter
written by Succi (2001) and to cited literature in this study.

3.4.3 Compressibility Errors
The lattice Boltzmann method is a compressible discretisation of the Boltzmann equa-
tion. Under the fluid dynamic limit, the incompressible NS equations can be derived.
This makes the compressibility effect an undesired error source when dealing with
incompressible fluids. To correct this, a few incompressible models have been pro-
posed (Zou et al., 1995; He and Luo, 1997; Guo et al., 2000; Guo and Zhao, 2002),
most of them are for steady flows. Although some can be used for unsteady flow, they
may either complicate the model or hardly enhance the overall error unless more re-
strictions are fed into the system. Moreover, three dimensional incompressible lattice
BGK models are not well tested in the literature. In this study, the standard lattice
BGK is used for the sake of simplicity. The compressibility effects are reduced by in-
venting a new technique based on reducing the Mach number on the fly (see Chapter
7).

3.4.4 Momentum Error
This is the error that appears in the momentum equation and is usually a function of
the dimensionless hydrodynamic numbers. It was shown by Holdych et al.(2002) that
if the viscosity is considered as the independent parameter, this error is a multiple
function of ∆x2 and polynomials in the relaxation parameter τ, which include the
Reynolds number and the viscosity. The major terms suggest that the error increases
linear with the Reynolds number. The τ- dependent polynomials suggests some values
for τ at which the error is minimum (solutions for the polynomials). It was shown in
the same study that the momentum error is inversely proportional to the Reynolds
number if ∆t is seen as the independent variable in the error analysis1.

3.5 Summary
Many solution methods have been developed to solve various flow problems on High
Performance Computers, and several new techniques were used to enhance their per-
formance. It may be very difficult to compare between these methods in accuracy
and performance, and we can hardly draw constructive conclusions from such com-
parisons. However, it would be possible to justify why some numerical solvers such
as the lattice Boltzmann schemes are superior to other ones in certain cases.

1We need to remember that ∆x = c∆t.
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An elegant flow solver, nevertheless, is required to satisfy many desired features, the
most important of which are accuracy and performance. In terms of accuracy, lattice
Boltzmann is known to be of second order in space and time. The stress tensor is ob-
tained from the non-equilibrium parts of the distribution functions without any need
to approximate the shear-rate. This last featureis of help to researchers in haemody-
namics since the shear stress is believed to play a major role in the development of
arterial diseases.
For its orthogonal (Cartesian) grid, grid generation in lattice Boltzmann methods is
negligible when compared to that in body fitted grid methods. Although Cartesian
grid generation is coarse, many near-obstacle features are captured with comparable
accuracy to body fitted grids.
The Cartesian grid is an advantage when solving large scale applications in par-
allel computing environment, as, for instance, load balancing can be satisfactorily
achieved. The lattice Boltzmann is also an adaptive method (see next chapter). The
explicit nature of time discretisation is another feature that is useful for simulating
time-dependent flows.
On the other hand, the lattice BGK is quasi-compressible, thermodynamically incon-
sistent, very difficult to stabilise at high Reynolds numbers and may harldly involve
fluid-structure interaction. So far, many achievements have been made to enhance
the method. Many of these drawbacks can be eliminated with the use of the gener-
alised lattice Boltzmann equation (GLBE) (d’Humieres et al., 1992; D’Humeres et al.,
2002), but at a cost of 15% in performance (D’Humeres et al., 2002). The method has
also been developed to model fluid turbulence (see e. g. Chen et al., 2003 for higlights
of benefits over the NS solvers).
Although only recently developed, this study proves that the method is useful in com-
putational haemodynamics. Bearing in mind the hydrodynamic constraints in this
study, the lattice-BGK is adequate enough in dealing with simplified blood flow mod-
els such as Newtonian flow in the aorta.
In the next chapter, simple 2D steady flow benchmarks are used to test the accuracy
of the method while Chapter 5 deals with pulsatile flows. Computational issues are
discussed afterwards.
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Chapter 4

Error Analysis for Steady Flow
Simulations

In this chapter we perform three initial tests for the lattice Boltzmann method with
BGK approximation. In all cases, steady flow simulations are investigated. The first
two categories present and discuss results obtained from 2D simulations of the chan-
nel flow and the Couette flow benchmarks and study the error behaviour in velocity
and shear stress. We study different boundary conditions and compare them for the
two benchmarks. Machine accuracy is reproduced for the channel flow under certain
conditions. The third category discusses simulation results performed on a symmetric
bifurcation in a range of Reynolds numbers. The obtained simulation results are com-
pared to a finite volume simulation for the same geometry under the same conditions,
all showing excellent agreement.

4.1 Channel Flow
As a simple benchmark, channel flow between two fixed parallel plates separated by
a distance h is investigated. If the flow is in the positive x-direction, the analytical
solution for the channel flow is

ux =
4Uc

h2 y(h− y) (4.1)

where y is the distance from the lower wall, Uc =− 1
2η

d p
dx ≡ h2G

8ρν is the centreline velocity
derived by a pressure drop per unit length, d p/dx, or a body force G, and η = ρν is the
fluid viscosity. The stress tensor components obtained by using Eq. (3.22) are to be
compared with those defined by Eq.(2.15). The stress tensor components defined by
Eq.(2.15) yield

σxy = η
∂ux

∂y
=

4ηUc

h2 (h−2y) , (4.2)

σxx = −p(x) (4.3)
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which is linear along the channel, and

σyy = −p(y) (4.4)

which is constant across the channel. To verify our numerical model, we have carried
out a number of simulations for the channel flow at Re = 10 and Re = 90. The system
size Nx ×Ny ranges from 20× 10 lattice points for the coarsest grid to 100× 50 for the
finest grid. The system is initialised with zero velocity. The algorithm uses double
precision to obtain the velocity profiles, the pressure and the stress tensor compo-
nents, all being computed over the whole grid after the transients have died out. We
have implemented two types of boundary conditions: the bounce-back rule for the
walls and periodic boundary conditions in the horizontal direction, and the velocity
boundary conditions (VBC) proposed by Zou and He (1997). For Poiseuille flow, since
the centreline velocity is given by U = h2G

8ρν = Reν
h (He et al., 1997), a uniform body force

G = 8ρReν2/h3 along the x-direction is applied. The amplitude of this body force is
changed with the grid resolution while keeping fixed both the Reynolds and the Mach
numbers. He et al. (1997) analytically proved that the LBM has a solution for the
velocity ux for the channel flow, given by

ux =
4Uc

n2 y(n− y)+Us, (4.5)

where Us is the slip velocity at the boundary. In the case of the bounce-back on the
links, they claimed that the slip velocity is given by

Us =
2Uc

3n2 [(2τ−1)(4τ−3)−3n] (4.6)

where Uc is the centreline velocity without slips at the boundaries, h = nδx the width
of the channel and n the number of nodes representing the width of the channel. The
analytical solution for the shear stress in this case therefore becomes

σxy = η
4Uc

n2 (n−2y). (4.7)

This equation is equal to the analytical solution of the shear stress for the channel
flow (see Eq. (4.2)). This shows that with the bounce-back rule, the shear stress is not
affected by the slip velocity, and therefore, it can be computed up to machine accuracy.
For the shear stress, we have observed errors of the order of 10−15, which is of the
order of the roundoff error.

On the other hand, we have used the VBC proposed by Zou and He (1997) to imple-
ment a parabolic velocity profile at the inlet, a constant density at the outlet, and no
slip conditions at the upper and the lower boundaries. On the boundaries, values for
the distribution functions are computed at each time step from the imposed veloc-
ity or density and the known distribution functions streaming from the fluid to the
boundary. The bounce-back scheme is assumed to be valid for the non-equilibrium
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part of the particle distributions normal to the boundary. The densities at the corner
points are assigned values from their nearest neighbouring fluid nodes. With VBC,
the system is initialised with zero velocity components.

As mentioned before, the Kramer problem degrades the analytical solution near the
boundary and the accuracy depends on the used boundary condition assigned at the
obstacle. The simulation results are in good agreement with the expected theory
when VBC is used, but obtaining machine accuracy has not been possible with the
standard lattice BGK model. This is due to the influence of compressibility errors.
We will present the error analysis for the shear stress in the channel flow together
with the error analysis for the shear stress in the Couette flow problem in section 4.3.

4.2 Plane Couette Flow
We have selected this benchmark as a simple example of a two-component flow which
has an exact analytical solution but is not an exact solution of the lattice BGK equa-
tions (He et al., 1997). For the Couette flow with vertical injection at the upper and
the lower boundaries, we consider the lower wall to be fixed while the upper wall
moves along the horizontal direction with velocity un. The vertical injection speed is
assumed to be uy = constant. The two plates are separated a distance h. Since the
lower wall is fixed, the analytical solution for the horizontal fluid velocity is (He et al.,
1997)

ux =
exp

(Re
h y

)

−1

exp(Re)−1
un (4.8)

where the Reynolds number is defined as Re = uyh/ν. Consequently, the analytical
solution for the shear stress component is

σxy = A exp

(

Re

h
y

)

, (4.9)

where A = ηunRe
h(exp(Re)−1) is the value of the shear stress at the lower boundary. The other

two components of the stress tensor are

σxx = −p(x) (4.10)

which is constant along the channel when using periodic boundary conditions, and

σyy = −p(y) (4.11)

which is also constant across the channel.

The analytical lattice BGK solution for the Couette flow with injection is (He et al.,
1997)

ux =
λ j −1
λn −1

(un +Un
s )+

λn −λ j

λn −1
(u0 +U0

s ) (4.12)
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where λ = (2 + R)/(2−R) with R = uyδx/ν, u0 is the velocity of the bottom wall (u0 = 0
in our case), Un

s and U0
s are the slip velocities at the top and the bottom walls, respec-

tively. This solution is a second order approximation for the Navier-Stokes analytical
solution given by Eq. (4.8). If the shear stress is computed from the derivative of this
velocity, it yields

σxy = Bλ j (4.13)

where
B =

ηln(λ)

λn −1

[

(un +u0)− (U0
s +Un

s )
]

(4.14)

In our case, as the bottom wall is fixed, while using the no-slip VBC are used, B will
have the simple form

B =
ηln(λ)

λn −1
un (4.15)

which is equal to A in Eq. (4.9) when we replace the Reynolds number Re with R∗
e = n

ln(λ). The difference between the two Reynolds numbers reflects the finite difference
errors.

The first order behaviour has also been studied in the case of the Couette flow prob-
lem, by assigning the equilibrium distributions to the distribution functions at the
walls and periodic boundaries in the x-direction. With the equilibrium distribution
boundary conditions, the slip velocities have the analytical lattice BGK forms (He et
al., 1997)

U0
s = − (τ−1)(λ−1)(τλ− τ−λ)

λn(τλ− τ+1)+λ(τλ− τ−λ)
(un −u0), (4.16)

and
Un

s =
(τ−1)(λ−1)λn(τλ− τ+1)

λn(τλ− τ+1)+λ(τλ− τ−λ)
(un −u0), (4.17)

which are of first order in space. The initial value of the shear stress in this case can
be obtained by substituting Eqs. (4.16) and (4.17) into Eq. (4.15). It can be proved
that as δx → 0, the slip values of the shear stress at both walls are proportional to 1/n.

Hence, we have three formulae for computing the shear stress:

• from the analytical Navier-Stokes solution, as given by Eq. (4.9),

• from the analytical lattice BGK solution, as given by Eq. (4.13), and

• directly from the non-equilibrium parts of the distribution functions, as given
by Eq. (3.22).

To compare these methods, we have carried out numerical simulations for this Cou-
ette flow problem at Re = 10. The size and the initial state of the system are the same
as those described previously for the channel flow problem. For the boundaries, we
have first implemented the VBC for the upper and the lower boundaries and periodic
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Figure 4.1: Shear stress computed from the distribution functions (Eq. (3.22)) com-
pared to that computed from the Navier-Stokes solution (Eq. 4.9) and the derived
lattice BGK analytical solutions (Eq. 4.13), using VBC and equilibrium distributions,
for Re = 10, in the Couette flow benchmark. Values at y = 0 are zoomed inside the
figure.

boundaries in the horizontal directions. We have also performed a similar simulation
for the Couette flow problem using the equilibrium distributions at the boundaries
and periodic boundaries in the x-direction. In each case, good agreements with an-
alytical solutions have been obtained, as can be seen from Fig. 4.1, from which we
also notice that the equilibrium distributions yield zero values for the shear stress at
the boundaries. This is attributed to the fact that f (1)

i = 0, and may be maintained
by using Eq. (4.13) or extrapolating from the nearest points. We are interested in
the equilibrium distributions because they are easy to use for non-uniform inlet and
outlet boundaries (see Chapter 8 ).

4.3 Error Analysis
Although these two benchmarks have been classically investigated by many authors,
here we find it necessary to test the accuracy of the used algorithmand investigate
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the accuracy of the stress tensor for these simple benchmarks.
We have carried out a number of simulations with different grid sizes at constant
values of the relaxation parameter τ at various Reynolds numbers in the range 1–100
for both the channel flow and the Couette flow with injection. The measured error Ev
in the velocity is calculated using the formula

Ev =
∑x,y |ux −u∗x |

∑x,y |u∗x |
(4.18)

where u∗x is the analytical solution for the velocity at the given grid location and the
summations are taken over the whole grid. Similarly, the error Es in the shear stress
component is computed from

Es =
∑x,y |σxy −σ∗

xy|
∑x,y |σ∗

xy|
(4.19)

where σ∗
xy is the analytical solution for the shear stress component at the given grid

location. While using the VBC, the error behaviour for the channel flow and the Cou-
ette flow with injection at the boundaries is shown in Fig. 4.2 for Re = 10. For Re = 10,
the slopes of the lines are −2.0 for the channel flow and −1.8 for the Couette flow with
injection. Similar results have been obtained for Re = 90, where the slopes are −2.0
for the channel flow and −1.7 for the Couette flow with injection. From this figure, we
observe that the error in the shear stress behaves the same as the error in the veloc-
ity fields, which is a second order error for the VBC. Moreover, the error in the shear
stress is approximately of the same magnitude as that of the velocity, as predicted
from theory. However, we have obtained machine accuracy with the incompressible
D2Q9i model proposed by Zou et al.(1995).

Since the Reynolds number is a critical parameter in the case of the Couette flow with
injection, we have carried out a number of simulations with Re = 6, Re = 30 and Re = 60
at τ = 1 for this benchmark. The results are shown in Fig. 4.3. For the shear stress,
the slopes are approximately −1.9 for the three Reynolds numbers. However, the
order of the error increases with the Reynolds number and more grid refinement is
needed to recover the same accuracy. For Re = 30 and Re = 60, the grid is respectively
25 and 100 times larger than the case for Re = 6.

Using the bounce-back rule for the channel flow, we have observed errors of the order
of 10−15 for the stress tensor while a first order error has been obtained in the velocity.
The error in the velocity in this case is attributed to the slip velocity which can be
subtracted to yield the same order as the shear stress. This shows that, with the sim-
ple bounce-back rule, the shear stress yields perfect agreement with the analytical
solutions. This result has a direct impact on haemodynamics, as will be realised later.

For the Couette flow benchmark, while assigning the distribution functions their cor-
responding equilibrium distributions at the walls and periodic boundaries in the x-
direction, the error in the shear stress is of first order. However, as shown in Fig. 4.1,
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Figure 4.2: Relative errors in vx and σxy, using the LBM with the velocity boundary
conditions for Re = 10, in the channel and the Couette flows.

the shear stress obtained by using equilibrium distributions is not different from the
shear stress computed from the derivative of the analytical lattice BGK solution for
the velocity, except at the boundary nodes where the theory fails. It is also clear from
the figure that with the equilibrium distributions, the shear stress inside the flow do-
main has values closer to the shear stress derived from the analytical Navier-Stokes
solution for the velocity than values obtained by the second order VBC. This may be
attributed to the fact that VBC are derived by assuming that the bounce-back is valid
for the non-equilibrium parts of the distribution function, from which the shear stress
is computed.

4.4 Convergence Behaviour
As assumed by the Boltzmann equation, approach towards equilibrium shall be guar-
anteed when the Boltzmann equation is correctly solved by any means. Figure 4.4
shows the error magnitude as the simulation creeps towards its Maxwellian equilib-
rium with different lattice sizes. It is to be noticed that, at the beginning, coarse
grids may be more accurate than finer ones. The reason for this is that the number



42 Error Analysis for Steady Flow Simulations

0.001

0.01

0.1

10 100

E
s

Channel width (Lattice Units)

Re = 6
Re = 30
Re = 60

Figure 4.3: Relative errors in σxy, using the LBM with the velocity boundary condi-
tions, for Re = 6,30 and 60 , in the Couette flow benchmark.

of unknowns increases with the number of nodes1, and therefore the system needs
more simulation time before it updates all the nodes of the fine grids, at the right
edge of the figure. For interactive or real-time simulations, coarse grids may there-
fore be preferable than fine ones, unless certain small-scale flow characteristics are
of interest. However, there is a minimum number of grid points that allows a stable
solution. This depends strongly on the compressibility error which increases with δx

and the Reynolds number.

4.5 The Symmetric Bifurcation
We are interested in the symmetric bifurcation as a more complex two-dimensional
benchmark to investigate the accuracy of the shear stress in the LBM. This bench-
mark will be used later as an investigative benchmark for interactivity and robust-
ness of the lattice Boltzmann method (see Chapter 7).
As we mentioned before, there is a direct relation between the shear stress and

1This is similar to real fluid streaming behaviour.
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Figure 4.4: Temporal error behaviour in the Couette flow problem.

Atherosclerosis, which is a highly localised disease in areas of the carotid, coronary
and femoral arteries and abdominal aorta. All these locations have complex geom-
etry, such as branching and bifurcation, complex flow patterns, secondary flow and
complex shear stress.

Several numerical and experimental models of fluid flow in large arteries and bi-
furcating tubes have been extensively studied (e.g. Friedmann et al., 1974, Ojha,
1994;Qiu and Tarbell, 2000). However, in these attempts, the use of the derivatives of
the velocity fields to get the shear stress was quite common. Within the LBM commu-
nity, this benchmark did not receive much attention. This may be attributed to three
reasons. Firstly, the analytical solution for the symmetric bifurcation is not known.
Secondly, it is not easy to implement accurate and flexible boundary conditions at the
outlets. Finally, this application is a good benchmark in biomechanics and the lattice
Boltzmann method is just recently being used in this field. However, studying the
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Figure 4.5: Geometry of the simulated symmetric bifurcation

symmetric bifurcation as a benchmark for blood flow problems gives us a clearer idea
about the complexity of the flow field and the shear stresses at locations of interest.
Additionally, it allows us to investigate implementation of several boundary condi-
tions before using them for more complex geometry.

In this study, we consider a simplified model of a two-dimensional symmetric bifurca-
tion that consists of one main tube of diameter D and length L and two branches at the
end of the main tube, each of which has an outer length L and diameter a = D/2. The
angle θ between each branch and the centerline AB that passes horizontally across
the divider is set to be equal to 30o. The geometry of the symmetric bifurcation is il-
lustrated in Fig. 4.5 in which the centerline AB and the cross line CD will be reference
axes for measurements and comparisons of the flow fields and the components of the
stress tensor.

It can be shown that the cross sectional area of this two-dimensional bifurcation
model does not change, as long as a = D/2. Using this result and applying the con-
tinuity equation to the model, we can prove that the average velocity in the main
branch is equivalent to the average velocity in the daughter branches. This allows
us to impose consistent velocity values at the inlet and outlet boundaries. On the
other hand, the pressure gradient in the branches can be compared to that in the
main branch by assuming that the Poiseuille formula still holds in regions far from
the divider region and applying the continuity equation to end up with the conclu-
sion that the pressure gradient in the branches is four times larger than the pressure
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drop in the main branch. Assuming that the Poiseuille formula is still valid for loca-
tions of fully developed flow in the bifurcation, the shear stress in these areas will not
differ significantly from values obtained from a similar channel flow. Therefore, the
only region which needs further investigation is the region close to the divider. The
geometry of the symmetric bifurcation whose vascular area does not change, makes
the region just before the divider an expanding region. This additional area has to
be filled by the fluid. As a result, both the pressure and the velocity will drop near
to the divider before they enter the branches, where the velocity accelerates towards
the fully developed flow and the pressure drops faster than the pressure in the main
branch.

In order to obtain a more quantitative picture of the flow, we have carried out a num-
ber of LBM numerical simulations for the symmetric bifurcation at Re = 1, Re = 200
and Re = 1250, where Re = DU0/ν is the Reynolds number. The diameter of the main
branch is represented by 40 lattice points on the coarsest grid and 320 lattice points
on the finest grid. At the inlet, we have set a flat velocity U0 of magnitude correspond-
ing to the required Reynolds number. The distribution functions and the density at
the inlet are computed using the VBC, as described before. For the outlets, we have
assumed that the flow is fully developed at a distance far from the divider by set-
ting parabolic profiles at each outlet and forcing the distribution functions to their
equilibrium values. Finally, for the other walls, we have implemented the simple
bounce-back scheme.

For validation purposes, we have used the FLUENT program (Fluent, 1998) which
uses a finite volume method (FVM) solver, to carry out a number of simulations for
the same bifurcation at the three Reynolds numbers1. The comparison is made along
the centerline AB and the cross line CD.

The velocity profiles and the shear stress as obtained by LBM are shown in Figs. 4.6
(a–f) for the three Reynolds numbers. As shown from these figures, the flow field
fully develops just after the inlet region for Re = 1. However, for the larger Reynolds
numbers, the flow field is not yet fully developed when entering the divider region.
At the outlets, the flow is fully developed (as we assumed) for Re = 1 and Re = 200.
For Re = 1250, it appears that the flow is not fully developed at the outlets, but this
doesn’t have significant effects on the flow closer to the divider (experiments of vary-
ing lengths of the branches didn’t show significant difference (data not shown)) . It
can also be observed that the flow near the divider becomes complex. As the region
before the divider is an expansion region, the velocity flow pattern drops before en-
tering the branches. We also observe that the velocity skews towards the inner walls
inside the daughter branches and each of the two streams are bent because of the
influence of the secondary motion, with the highest velocities near the outer walls of
the bend. All these features are in agreement with the literature (Caro et al., 1978;

1The finite volume simulations were carried out in collaboration with Huub Hoefsloot. See Artoli et
al., 2003d
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Contours of velocity magnitudes and shear stress in Lattice Units for
Re = 1(dx/dt = 0.0091 m/sec), Re = 200(dx/dt = 0.0912m/sec) and Re = 1250(dx/dt =
0.5706m/sec).
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Berger and Jou, 2000) and with the solutions of the FVM results.

The σxy components at the inlet are very close to zero, because of the imposed flat
velocity profile. The corner points C and D and the divider region show higher stress
values. The stress in the inner walls of the daughter branches is larger than that at
the outer walls. As the Reynolds number increases, the shear stress behaves more
complex, especially around the divider.

Next, results obtained from the LBM are compared to those obtained by the FVM,
by taking measurements along the cross line CD. Acceptable agreement between
the results obtained from the LBM and the results obtained from the FVM has been
achieved when comparing the two components of the velocity (Figs. 4.7 (a–c) for vx

and (d) for vy ). The two methods show that the maxima of vx are shifted towards
the outer walls before entering the expansion region and these maxima approach the
wall as the Reynolds number increases (since the velocity component increases). As it
is shown in Fig. 4.7 (a) for Re = 1, the maximum difference in the x-component of the
velocity occurs at the centre point which faces the divider for Re = 1. This is because
of the flexibility of the finite volume method in performing local grid refinements at
complex regions. For Re = 200 and Re = 1250, the differences are less than one percent.
We also observe that the LBM solution approaches the FVM solution as the grid re-
fines (see e.g. Fig. 4.7 (a)).

The stress tensor component, σxy, shows good agreement for both methods, as is
shown in Figs. 4.7 (e–g) for the three Reynolds numbers. We can observe that σxy

becomes quite complex in the case of Re = 1250, where the shear stress changes sign
more frequently. It is worth noting that the bounce back rule yields good results for
the shear stress close to the wall, since it is not affected by the slip velocity. On the
other hand, assigning the equilibrium distributions at the outlets yields completely
wrong values of the stress tensor near to the wall. This is clearly seen from the con-
tour lines of the shear stress at the outlets, specially for Re = 1.

While looking at the results along the centerline AB, we have observed good agree-
ment between the two numerical methods for vx (data not shown). However, dis-
crepancy in the pressure drops has been observed for small Reynolds numbers. The
maximum difference between the two solutions is about 20% , which occurs at low
Reynolds number, near to the divider. This may be attributed to the minor artifacts
in the lattice BGK approximation and can be eliminated by considering generalised
models.
For the stress tensor components along the centerline, the off-diagonal components,
σxy has zero values far from the divider in both the LBM and the FVM. Since ∂vy

∂y = 0
on the line AB, it turns out that σyy = −p (see Eqs. 4 and 5). This presents a good
consistency check for LBM. In Fig. 4.7(h) we compare σyy, calculated by Eq. (3.22),
with −p = −ρc2

s , for the three Reynolds numbers. In all cases, good agreement is
observed.
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Figure 4.7: Comparison of LBM velocity profiles (upper four graphs) and shear
stresses (lower left) with the FVM solution along the line CD of the symmetric bi-
furcation for Re = 1, 200 and 1250 with different grid resolutions. The lower right
graph shows the pressure drop along the centerline AB.
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From this experiment we conclude that although the flow near the divider of a sym-
metric bifurcation is complex, we can obtain results of comparable accuracy to the
finite volume method, by computing the stress tensor components from the non-
equilibrium parts of the distribution functions, commonly computed during the colli-
sion process of the lattice BGK simulations.

4.6 Summary
Three independent 2D numerical simulations have been used to validate the lattice
BGK for simple steady flows: the channel flow, the Couette flow with injection at the
boundaries and the symmetric bifurcation. We have implemented a number of bound-
ary conditions known to the LBM community. We have also shown that the accuracy
of obtaining the stress tensor from the LBM follows the accuracy of the implemented
boundary condition, except for the bounce-back rule, where the error is of the order of
the machine accuracy in the case of channel flow. We have also compared the obtained
results with the analytical solutions derived from the analytical lattice BGK solution
for the velocity field which has been obtained by He et al. (1997) and the Navier-
Stokes solution for the shear stress in the Couette flow with injection. In the case
of the symmetric bifurcation, the results are comparable to the FVM results. It has
been shown that, close to the walls, the wall shear stress can be computed with high
accuracy using the lattice BGK. The method proved to be successful in computing the
stress tensor in complex geometry, in the limit of low Mach number. As there is an
increasing interest in applying the LBM in haemodynamics, we argue that similar
formula for the stress tensor for non-Newtonian fluids may be worked out. Further
experimental and simulation studies on 3D flows are necessary for validation and
more enhanced boundary conditions for the outlets may be required. These issues
will be discussed in the next chapter.
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Chapter 5

Pulsatile Flow Benchmarks

In the last chapter, we have shown that the lattice BGK works well for steady flow
benchmarks. The advantages and drawbacks of the method were discussed in Chap-
ter 2. In this chapter, detailed analysis of the accuracy of the lattice BGK method in
simulating pulsatile flow in a 2D channel and a 3D tube is presented. The influence
of different boundary conditions on the accuracy is discussed.

5.1 Introduction
Recently, it has been demonstrated that the lattice BGK method is useful to simulate
time-dependent fluid flows (Krafczyk et al., 1998). As demonstrated in Chapter 2,
for steady flow, the lattice BGK is second order accurate in the velocity fields and
the stress tensor, when second order boundary conditions are applied. Although the
accuracy has been studied extensively for steady flows, studies on the accuracy of
lattice BGK for time dependent flows are quite rare (He and Luo, 1997; Artoli et al.,
2002c).
Pulsatile flow characteristics are quite important in haemodynamics. It is believed
that the shear stress and other haemodynamic factors play a dominant role in diag-
nosis and treatment of cardiovascular diseases (e.g. Wooton and Ku, 1999). These
factors are either studied by building experimental or simulation models for locations
of interest. Depending on the geometry of these locations, appropriate approxima-
tions such as rigidity of the wall, circular cross section and assuming blood to behave
as a Newtonian fluid commonly take place. The role of Computational Haemodynam-
ics is well recognised in this field and proved to be of great help in understanding the
nature of blood flow in diseased locations (Vorp et al., 2001).
As mentioned before, with lattice BGK, it is possible to compute the local components
of the stress tensor without a need to estimate the velocity gradients from the velocity
profiles. In addition, the equation of state defines the pressure as a linear function
of the density, which makes it easy to obtain the pressure from the density gradient.
All these advantages make the lattice BGK a suitable candidate for simulating time-
dependent blood flow in arteries.
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In this chapter, we investigate the accuracy of the lattice BGK model in recovering
analytical solutions for oscillatory two dimensional (2D) channel flow and three di-
mensional (3D) tube flow. The 2D simulations are performed to test and validate the
model, while the 3D simulations are performed to model a straight rigid segment
of a large artery. Typical values from haemodynamics are used to cover a range of
Womersley and Reynolds numbers.
The standard lattice BGK model works well as long as the Mach number M is low
(M2 << 1) and the density fluctuations are small. However, modelling unsteady flows
involves higher density fluctuations, since the only way to model time-dependent
pressure in lattice BGK is by incorporating time-dependent density. Also, compress-
ibility errors at high Mach numbers are expected. It has been reported that, with
compressible lattice BGK models, when the pressure gradient is time-dependent,
compressibility effects may arise and using an incompressible model is necessary (He
and Luo, 1997). Realizing this defect, other incompressible lattice BGK models have
been developed (Zou et al., 1995; He and Luo, 1997; Guo et al., 2000) here referred
to as D2Q9i, D2Q9ii and D2Q9iii, respectively. The difference between the D2Q9 and
the D2Q9i is that the density in the equilibrium distribution is inside the brace of Eq.
(3.4) for the D2Q9i. The D2Q9ii assumes the pressure to be the independent dynamic
variable instead of the density, and is equivalent to D2Q9i when the density is equal
to unity. The D2Q9iii introduced a different equilibrium distribution function with
which it is possible to exactly derive the incompressible Navier-Stokes equations in
the limit of a low Mach number. As the incompressible D2Q9i model has already been
tested for steady flows, for which it was proposed, we test it here for unsteady flows
after noting that the D2Q9i is a special case of the D2Q9ii.

5.2 Boundary Conditions
As stated before, with the lattice Boltzmann methods, the no-slip boundary condition
is not automatically recovered at the boundaries. Therefore, the walls require special
treatment. A number of boundary conditions have been proposed which are either of
first or second order accuracy in space and may or may not have slip velocities at the
walls. In this study, we distinguish four types of wall boundary conditions:

1. The bounce-back on the links, referred to later as BBL, in which particles com-
ing to the walls simply return back to the fluid in the direction where they came
from. Collision is not performed at the boundary nodes while using this bound-
ary condition. It is simple, computationally efficient, and can be used for a com-
plex geometry, but is of first order and is known to yield a slip velocity which in
turn can be minimised by increasing the grid size and tuning the viscosity.

2. The bounce-back on the nodes, referred to as the BBN, in which collision is al-
lowed at the boundary nodes. The bounce-back on the nodes is known to be of
second order accuracy, but still has a slip velocity, except when τ = 1.
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3. Recently, Bouzidi et al. (2001) introduced another version of the bounce-back
on the links which allows using the bounce back for the curved geometry, and
we will refer to it as the bounce back on a curved boundary (BBC). The idea of
this boundary condition is to add a linear or a quadratic interpolation term to
the streaming step by considering the first or both the first and the second fluid
points together with the bounce back rule. The bounce-back on the links is a
special case of this boundary condition.

4. The non-slip velocity and pressure boundary conditions presented by Zou and
He (1997) have been used to set a specific velocity or pressure at the boundary
by assuming that the bounce-back is valid for the non-equilibrium parts of the
distribution functions and explicitly computing the unknown distributions.

5.3 Simulations in 2D
We have conducted a number of 2D simulations for time dependent flow in a chan-
nel. Various boundary conditions have been tested. For the walls, we have used the
bounce-back on the nodes and non-slip boundary conditions; for the inlet and outlet,
we have used periodic boundaries in combination with body forcing or velocity and
pressure boundaries. For all simulations described below, unless otherwise specified,
the flow is assumed to be laminar (Re < 2000) and the Mach number is assumed to be
low (M < 0.1).

5.3.1 Oscillatory Channel Flow
We have studied the flow in an infinite 2D channel due to an oscillatory pressure gra-
dient ∂P

∂x = Asin(ωt), where A is a constant. The pressure gradient is implemented by
applying an equivalent body force G or by appropriate oscillating pressure difference
between the inlet and outlet. The analytical solution for the velocity in this case is
given by the Real part of (Pozrikidis, 1997)

v(y, t) = − A
ρω

e−iωt



1−
cosh

[√
b(y−L/2)

]

cosh
[√

bL/2
]



 (5.1)

where ρ is the fluid density, L is the width of the channel, and b = −iω/ν.
To check the accuracy of the lattice BGK model, we have performed a number of
simulations. The Reynolds number is defined as Re = UL

ν , the Womersley number is

defined as before; α = R
√

ω
ν , and the Strouhal number is defined as St = R

UT , where

R = L/2, ν is the kinematic viscosity, ω = 2π
T is the angular frequency and T is the

sampling period. The velocity U is given by U = − −1
2νρ

d p
dx ≡ L2G

8νρ , the average density of
the system is ρ = 1.0 and the pressure gradient is sinusoidal with amplitude A.
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At first, we have used the bounce-back on the nodes (BBN) which is quite simple and
is known to be of second order accuracy. Periodic boundary conditions are used for the
inlet and the outlet boundaries. Both the Reynolds and the Womersley numbers were
kept fixed by fixing the distance L between the two plates and varying the relaxation
parameter τ, the period T and the body force G. The error in velocity at each time
step is defined by

Ev =
∑n

i=1 |~vth(~xi)−~vlb(~xi)|
∑n

i=1 |~vth(~xi)|
(5.2)

where~vth(~xi) is the analytical solution for the horizontal velocity,~vlb(~xi) is the velocity
obtained from the lattice BGK simulations and n is the number of lattice nodes repre-
senting the width of the channel. The overall average error, < Ev >, is averaged over
the period T . The relaxation time ranges from τ = 0.6 to τ = 3.0, the body force ranges
from G = 25×10−5 to G = 0.04 and the sampling period lies in the range 500−20, giv-
ing corresponding values of 0.2−5.0 for δt , with δt = 1 corresponding to the case where
τ = 1. The system was initialised by setting the velocity to zero everywhere in the
system. The convergence criterion is attained by comparing simulation results from
two successive periods and the stop criterion is when this difference is less than 10−7.
The agreement between the simulation and the analytical solutions is quite good, as
is shown in Fig. 5.1 in which the obtained velocity profiles (point) for α = 4.34 at
t = 0.75T are compared to the theory (dashed line). However, there seems to be a
small shift in time between the simulation and the theory. This shift is a function
of time and τ. We have found that if we assume that the theory lags the simulation
with a half time step, i.e tlbδt = tth + 0.5δt , the error reduces at least one order of
magnitude for all τ values. Figure 5.1 shows a typical simulation result compared to
the analytical solution with (solid line) and without (dashed line) shifting the time
coordinate. We have used this observation to compare the simulation results with the
shifted analytical solution which leads to excellent agreement for all values of time,
as shown in Fig. 5.2 The error as a function of time is shown in Fig. 5.3 from which
it can be seen that the error is minimum at τ = 1, since there is no slip velocity at
this specific case (He et al., 1996). An error of the order of the round-off error could
be reached for the special case when τ = 1, when the bounce-back on the nodes is
used, and assuming the 0.5 time shift (the asterisks, *, in Fig. 5.3). From Fig. 5.3
we also observe that the error is maximum at a quarter period in time. This may be
attributed to the large pressure gradients at this time.

This shift in time has been observed before by Matthaeus (2001). It may be attributed
to the way the driving force is imposed in the simulation and details of the specific
lattice BGK model (force evaluation). We also believe that the way in which time
coordinates are discretised may have some effects on this shift. For the other cases,
when τ 6= 1, the effect of the slip velocity dominates. Up to now, the slip velocity has
analytical expression for the steady channel flow, but not yet for the unsteady flow.
In the next sections we will investigate the influence of boundary conditions and flow
parameters such as the Reynolds number on this shift.
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Figure 5.1: Velocity profile (in Lattice Units) at t = 0.75T with τ = 1, α = 4.34 , Re =
10 and St = 0.6 in a 2D oscillatory channel flow using the BBN. The dots are the
lattice BGK results. The dashed line is the analytical solution and the solid line is
the analytical solution with a shift of 0.5 time step.

5.3.2 Non-Slip Boundary Conditions
In order to remove errors arising from the slip velocity, we have conducted similar
simulations with the no-slip velocity boundary conditions explained in section 5.2(4)
at the walls and periodic boundary conditions at the inflow and the outflow bound-
aries. The body force that corresponds to a desired Reynolds number drives the flow.
The Strouhal number is kept constant by fixing both the Reynolds and the Womersley
numbers and looking at the accuracy in time. This is done by fixing the width L and
assigning the corresponding values for the sampling period T , the body force G, and
the relaxation parameter τ. In this way, δt will change. The results are shown in Fig.
5.4 which shows the average error < Ev > as a function of δt . From this figure, we
clearly see that the lattice BGK is of first order accuracy in time (slope = 0.9). The
error is again decreased when the half-time step correction is used, specially at τ = 1,
as shown in the same graph. From this experiment, we conclude that the shift in time
does not depend on the used boundary condition.

5.3.3 Influence of the Reynolds Number
We have conducted another set of simulations to see the influence of the Reynolds
number on the error in the flow fields. Here, the relaxation parameter is kept fixed
at the value τ = 1, the width of the channel is varied to achieve higher Reynolds
numbers and the period is changed accordingly to keep the Womersley parameter
constant. The length of the channel is 5L. In summary, we change the Reynolds
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Figure 5.2: Obtained velocity profiles (in Lattice Units) over a complete period (dots)
compared to the shifted theory (lines) with τ = 1, α = 4.34 , Re = 10 and St = 0.6. The
measurements are taken at the middle of the channel, at each t = 0.05nT where n =
0,1, ...,20.

number Re, the body force G, the width L and the period T . Simulations for Reynolds
numbers in the range 1 → 200 at α = 15.533 were performed. Figure 5.5 shows com-
parisons of numerical and analytical solutions of the velocity profile for Re = 200 at
t = 0.2T . Similar agreements between theory and simulations have been observed for
the whole period at different Reynolds numbers (data not shown). When compared
to the analytical solutions, with and without shift in time, the error decreases from
< Ev >= 0.0085 to < Ev >= 0.00024 for Re = 200.
We observe that the difference between the two analytical solutions (the original and
the shifted) becomes less as the Reynolds number increases. This suggests that the
shift is inversely proportional to the applied body force which may have direct influ-
ence on it. It is therefore necessary to conduct another set of simulations in which the
body force has no influence (i.e. is absent).
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Figure 5.3: Error behaviour over a half cycle for different values of δt as a function
of the fractional time t/T without (lines) and with (points) time-shift correction for
α = 4.34, Re = 10 and St = 0.6 in a 2D oscillatory tube flow using the BBN boundary
condition.

5.3.4 Inlet and Outlet Pressure Boundary Conditions

In order to remove the influence of the body force, we have conducted another set of
simulations in which the flow in a 2D channel is driven with a sinusoidal pressure
gradient of magnitude A = 0.001/Lx where Lx is the length of the channel. The length
of the channel is 10 times the width and the period of the driving pressure is T =
1000. The density at the inlet is 1 + Asin(ωt) and is set to be 1.0 at the outlet. The
convergence criterion is attained by comparing simulation results from two successive
periods with a stop criterion less than 10−7. All the flow fields were initialised from
zero. We have again observed good agreement with the theory, as is shown in Fig.
5.6 The shift in time has diminished in magnitude, but it is still there (< Ev >= 0.019
without shift and reduces to < Ev >= 0.017 with shift).
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Figure 5.4: Relative Error in velocity, averaged over the whole period, versus the time
step for α = 15.53, Re = 10 and St = 7.68 in a 2D oscillatory channel flow. The slope of
the straight line is 0.90. The dashed line is the error with reference to the shifted in
time analytical solution. A second order BBN boundary condition is used here.

0 25 50 75 100 125 150
y

-0.0004

-0.0002

0

0.0002

v
H
y
,
0
.
2
0
T
L

ve
lo

ci
ty

Figure 5.5: Velocity profiles (in Lattice Units) obtained from lattice BGK simulations
(dots) for α = 15.53, Re = 200 and St = 0.38 in a 2D oscillatory channel flow, showing
excellent agreement with the analytical solutions (lines). The effect of time shift is
not observable.

5.4 Simulations in 3D

To have a complete picture about the accuracy of the lattice BGK, we have conducted
a number of 3D simulations of sinusoidal flow in a tube using a parallel lattice BGK
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Figure 5.6: Velocity profiles obtained from lattice BGK simulations (dots) for α =
4.00017, Re = 10 and St = 0.51 in a 2D oscillatory channel flow when inflow and outflow
boundary conditions are used. Selected simulation times are shown. The shift in time
has little effect but is still there.

solver developed in our group (Kandhai et al., 1998) with added functionalities for
dedicated in- and outlets, solid boundary and shear stress calculations (Artoli et al.,
2002). The diameter of the tube is represented by 39 lattice nodes and the minimum
tube length is L = 50 lattice nodes. First, we have used the BBL together with periodic
boundaries to simulate oscillatory flow in the tube. The simulation period is set to be
T = 800, the relaxation parameter is τ = 0.625 and the amplitude of the body force G
is chosen to be 4.687×10−6 in order to have a Womersley number α = 8.4661. Initial-
isation of the system and the stop criterion is the same as that for the 2D case. The
simulations were performed on 4 nodes of a Beowulf cluster using slice decomposition.
The time per iteration is about 0.2 seconds.
The obtained velocity profiles for a half cycle are shown in Fig. 5.7, compared to the
analytical solution

u(y, t) = Re



− A
ρω

e−iωt



1−
J0

[√
by

]

J0

[√
bR

]







 , (5.3)

where J0 is the zeroth order Bessel function of the first type and again b = −iω/ν =
−i(α/R)2. Similar velocity profiles have been obtained for the complete period and for
a range of Womersley parameters and relaxation times. The overall average error
is about 15 % and is maximum at the centres and near to the walls where the flow
reverses. This large error may be attributed to, among others, the stairing geometry
of the boundary, the way of implementation of the body force, the slip velocity of the
bounce back rule and the compressibility effect.
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There are at least two ways to reduce the error; to use an incompressible 3D model,
and/or to have more advanced boundary conditions. As there exist more advanced
boundary conditions which are well tested (see for e.g. (Zou and He, 1997; Mei et
al., 1999; Bouzidi et al., 2001), as a first step, we have applied the curved boundary
conditions recently proposed by Buzaidi et al. (2001) which is simple and easy to
implement. It has been realised by the author that the Bouzidi boundary condition
slightly violates mass conservation. This has a very little effect on the final solution.
With the curved boundaries, the system size and the simulation parameters are the
same as those for the bounce-back. The accuracy is significantly enhanced, as shown
in Fig. 5.4 which shows both the simulation results (points) and the analytical solu-
tions. The shift in time was not clearly observed here. This may be attributed to the
different nature of the quasi compressible D3Q19 Model in which we have combined
errors from stairing and compressibility effects.
The error behaviour is studied by keeping fixed both the Reynolds and the Womersley
numbers via fixing the diameter R and varying the relaxation time τ, the body force G
and the period T . Defined as above, the error behaviour as a function of the sampling
period is shown in Fig. 5.9, from which we observe that the error enhances as the
number of sampling points representing the period increases. This is expected as
the time step decreases with increasing T . The error behaves as first order in time
(slope of the fitted line is about 1.0). Furthermore, as a typical Reynolds number in
the Abdominal aorta is 1250 we have performed another set of simulations at this
Reynolds number with α = 7.7284 by setting T = 1200 and τ = 0.6. Figure 5.10 shows
the simulation results compared to analytical solutions. The average error per time
step is about 0.07 which is in the worse case still two times more accurate than when
the BBL is used, even if they are both of first order accuracy. As we are interested
in blood flow simulations, periodic boundary conditions are not suitable, since there
are different flow conditions at the outlets of the arteries. Therefore, we have tried
an inlet-outlet boundary condition in which we have assumed stagnant flow at the
inlet and no flux at the outlet. This is done by copying the densities from inside the
flows to the inlet and the outlet, computing the velocity near the outlet and assigning
equilibrium distributions to the outlet distribution functions, and applying a body
force or a pressure gradient to drive the flow. We have obtained comparable results
for periodic boundary conditions (the difference in error is about 0.004).

5.5 Shear Stress
As mentioned previously, the shear stress is an important factor in haemodynamics
and is known to play a dominant role in the localisation of cardiovascular diseases
such as atherosclerosis. We have shown in a previous article (Artoli et al., 2001) that
the components of the stress tensor in the lattice Boltzmann BGK method can be
computed from Eq. (3.22)

σαβ = −ρc2
s δαβ −

(

1− 1
2τ

)

∑
i=0

f (1)
i eiαeiβ. (5.4)
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Figure 5.7: Obtained velocity profiles (dots) compared to the analytical Womersley
solutions (lines), for α = 8.4661 and Re = 10 in a 3D oscillatory tube flow using the
bounce-back on the links. The overall average error is about 15%.
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Figure 5.8: Obtained velocity profiles (dots) compared to the analytical Womersley
solutions (lines), for α = 8.4661, Re = 10 and St = 2.2815 in a 3D oscillatory tube flow
using the BBC. The overall average error is about 7 %.

in lattice units, where the quantity f (1)
i eiαeiβ is usually computed during the collision

process. Therefore, the stress tensor components can be obtained without almost any
additional computational cost. This extensively enhances the lattice Boltzmann BGK
method, as other CFD methods are more elaborate and estimate the stress tensor
components from the simulated velocity field. We have used this formula to compute
the shear stress for pulsatile flow and compare the simulation results with the ana-
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Figure 5.9: First order error behaviour as a function of T at α = 8.4661, Re = 10 and
2.2815 for a 3D oscillatory tube flow with the curved bounce back and linear interpo-
lation.
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Figure 5.10: Velocity profiles with τ = 0.6,T = 1200,d = 39, α = 7.7284, Re = 1250 and
St = 0.0152 in a 3D oscillatory tube flow. The dots are the lattice BGK results with
BBC boundary condition. The lines are the analytical solutions

lytical solutions derived from analytical velocity profiles. With both BBL and BBC,
excellent agreements have been obtained for both the oscillatory channel (see Fig.
5.11) and tube flows (see Fig. 5.12). The shear stress vanishes in the canter and
grows up towards the walls, where the velocity gradients are large. As the Womers-
ley parameter increases, the flat region increases and the shear stress decreases in
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the central region. Similar agreement with the theory has been obtained for the other
stress components in a range of Womersley and Reynolds numbers. The shift in time
has no effect here and is absent during the collision process. We have noticed that the
shear stress is slightly better when the bounce-back on the links is used. The average
error is about 0.18 for the BBL and 0.19 for the BBC. This may be attributed to the
fact that the spatial gradient of the slip velocity vanishes which enhances the BBL
over the BBC which interpolates in a region of high velocity gradients.
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Figure 5.11: Shear stress (in Lattice Units) obtained from lattice BGK simulations
(dots) for α = 4.34, Re = 10 and St = 0.6 in a 2D oscillatory channel flow, showing ex-
cellent agreement with the analytical solutions (lines). The effect of time shift is not
observable.

5.6 Discussion and Conclusions
In this study, it has been shown that the lattice Boltzmann BGK model can be used to
simulate time dependent flows in 2D within acceptable accuracy if suitable simulation
parameters and accurate boundary conditions are used. We have conducted a num-
ber of 2D simulations for time-dependent flow in a channel with different boundary
conditions. A shift in time has been observed and analysed. The lattice Boltzmann
BGK model is more accurate when a half time step correction is added to the time
coordinates. We have investigated the time shift association with the used boundary
conditions, and have found that it is always present for the cases we have studied.
However, the origin of this shift is not fully understood and is a subject for future
research. The effects of the Womersley, the Reynolds and the Strouhal numbers have
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Figure 5.12: Shear stress (in Lattice Units) obtained from lattice BGK simulations
(dots) for α = 7.7284, Re = 1250 and St = 0.0152 in a 3D oscillatory tube flow, show-
ing excellent agreement with the analytical solutions (lines). The measurements are
taken at each t = 0.1 nT where n = 0,1, ...,20.

also been studied in a number of simulations which showed that the shift in time is
reduced at high Reynolds numbers. The obtained accuracy in time for time-dependent
flows is of first order.
A quasi-incompressible D3Q19 model for the 3D simulations of oscillatory tube flow
has recovered the analytical Womersley solution with average error of 15% when the
bounce-back on the links boundary condition is used. The large error associated with
the simple bounce-back rule may be attributed to the slip velocity, stair casing geom-
etry and compressibility of the used lattice BGK model. The D3Q19 has been cited
in the literature to result in large errors (He and Luo, 1997) when it is used to sim-
ulate time dependent flows, since the effect of the order O(M2) has to be taken into
consideration. Incompressible models are encouraged and are under development in
our group.
The bounce-back on a curved boundary recently proposed by Bouzidi et al. with linear
interpolation has reduced the error to less than seven percent and didn’t enhance the
accuracy in the stress tensor calculations due to high velocity gradients close to the
walls.
However, it has been reported that the lattice Boltzmann BGK model is thermody-
namically inconsistent and that the forcing term leads to an incorrect energy balance
equation if the acceleration is not constant in space (Luo, 2000). Therefore, it is ar-
gued that, it is better to use a general lattice Boltzmann model rather than the lattice
BGK to overcome problems arising from artifacts in the lattice BGK model, since it
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is not suitable for dense gases. Using the modified Lattice Boltzmann method that
is derived from the Enskog equation confirms a proof of the Boltzmann H theorem
and the forcing term recovers correct energy balance equations (Luo, 2000). On the
other hand, the lattice BGK is simple and could yield satisfactory results if being used
cautiously.
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Chapter 6

Accuracy Versus Performance

The aim of this chapter is to tune the lattice Boltzmann parameters in order to
achieve optimum accuracy and performance for time dependent flows. We present
detailed analysis of the accuracy and performance of the lattice Boltzmann method
in simulating pulsatile Newtonian flow in a straight rigid 3D tube and compare the
obtained velocity profiles and shear stress to the analytical Womersley solutions. A
curved boundary condition is used for the walls and the accuracy and performance
are compared to that obtained by using the bounce-back on the links.

6.1 Introduction

Suitability and accuracy of the lattice Boltzmann method in simulating time depen-
dent fluid flows has been demonstrated in the previous chapter. It was shown that
use of curved boundary conditions noticeably enhances the accuracy as compared to
using the simple bounce-back on the links.
Here, we further investigate the accuracy by considering the effect of Mach number
on the accuracy and performance of the method. The aim of this study is to end up
with optimum simulation parameters for a desired accuracy with minimum simu-
lation time. Simulation parameters for fixed Reynolds and Womersley parameters
are studied. We will present the relationship between the free parameters of the
lattice Boltzmann and the constraints arising from running simulations under fixed
Reynolds number and Womersley parameter at different Mach and Knudsen num-
bers. Then, we will discuss the convergence behaviour under different simulation
choices; and set up the optimum conditions for best performance.
Time dependent LBM simulations involve higher density fluctuation, since the den-
sity and the unsteady pressure are tied up together through the ideal gas equation
of state. Although there are a number of incompressible lattice Boltzmann models in
existence, they are not yet popular as they degrade the simplicity and flexibility of
the standard method. Therefore, we stick here to the standard quasi-incompressible
D3Q19 model, previously described.
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6.2 Simulations
In all simulations presented here, the flow rate in the tube is computed from a mea-
sured aortic pressure at the entrance; and its unsteady Fourier terms, up to the
8th harmonic, are used to set a suitable time dependent pressure gradient for ob-
taining an average Reynolds number Re = UD

ν = 590 and a Womersley parameter

α = R
√

ω
ν = 16, where R = d/2 is the radius of the tube, ω = 2π/T is the angular fre-

quency and T = 1/ f is the period, with f being the number of heart beats per second.
Pressure boundary conditions are used for the inlet and the outlet boundaries and,
for the walls, either the bounce-back on the links (BBL) or the Bouzidi (Bouzidi et
al., 2001) boundary condition (BBC) is used. We have performed three different cat-
egories of simulations of systolic flow in a 3D rigid tube benchmark. The first set
of simulations compares BBL with BBC. The second set deals with error behaviour
and the third set investigates the convergence behaviour. They are all subsequently
discussed.

6.2.1 Influence of the Wall Boundary Conditions
Since the lattice Boltzmann method is defined only for fluid nodes, distributions
streaming into the fluid structure from non-fluid nodes need to always be evalu-
ated. The way in which these distributions are defined imposes a boundary condi-
tion. A wall boundary condition is needed to evaluate distributions coming from solid
boundaries, while inlet/outlet conditions are needed to drive the flow. For the walls,
achieving the macroscopic non-slip boundary condition with correct momentum flux is
always desirable. Boundary conditions in lattice Boltzmann algorithm may be evalu-
ated in terms of these two constraints together with their convergence behaviour and
viscosity independence. The first and still most popular wall boundary condition is
the bounce-back on the links used previously by the lattice gas community (Lavalle et
al., 1991; Cornubert et al., 1991). With the bounce-back rule, relevant distributions
(coming from wall nodes) are simply reflected back to the direction they came from.
The major drawbacks of the bounce-back rule are its slip velocity and first order be-
haviour. A number of enhanced bounce-back rules successfully increase the accuracy
to second order and the slip velocity to zero (Skordos, 1993; Ziegler, 1993; Noble, 1995)
but they increase the computational cost. Alternate, more complex and “computation-
ally” more expensive body fitted second order boundary conditions have recently been
introduced (Filippova and Hänel, 1998a; Yu et al., 2002; Bouzidi et al., 2001; Fang
et al., 2001). Apart from a few exceptions, these boundary conditions are viscosity
dependent and slightly violate conservation laws. In the previous chapter, we have
used oscillatory pressure gradient to compare the error associated with the body fitted
Bouzidi boundary conditions (BBC) and the bounce-back on the links (BBL), in which
we have reported that the accuracy associated with BBC is at least three times higher
than that with BBL. In this work, we investigate the error behaviour for a complete
systolic cycle which contains at least 16 harmonic terms. We find this necessary since
the error doesn’t scale linear in these harmonics because they have different ampli-
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tudes with increasing Womersley parameters. Moreover, we compare here the error
behaviour for the two boundary conditions at a fixed Mach number in order to know
how much gain we get from using a more accurate, but rather sophisticated boundary
condition, such as BBC, over the less accurate but rather simple BBL.
The diameter of the tube is represented by 74 lattice nodes and the tube length is
L = 148 lattice nodes. First, BBL is used to simulate systolic flow in the tube. The
simulation parameters are set to yield the required Womersley and Reynolds numbers
which are kept fixed to the values mentioned above. For this simulation, T = 2000,G =
1.1×10−5, and τ = 0.55. Samples of obtained velocity profiles at different times of the
systolic cycle are shown in Fig. 6.1(a) compared to the real part of the analytical
Womersley solutions

u(y, t) =
8

∑
m=1
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ρmω
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 , (6.1)

where J0 is the zeroth order Bessel function of the first type and b =−iω/ν =−im(α/R)2

for the mth Fourier harmonic. The average Mach number is 0.05 for this simulation.
As clearly shown in this figure, the agreement with the analytical solution is quite
good. The relative error in velocity at each time-step is defined by

Ev =
∑n

i=0 |~uth(~xi)−~ulb(~xi)|
∑n

i=1 |~uth(~xi)|
(6.2)

where ~uth(~xi) is the analytical solution for the axial velocity and ~ulb(~xi) is the velocity
obtained from the lattice Boltzmann simulations. The overall relative error is aver-
aged over the period and will be referred to as the average error. The bounce-back
on the links yields an average error of 0.11 at a Mach number of 0.05 for this specific
simulation. This indicates that, even with the bounce-back rule, acceptable accuracy
can be obtained for engineering applications.
Using the same simulation parameters, we have conducted another set of simulations
after replacing BBL with BBC. The agreement with analytical solutions enhances
significantly, as shown in Fig. 6.1 (b) and the average error reduces to approximately
0.03.
In a separate study (Artoli et al., 2002d), we have shown that it is possible to go
for higher Mach numbers with curved boundary conditions while still having better
accuracy than that associated with the BBL at a considerably low Mach number. We
have shown that, even with a 10 times higher Mach number, the error associated
with the curved boundary conditions is still better than that associated with BBL. It
was also reported that using a curved boundary condition enhances the stability of the
system and can reduce the simulation time since it allows higher Mach numbers than
the simple bounce-back rule. It is therefore not recommended to use BBL for such case
unless simulation parameters are changed towards low Mach numbers. However,
reducing the Mach number slows down the convergence to equilibrium (Maier, 1996),
unfortunately, as will be investigated in the next chapter.
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Figure 6.1: Obtained samples of velocity profiles (dots) in lattice units during the
systolic cycle in a 3D tube, compared to the analytical Womersley solution (lines)
with: (a) BBL and (b)BBC2 wall boundary conditions.

6.2.2 Grid Refinement
In order to study the accuracy and convergence behaviour for the same physical prob-
lem under fixed Reynolds number (Re) and Womersley parameter α, we need to tune
our simulation parameters in a special way. The standard lattice Boltzmann method
has several free parameters, but for pulsatile flow in rigid tubes, it is more convenient
to tune the lattice viscosity ν, the Mach number M, the diameter D of the tube and the
period T of the pulse. Changes in any of these parameters will result in changes in
the space and time resolutions of the grid, and accordingly, the Mach and the Knud-
sen numbers. For lattice Boltzmann simulations the error behaviour is influenced by
the Mach number, M = U

cs
, and the Knudsen number ε ∼ (2τ−1)/D. The effect of these

numbers arises as a compressibility error, given by (Holdych et al., 2002)

φ = δ2
x R2

e ν2 c2∂tρ (6.3)

which increases with increasing Reynolds and Mach numbers, since Re = MDcs/ν . As
a function of Womersley number, the compressibility error can be written as

φ =
2δ2

xcsc2

π
α2MD

St
∂tρ (6.4)

where St = D f /U is the Strouhal number. In this simulation, the dimensionless hy-
drodynamic numbers (Re,α and St) and the Mach and the Knudsen numbers are all
fixed. This implies that the grid must be refined, and/or the density gradients shall
be small in order to reduce the compressibility error. Time-dependent flow with BGK
involves high density gradients, as stated before. Therefore, we are only left with grid
refinement. There are three different ways to do this;

1. fixed M method: in which the the diameter D, the period T and the viscosity ν
are changed while keeping fixed the Mach number.
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2. fixed τ method: by changing the diameter D, the period T and the Mach num-
ber M while keeping fixed the lattice viscosity ν, and

3. fixed D method : by keeping Fixed the diameter D while changing the viscosity,
period and the Mach number.

The effects of these changes on the grid resolution are tabulated in Table 6.1, in which
we assume an n times change in one of the parameters and compute the corresponding
changes in the other parameters to return the fixed Re and α. From this table, we
can predict the computational efficiency of each approach. For instance, the fixed
M approach involves n times decrement in δx (which increases the number of grids
n3 times) and n times reduction in δt which scales the simulation time by n4. The
fixed τ method scales the simulation time as n5 and the fixed D method scales it as
n. Although it is easy to tell that the last method is faster while the second one is
more accurate, a combination of accuracy and performance is not trivial. The fixed M
method does not involve reduction of the Mach number, which is a major contributor
to error enhancement when considering time dependent flows and, therefore, it is
not attractive in this study. Accordingly, we have performed two sets of simulations
corresponding to the two left methods. These are discussed below.

Table 6.1: Relative changes in simulation parameters under fixed Reynolds and Wom-
ersley numbers with respect to an n times change in one of the parameters of a refer-
ence simulation.
Lattice Parameter D′/D ν′/ν T ′/T U ′/U δ′x/δx δ′t/δt M′/M ε′/ε
Fixed D 1 1/n n 1/n 1 1/n 1/n 1/n
Fixed τ n 1 n2 1/n 1/n 1/n2 1/n 1/n

Fixed M n n n 1 1/n 1/n 1 1

Accuracy and Performance with the Fixed D Method

Based on Table 6.1, we have selected three sets of parameters to study the error be-
haviour produced by this technique. First, we have performed a reference simulation
at M = 0.5 and ε = 1/74 with τ = 1 and T = 200. Then, two other parameter sets are
selected with the aid of Table 6.1. These parameters are listed in Table 6.2 which also
lists the changes in M and ε and their multiplication for each simulation set. In Table
6.2, n = 1 represents a reference simulation, in which we set τ = 1, the magnitude
of the pressure gradient as G = 0.0011 and T = 200 to yield a resulted Mach number
M = 0.50. The Mach number is reduced n times through increasing the period n times,
reducing the pressure gradient 1/n2 times, and τ by a factor 1+n

2n in order to have the
same Reynolds and Womersley numbers. In all simulations, the system is initialised
from rest and the simulation ends after 40 complete periods. The BBL, BBC with first
order interpolation (BBC1) and BBC with second interpolation (BBC2) were used sep-
arately for each parameter set to end up with 9 simulations. The simulations were
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performed on 8 nodes of a Beowulf cluster using slice decomposition. The mean time
per iteration is about 0.45 seconds using BBL and 0.47 seconds using BBC.

Table 6.2: Simulation parameters with respect to the reference simulation for which
τ = 1,M = 0.50 and ε = 1/74, . The average error associated with each set is shown for
BBL, BBC1 and BBC2 boundary conditions.

T 200 2000 20000
n 1 10 100
τ 1 0.55 0.505
G′
G 1 1/100 1/10000
M′
M 1 1/10 1/100
ε′
ε 1 1/10 1/100
ε′M′
εM 1 1/100 1/10000

Eav, BBL instable 0.120 0.027
Eav, BBC1 0.0627 0.0352 0.0253
Eav, BBC2 0.0615 0.0102 instable

Samples of BBC1 obtained velocity profiles during the systolic cycle are shown in
Fig. 6.2 for M = 0.5, compared to the analytical Womersley solutions. Although M is
relatively high, the agreement with the analytical solution is still better than those
obtained by a 10 times smaller Mach number with BBL shown in Fig. 6.1 (a). The last
three rows in Table 6.3 list the average error associated with the three wall boundary
conditions.
The combined influence of the boundary conditions and the Mach × Knudsen numbers
is shown in Fig. 6.3 in which the three boundary conditions are tested at a fixed Mach
number (M = 0.05). From this figure it is apparently clear that it would be necessary
to use a curved boundary condition at the same Mach number. In Fig. 6.4 we show
the computational time as a function of the Mach number, which assures a first order
behaviour, as predicted above.
From this set of simulations, we conclude that it would be faster, more stable and
more accurate to use a curved boundary condition than the simple bounce-back. In
addition, we have noticed that the first order BBC, which interpolates data up to
the first fluid node is more stable than the second order interpolation scheme, BBC2,
which interpolates data using two neighbouring fluid nodes. This may be attributed
to effects from interpolation in a region of large velocity gradients in the case of BBC2.
It is worth noting that the error behaviour as a function of the sampling period T has
been studied in the previous chapter ( see also Artoli et al., 2003e), showing error
enhancement as the number of sampling points representing the period increases
and behaves as first order in time instead of second order due to the compressibility
effect of the D3Q19 model.

In summary, to obtain better accuracy, it would be more accurate to still use the
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Figure 6.2: Velocity profiles at M = 0.50 using the BBC1 boundary condition with
overall average error of about 0.07, still less than the BBL results at a 10 times lower
Mach number. The system is instable with the BBL at this Mach number.
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Figure 6.3: Average error behaviour as a function of Mach and Knudsen numbers, for
the systolic tube flow using the BBL, BBC and BBC2 boundary conditions.

bounce-back on the links at lower Mach numbers than to use more sophisticated
boundary conditions. For faster convergence, curved boundary conditions are pre-
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Table 6.3: Simulation parameters used to enhance the spatial resolution. The mean
relative error, Eav, is listed for each case.

D 21 65 105
n 1 3 5
T 40 360 1000
G′
G 1 1/27 1/125
M′
M 1 1/3 1/5
δt 1 1/9 1/25
Eav, BBL 0.2412 0.1189 0.0262
Eav, BBC 0.2301 0.0557 0.0262
Eav, BBC2 instable 0.0560 0.0266

Table 6.4: Temporal Local Relative Error, Ev (T) for BBL and BBC boundary condi-
tions with D = 65 lattice nodes.
Time 0 10 T 20T 30 T 40 T 50 T
Ev(T), BBL 0.9950 0.2520 0.0698 0.0279 0.0200 0.0200
Ev(T), BBC 0.9950 0.2769 0.0615 0.0280 0.0200 0.0197
Ev(T), BBC2 0.9950 0.2747 0.2520 0.0866 0.0350 0.0560

Table 6.5: Mean, variance and mean deviation of the Relative error for BBL, BBC
boundary conditions with D = 65 lattice nodes.
Boundary condition Mean error (Eav) Variance Mean deviation
BBL 0.1189 0.0013 0.0219
BBC 0.0557 0.0027 0.0352
BBC2 0.0560 0.0027 0.0350

ferred than the bounce-back rule if the boundary is static.

Accuracy and Performance with the Fixed τ Method

In order to reduce simulation time, it is necessary to have a large time-step in a coarse
grid at a high Mach number. To attain that, we use the fixed τ method to perform a
set of simulations in which the period is set to a minimum possible value that leads
to a stable solution on the coarsest grid. Then the corresponding values for the pres-
sure gradient and the relaxation parameter are set to yield the desired Womersley
and Reynolds numbers. The convergence behaviour is studied by grid refinement
in both δx and δt , as explained in Table 6.1. The simulation parameters are listed in
Table 6.3 together with obtained average errors associated with the three used bound-
ary conditions. As this method results in reducing δx , δt and the pressure gradient,
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Figure 6.4: Convergence behaviour as a function of Mach number at fixed δx , obtained
by using 8 processors and applying the BBC1 boundary condition.

both accuracy and performance are significantly enhanced, since all parameters in-
fluencing the error are under control. As is shown in Fig. 6.5, at least second order
convergence behaviour is guaranteed with this method. Moreover, with this method,
solutions with periods smaller than the fixed D method are stable and therefore the
simulation time is less, but it scales as n2.

The convergence behaviour as a function of time for this method is shown in Fig. 6.6,
which shows the difference between the analytical and obtained velocity profiles at
different simulation times. From this figure, we observe that the method converges
to a reasonable accuracy after 40 complete periods, similar to the fixed D method, but
with a major computational gain, since the length of the period is smaller (i.e. δt is
larger). This figure also illustrates that the error localises near to the walls, where
large gradients exist, and does not enhance noticeably near to the walls on the same
grid. Table 6.4 lists the error dependence as a function of simulation times for BBL,
BBC1 and BBC2 boundary conditions for a tube with D = 65 lattice nodes, with its
mean, variance and mean deviations tabulated in Table 6.5. The error is reasonably
comparable to that obtained by using the fixed D method. In conclusion, this method
is computationally more feasible than the fixed D method and is recommended to use
while keeping D and T to their minimum values that returns stable solutions.
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6.2.3 Convergence Behaviour
Convergence of the lattice Boltzmann method to steady state is significantly affected
by two local processes; initialisation and boundary conditions. In this section, we
focus on the influence of these processes on the convergence behaviour.

Convergence and Walls Boundary Conditions

As mentioned above, boundary conditions need to be defined at walls, inlets and out-
lets. For the walls, two categories of boundary conditions can be recognised; bounce-
backs and curved boundaries. The bounce-back rule is a very efficient boundary condi-
tion since it only involves a single memory swapping process for each relevant distri-
bution on each node on the surface of the simulated object. For all curved boundaries,
the exact position of the walls is determined at least once if the boundary is fixed and
needs to be computed dynamically for moving boundaries. On its own this is more
costly than using the bounce-back rule. In addition, using curved boundary condi-
tions involves first or second order interpolation or extrapolation for velocity, distri-
bution functions or density or a combination of some or all of them. As demonstrated
above, use of a curved boundary condition enhances the accuracy but is computation-
ally more intensive compared to the simple bounce-back at the same Mach number.
To gain the accuracy of a curved boundary condition and a performance similar to the
bounce-back, an accelerating technique recently introduced by the author (Artoli et
al., 2003a) may be applied, as will be described in the next chapter.

Inlet and Outlet Conditions

For lattice Boltzmann simulations, a number of inlet and outlet conditions are avail-
able. The most commonly used are periodic boundary conditions, in which distribu-
tions leaving the simulation box at the outlet are re-injected at the inlets and vice-
versa. Periodic boundary conditions involve only memory swapping operations which
count as at least 10 times the cross section of the simulation box per time-step. Al-
though they are fast, and accurate, they can only be used for periodic geometry. For
non-periodic geometry, inlets and outlets need to be treated differently in the follow-
ing manner:

• Velocity and pressure : assign one and compute the other (Zao and He, 1997),
assign both (only for inlets) extrapolate or no flux normal to the walls (only for
outlets).

• unknown distributions: compute explicitly, set to their equilibrium, copy from
nearest neighbours, interpolate or extrapolate.

For the first item, if the velocity or the pressure are computed one from the other, at
least 15 additions and two multiplications are needed per node on the boundary and
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Figure 6.5: Convergence behaviour obtained by reducing the grid spacing n times,
time-step n2 times and increasing the period n2 times, for the BBL, BBC and BBC2
boundary conditions as a function of grid points representing the diameter of the tube.
The relaxation parameter is kept constant and the body force is reduced n3 times to
return the same Reynolds and Womersley parameters at Re = 1250 and α = 16.

therefore is at least 15 times more expensive than periodic boundary conditions. Ex-
trapolation and no-flux schemes are far better in terms of accuracy and performance
than computing velocity or pressure from one another, but they are only suitable for
the outlets. A reasonable choice for time-dependent flow in irregular geometry is then
to assign pressure and compute velocity at the inlet, no-flux at the outlets and set the
unknown distributions to their equilibrium values. If the outlets are far enough from
inflow, copying from upstream would be the most efficient outlet condition.

Initial Conditions

Time dependent flow involves large density fluctuations. Although it increases com-
pressibility errors, this reduces the initialisation influence on convergence behaviour.
However, the way in which the simulation box is initialised has little effect on the fi-
nal flow fields. Since the Boltzmann equation assumes that the system is not far from
equilibrium, a correct and reasonable initialisation technique is to set each distribu-
tion to its equilibrium with a small perturbation. We have adopted this initialisation
process in all our simulations. It is noted that more sophisticated initialisation tech-
niques such as second order interpolations from the boundaries may be useful but
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is represented by 65 nodes and the period is T = 360 sampling points. The average
errors are tabulated in Table 6.3.

they complicate the standard lattice BGK scheme.

6.3 Summary
We have shown that the lattice Boltzmann BGK method is an accurate and efficient
method as a solver for time-dependent flows. Different methods for performing time
dependent flows at fixed simulation parameters are tested in terms of accuracy and
performance. An aortic pressure is used as an inlet condition to drive the flow in a
3d rigid tube and the Womersley solution is recovered to an acceptable accuracy. Dif-
ferent grid refinement techniques to study error analysis and convergence behaviour
are discussed. The influence of walls, inlet and outlet boundary conditions on accu-
racy and performance is studied in details as a function of Mach and Knudsen num-
bers. It is found that the bounce-back on the links could be more efficient if used at
low Mach numbers when the Mach number annealing technique is used, as will be
demonstrated in the next chapter.



Chapter 7

Optimisation Techniques

We present two adaptation techniques for the lattice Boltzmann method. First, the
Mach number annealing is proposed for fast convergence of simulations of laminar
time-dependent flows. The second technique is a test for the robustness of the method
for interactive simulations. The first technique is an extension to the recent acceler-
ated procedures for steady flow computations. Being based on Mach number anneal-
ing, the present technique substantially improves the accuracy and computational
efficiency of the lattice Boltzmann method for such unsteady flows.

7.1 Necessity for Optimisation
In the previous chapters, we have demonstrated the suitability and investigated the
accuracy of the standard lattice Boltzmann method in simulations of time-dependent
fluid flows. We have also shown that use of curved boundary conditions significantly
enhances the accuracy as compared to the bounce-back on the links. However, the
bounce-back rule is still the most popular boundary condition, for its simple imple-
mentation and easy adaptation to complex geometry. Figure 7.1 shows temporal error
behaviour in simulating a systolic cycle as a function of time, boundary conditions and
Mach number. From this figure, it is shown that with the bounce-back, high order ac-
curacy is only obtainable when the Mach number is very small (see the legend of the
figure). This can be explained as follows. It is known that the bounce-back rule pro-
duces large errors of first order behaviour. In addition, simulations of time-dependent
flows with the standard lattice Boltzmann model involve another major source of er-
ror: the compressibility errors. These two sources of error can be reduced significantly
by reducing the Mach number. This, unfortunately, blows up the computational time
needed for the simulation to converge. A current computational interest for all CFD
solvers is to optimise simulation parameters for a desired accuracy with minimum
computational cost. Within the lattice Boltzmann community, many efforts have been
reported in this direction, mainly via implicit techniques (Tölke et al., 1998; Verberg
and Ladd, 1999) local grid refinement (Filippova and Hänel, 1998; Yu et al., 2002)
and scaling of the Reynolds number (Bernaschi et al., 2002). Most of these techniques
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Figure 7.1: Error in velocity as a function of Mach number and boundary conditions
for systolic flow in a rigid tube with α = 16 and Re = 1150.

are applied to steady flows and/or affect the uniformity of the Cartesian grid and
hence complicate parallelism in the computations. For unsteady flows, time evolution
cannot be avoided and the method is computationally expensive, especially when the
physical time scale is very small (which is a characteristic feature of dynamic complex
systems).

In this study, we extend these acceleration techniques to unsteady flows. The idea is
based on stepwise reduction of the Mach number after the simulation converges with
a higher Mach number. We call this process Mach number annealing.

The standard lattice Boltzmann model works pretty well as long as the Mach number
Ma is low (M2

a << 1) and the density fluctuations are small. However, modelling un-
steady flows involves higher density fluctuations, since the density and the unsteady
pressure are tied up together through the ideal gas equation of state. Also, compress-
ibility errors at high Mach numbers are expected. Although there exist a number
of incompressible versions of lattice Boltzmann (e.g. He and Luo, 1997a; Guo et al.,
2000) they have not been clearly formulated and tested in three dimensions, and are
not yet highly thought of. A number of generalised lattice Boltzmann equations are
recently gaining more attention (e.g. D’Humiéres, 1992). They provide more stable
and accurate solutions, but at relatively higher computational cost. Here, we have
applied the widely used quasi-incompressible D3Q19 model previously explained.
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7.2 Mach Number Annealing
The Mach number is defined as the ratio between the speed U of an object to the speed
of sound

Ma =
U
cs

. (7.1)

Low-speed fluids (Ma << 1) can be considered as incompressible. As the Mach num-
ber approaches unity, compressibility effects need to be considered. The lattice BGK
scheme involves a low-Mach number expansion of the Maxwell equilibrium distri-
bution function and therefore, it introduces compressibility errors at relatively high
Mach numbers.
In addition to the kinematic viscosity ν, the diameter D and the velocity U which de-
fine the Reynolds number as Re = UD

ν , a non-steady flow is characterised by a charac-

teristic time interval, included in the Womersley parameter α = D
2

√

ω
ν or the Strouhal

number, St = D f
U = 2α2

πRe
where ω = 2π f = 2π

T is the angular frequency with f being a
typical frequency and T the associated period of oscillation. An additional constraint
comes from the fact that the accuracy of the lattice Boltzmann method reduces with
increasing Mach number, especially for unsteady flows. The flow problem is com-
pletely defined by the geometry and these dimensionless numbers which take certain
constant values. Now, in order to simulate at low-Mach number, we must decrease
the velocity U and consequently decrease the viscosity ν to produce the same Reynolds
number. However, since the Womersley and the Strouhal numbers are dependent on
the viscosity and the velocity, the frequency must also be reduced. Explained in for-
mulae, the velocity U is given by

U =
Reν
D

=
D f
St

= Macs (7.2)

from which
Ma =

Reν
cs D

, (7.3)

and

Re =
D2 f
ν St

. (7.4)

From these relations, we recognise that the Mach number Ma and the kinematic vis-
cosity ν are directly proportional to the frequency of oscillation through

Ma =
f D

St cs
, (7.5)

ν =
f D2

St Re
, (7.6)

and

ν =
πD2 f
2 α2 . (7.7)
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Eq. (7.5) implies that the frequency domain has to be reduced in order to have a
low Mach number. This results in a considerable delay in the convergence behaviour.
Eq. (7.6) shows that decreasing the frequency unfortunately results in pushing the
simulation towards the instability region of the lattice BGK. Eq. (7.7) tells us that,
for highly dynamic simulations (high α), we need to consider both low frequency and
viscosity. These constraints end up with a computationally expensive slowly time
evolving simulation. This poses a high demand on a prospective acceleration method.
An annealing process to accelerate the lattice Boltzmann method was first reported by
Bernaschi et al. (2002). It allows fast convergence by combining viscosity annealing
with powerful linear iterative solvers for computing the inverse Liouville operator.
Different from those for steady flows, time-dependent lattice Boltzmann simulation
parameters are not easy to control within a running simulation since, among others,
new physical and hydrodynamic constraints need to be satisfied. The flow is now char-
acterised by the Womersley number, the Reynolds number, and the Strouhal number,
as discussed above. These parameters need to be fixed during annealing since the
dynamics of the flow is highly time-dependent. We apply the same idea for unsteady
flows, but anneal the Mach number instead of the Reynolds number on a strictly fixed
spatial grid. We assume that the Mach number is to be annealed n times and recall n
as the annealing factor. In order to do that

n =
Ma

M′
a

=
U
U ′ =

f
f ′

=
ν
ν′

, (7.8)

which implies that all the velocity (in terms of the driving force), the frequency of
oscillation and the viscosity are to be reduced n times. This annealing strategy can
be direct (1 level annealing) or multi-level. In the direct annealing strategy, after the
simulation converges with a higher Mach number, the viscosity, the frequency and the
driving force are reduced n times in a single step and the simulation converges to the
final solution. The multi-level annealing strategy involves gradual reduction of these
parameters towards n, depending on the stability and tolerance constraints. In other
words, there are different ways to decide when to start the annealing. Examples of
both direct and multi-level annealing methods are discussed in the next section.

7.3 Simulations
We consider time-dependent systolic flow in a rigid tube of diameter D = 63 lattice
units as a benchmark for our simulations. The first 8 harmonics of a pressure pulse,
measured at the entrance of the human abdominal aorta, are used to apply an inlet
condition for the tube. We have selected this complex time series for the sake of
generality. For the outlets, constant density is applied. The velocity and the unknown
distributions are computed from the density. For the walls, the bounce-back on the
links is used. For all simulations the Womersley number is kept constant at α =
16 and the average Reynolds number is Re = 270. The simulation starts at average
Ma = 0.5 ( T = 360 and ν = 0.068 ) and waits until the system builds up its knowledge
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Figure 7.2: Obtained (dots) velocity profiles (left) and shear stress (middle) in lattice
units during the systolic cycle (right), compared to the analytical Womersley solution
(lines) for the 3D tube benchmark. The dots in the right column indicate times at
which the profiles are shown. For this simulation α = 16, Re = 270, and Ma = 0.1 .

about the pulsatility and non-linear behaviour and converges after about 40 complete
periods. Obtained simulation results are compared with the real part of the analytical
Womersley solution given by Eq. (6.1).
The average error at Ma = 0.5 is 15%, originating from both compressibility effects and
wall boundary conditions. Next, we reduce the Mach number to obtain good agree-
ment with the analytical solution. We have previously studied the effect of reducing
the Mach number on the accuracy for this benchmark (Artoli et al., 2002d). Fig. 7.2
shows sample simulation results for three different time frames after reducing the
Mach number to Ma = 0.1. The new simulation parameters are computed from Eq.
(7.8) after substituting n = 5 and including the initial simulation parameters. The av-
erage error is reduced to less than one per cent. However, since the period increases 5
times, the computational time increases with the same factor. The aim of Mach num-
ber annealing is to accelerate convergence to equilibrium by reducing the percentage
tolerance in mass and momentum, computed by comparing similar points for each
two successive periods. The mass tolerance is defined as

M tolerance % =
M(t)−M(t −T )

M(t −T )
∗100 (7.9)

and the momentum tolerance is defined accordingly.
In typical simulations, we accept convergence below 0.1% for the momentum. We have
performed three simulation sets for the systolic tube flow benchmark - one without
annealing with the lowest desired Mach number, having T = 1800 and ν = 0.01353.
The pressure gradient is scaled to obtain a Mach number of 0.1 . Fig. 7.3 (a, b) shows
the relaxation of tolerance in mass and momentum from which we see that it takes
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quite a long time to dampen the initial oscillations in tolerance (more than 72000
time-steps). The second set of simulations is conducted using 4 levels of annealing by
reducing the Mach number after each 60 periods of the basic simulation. In detail, the
Mach number is reduced to 0.4, 0.3, 0.2 and finally 0.1 directly after 60, 120, 180 and
240 complete periods of the basic simulation, respectively. The results are shown in
Fig. 7.3 (c, d), from which we notice that the mass and more strongly the momentum
converge much faster with the annealing process. The momentum tolerance is usually
several orders of magnitudes higher than that for the mass, and hence, has more
influence on the accuracy of the flow fields.
The third set shows a one-step annealing in which simulation parameters are directly
tuned to the final Mach number (Ma = 0.1) after convergence of the basic simulation
in which T = 360 and Ma = 0.5. The direct annealing strategy significantly accelerates
the relaxation towards equilibrium (see Fig. 7.3 (e,f)), since it significantly reduces
compressibility errors earlier than the multi-level annealing process. For the non-
annealed case, it takes a long time for the momentum to relax with a tolerance sim-
ilar to the directly annealed simulations. In terms of numbers, the direct annealing
strategy is at least 3 times faster for a 5 times annealed Mach number. The gain in
computational time is higher if the ratio between the two Mach numbers is larger,
since the order in the tolerance seems to depend only on the tolerance of the initial
simulations rather than the annealing factor. The short-living spikes in Fig. 7.3 may
be attributed to two reasons. First, since the systolic cycle is composed of many har-
monic terms, values of point mass and momentum do not converge simultaneously.
Compressibility errors at high velocities are also large. This explains why the spikes
disappear with direct annealing, since the Mach number is reduced significantly.

7.4 Changing Geometry

In this section, we present the capability of the lattice Boltzmann method as a robust
technique for interactive blood flow simulations, by considering the case of a photo-
typical symmetric bifurcation with a changing geometry. During vascular surgical
planning, we envision that different geometrical solutions need to be tested on the
patient’s anatomical image provided by a suitable imaging technique. Convention-
ally, with NS solvers, for each newly suggested geometrical solution SN , the previous
solution SO is discarded, a new grid GN has to be generated and the simulation has to
be restarted to obtain the solution SN . This may take considerable amount of simula-
tion time. However, there are some CFD methods which are fully adaptive, such as
the finite difference methods. In this section, we present primitive results on adap-
tivity of lattice Boltzmann method. Given a geometry G(t0) at time t0, we first run
the lattice Boltzmann solver towards obtaining the solution S(t0) while monitoring for
a new geometry, not too different from the previous geometry. If at time ti the user
introduces a new geometry G(ti), the simulation instantaneously adapts to the new
grid and resumes towards obtaining the solution S(ti) without a need to restart. The
user may end up with a solution SN for the geometry G(tN). If the lattice Boltzmann
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Figure 7.3: Comparison in mass- (left) and momentum (right) tolerance as a function
of the number of time-steps , between non-annealed (upper row), 4 levels annealed
(middle row) and directly annealed (bottom) simulations. The Mach number is re-
duced 5 times in the annealed simulations (from 0.5 to 0.1).

method is robust enough, the simulation time from t0 to tN could be less than the sum
of convergence times T 0

i for each individual simulation, i.e. tN − t0 < ∑N
i=0 T 0

i . Moreover,
the accuracy in SN must be the same as the solution SN(restart) which is obtained by
restarting the simulation. This is shown consequently.

We have conducted a number of 2D simulations on the bifurcation benchmark in-
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Figure 7.4: A lattice Boltzmann Comparison between interactive simulations and
restarted simulations in terms of simulation time for a symmetric bifurcation bench-
mark.

troduced in the previous section, though allowing the bifurcation angle θ to change
during the simulation after equal number of time steps. We have selected this bench-
mark for its similarity to the planning of a bypass for a diseased artery, where, the
surgeon tries different paths to implant the host artery.
The simulation starts at t0(θ) at θ = 20o and the system evolves towards the solution
S(0) a number of time steps i. At time t = i, the angle is increased by δθ and the
simulation resumes towards the solution S(i) for the geometry G(i) another i number
of time step after which the geometry G(2i) is introduced and so on, till we end up
with θ = 80o as our final G(N) geometry. The simulation then converges to the solution
S(GN(ni)). In lattice Boltzmann method, the system converges directly after the mass
and momentum reach a given tolerance, chosen to be less than 10−5 for momentum
and less than 10−9 for mass.
Technically speaking, the initialisation and the update of the new geometry are the
critical factors which have direct influence on the total simulation time, while the
choice of boundary conditions affects both stability and simulation time. In this ex-
periment, we have tested two simple initialisation techniques. In both methods, only
if the status of a node in the simulation box is changed from fluid to solid or from solid
to fluid, will the node need initialisation. One way to initialise is to put these nodes
to their equilibrium distributions which involves more computational time than the
other simpler initialisation method such as assigning them to an average value. It
is noted that the system forgets about the initialisation method in a short transi-
tional time ttrans. Figure 7.4 shows the total number of nodes, the number of nodes to
be updated and the total simulation time for interactive and restarted simulations.
As shown in this figure, the total simulation time during an interactively changing
geometry is in general smaller than the total simulation time for each individual sim-
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ulation. This reflects a nice feature of the lattice Boltzmann method and makes it
quite suitable for interactive simulation environments. However, the computational
gain is less than 10% in this specific case. Application of acceleration techniques has
proven to be feasible (Bernaschi et al., 2002). It is noted that other Cartesian grid
CFD techniques may share this feature with the lattice Boltzmann method, but the
body fitted grid solvers such as the finite element methods will be faced with the time
it takes to adapt the new mesh. We are now using the lattice Boltzmann as a core
simulation system for an interactive virtual vascular treatment environment using
high level architecture (HLA)and a virtual 4D CAVE environment for interaction and
visualisation (Belleman et al., 2000; Zhao et al., 2002).

7.5 Conclusions
In this chapter we have presented a numerical technique to accelerate laminar time-
dependent lattice Boltzmann simulations through annealing of the Mach number
during simulations, either directly or in a multi-level strategy. In both cases, the
simulation is performed on a fixed grid and the viscosity, the Mach number, and the
frequency are annealed by the same annealing factor. Considerable gain in com-
putational time compared to that for the non-annealed standard lattice Boltzmann
simulations is observed. We have shown that direct annealing of the Mach number
is faster than the multi-level one. Since it works on the same grid, the Mach number
annealing technique does not affect the parallelism of the uniform lattice Boltzmann
Cartesian grid. Our current research concentrates on the optimisation of different
annealing strategies of the Mach number for best acceleration. The capability of the
lattice Boltzmann method for interactive simulations has shortly been demonstrated
through studying flow in a changing geometry. It has been demonstrated that the lat-
tice Boltzmann solver can be an adaptive flow solver without considerable difficulties.
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Chapter 8

The Real Thing

Based on the arguments raised on the previous chapters, in this chapter, simulation
results of steady and unsteady flow in a realistic model of the human aortic bifurca-
tion reconstructed from Magnetic Resonance Angiography are presented as a typical
haemodynamic application. Velocity fields and shear stress are computed and results
are compared to those available in the literature.

8.1 Introduction
Flow characteristics near branches and bifurcations are quite important in haemo-
dynamics: Cardiovascular diseases are considered as a leading cause of death in the
developed world and are now becoming more prevalent in developing countries (World
Health Organisation, 2002). Most of these diseases localise in regions of complex ge-
ometry of the arterial tree. The flow fields and shear stress play important roles in
understanding, diagnosis and treatment of such diseases. Although being studied by
many authors (e.g. McDonald, 1960; Caro et al., 1974; Ku et al., 1985; Moore et al.,
1994a, 1994b and 1994c; Reneman et al., 1993; Taylor et al., 1996; Gijsen et al., 1997;
Vorp et al., 1998; Wootton, 1999; Ku, 1999), the relation between flow fields and car-
diovascular diseases is still not fully understood, and is currently receiving more and
more attention (Botnar et al., 2000, Berthier et al., 2002; Cheng et al., 2002).
There have been many reports relating low and oscillatory shear stress to atheroscle-
rosis in large arteries. For a recent review, we refer to Shaaban and Duerinckx (2000).
Frequently, the treatment of an arterial disease involves implanting a new host artery
as an additional or a replacement to the diseased one, or design of a cardiovascular
device. These are quite difficult to plan and have to be tailor made for each specific
patient.
Recently, two major developments in the field of vascular surgery planning have made
it possible to better and faster plan risk reduced implantation: firstly, magnetic res-
onance imaging angiography (MRA)1 has been significantly enhanced to provide ex-

1use of Magnetic Resonance Imaging to produce detailed pictures of the blood vessels.
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cellent images of the arterial tree and non-invasive dynamic data acquisition is made
possible (Goyen et al., 2001). Secondly, the development of cheap computing power
and interactive simulation environments have made near real time simulations not
far from reach (Taylor et al., 1999; Bellemann and Sloot, 2000; Zao et al., 2002).
With these in hand, an efficient and robust flow solver can be used as an interactive
modelling environment. There are various successful computational fluid dynamics
(CFD) methods commonly used here, such as the finite element methods, the finite
difference methods and the finite volume methods. All these techniques are well es-
tablished, but they yield two major difficulties. These are the non-trivial and time
consuming grid generation, and the necessity to solve the Poisson equation for the
pressure field.
On the other hand, the conventional flow solvers such as the finite element methods
and the finite difference methods are accurate and efficient. However, their appli-
cability to problems involving complex and moving geometry is complicated, due to
their strong dependence on time consuming mesh generation. The Navier-Stokes
(NS) equations can now be solved with mesh-free algorithms (Batina, 1993) which
are unfortunately not flexible enough due to errors attributed to numerical viscosity
and to difficulty in improving the space and time accuracy. Dynamic mesh generating
techniques have been reported recently (Taylor et al., 1998).
New particle based methods such as dissipative particle dynamics, lattice gases
and lattice Boltzmann methods have been developed and matured (Mcnamara and
Zanetti, 1988; Higuera and Succi, 1989; Qian et al., 1992; Aharonov and Rothman,
1993; Behrend, 1995). These mesocopic techniques may be quite useful for haemo-
dynamic research, as, among other features, they are more flexible in dealing with
multicomponent fluid flow problems. In this study, we use the lattice Boltzmann BGK
method, shortly described in the next section.
Since the shear rate in the aorta is higher than 0.1s−1, we consider blood to be New-
tonian. We also ignore the elastic behaviour of the aortic walls for its minor effects on
the flow fields in the aorta.
As time dependent flow simulations are known to be computationally expensive, a
need for an efficient flow solver is crucial. Traditional Navier-Stokes solvers fre-
quently use artificial compressibility and pressure projection methods to accelerate
convergence. In this study, we present the capability of the lattice Boltzmann BGK
method as a robust technique for systolic Newtonian flow in a a complex model of the
human abdominal aorta reconstructed from MRA images of a volunteer.
Different from the traditional CFD methods which obtain the velocity and pressure by
solving the Navier-Stokes equations and compute the shear stress from the velocity
profiles, the lattice Boltzmann BGK method is a special finite difference equation of
the simplified Boltzmann BGK equation which describes transport phenomena at the
mesoscopic level. From the previous chapters, it has been realised that solving the lat-
tice Boltzmann equation has three main advantages over solving the Navier-Stokes
equations: first, it works with fast and easy to generate Cartesian grids while it still
yields accurate results of second order in space and time. Secondly, the pressure is
simply a linear function in the speed of sound (p = ρc2

s ) while the NS solvers need to
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solve the Poisson equation. Finally and most important for the field of haemodynam-
ics, is the fact that the stress tensor can be directly obtained from the non-equilibrium
parts of the distribution functions, independent of the velocity fields, while a need to
get the derivative of obtained velocity profiles is not avoidable when NS solvers are
used. The non equilibrium parts of the distribution functions are computed during
collision steps to relax the system towards equilibrium. Therefore, no considerable
computational cost is needed to compute the stress. All these advantages make the
lattice Boltzmann method a promising candidate for simulating time-dependent blood
flow in arteries.
In the last two chapters, it has been demonstrated that the lattice Boltzmann method
can easily be adapted to simulate time dependent flows. Since it is a linear function
in the pressure, time dependent density gradients can be implemented to represent
a systolic flow rate quite easily. A range of values of Womersley parameter can be
simulated without affecting the stability of the model. All kinds of inlet and outlet
boundary conditions, usually used in computational haemodynamics can equivalently
be implemented. The robustness of the method appears in the straightforward par-
allelisation of the easy to generate Cartesian grid. On the other hand, since it is
implemented on a Cartesian grid, very fine grids need to be generated to simulate
flow in complex geometry. Filippova and Hänel (1998) have overcome this problem by
considering local grid refinement.

8.2 Flow in the Abdominal Aorta
Atherosclerosis mainly occurs in focused locations of large and medium arteries such
as the carotid bifurcation, the coronary arteries, the abdominal aorta and the iliac and
femoral arteries at regions of low and oscillating shear stress, independent of other
risk factors (Shaaban and Duerinckx, 2000). In the human abdominal aorta, the lat-
eral and posterior walls of the aorta distal to the inferior mesenteric artery (IMA)
are highly susceptible for Atherosclerosis. These regions are known to have low and
oscillating shear stress (Gibson et al., 1993; Oshinski et al., 1995; Taylor et al., 1998).
From the arguments raised previously and the conducted benchmark experiments
presented earlier in this thesis, we are further encouraged to explore the capability
of the lattice Boltzmann method in simulating a more realistic geometry of interest
to Biomechanics. We choose to study flow in a model of the human abdominal aorta
as an example. The model is reconstructed from a magnetic resonance angiography
of a volunteer. The pressure gradient at the entrance of the aorta is averaged from
flow rate obtained from literature (Moore et al., 1994c; Taylor et al., 1999). The com-
putational model under study involves only the bifurcation region, directly after the
IMA, and includes parts of the left and right iliac arteries (see Fig. 8.1). The complete
model of the abdominal aorta, including the celiac, mesenteric and renal branches is
currently under study.
Many studies on the flow in the abdominal aorta have been reported, all related the
cause of the focal nature of the disease mainly to the complex nature of the shear
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Figure 8.1: An MRA reconstructed model of the aortic bifurcation with left and right
iliacs. The right iliac is more bent than the left one. The computational grid size is
37×61×73 nodes.

stress profiles in these regions. Several investigations have been discussed in lit-
erature. Moore et al. (1994a) computed the shear stress in a model of the human
abdominal aorta under resting and exercise conditions from MRA measured velocity
data and extracted six shear stress indices influencing the locality of Atherosclerosis:
mean (over the cardiac cycle), maximum and minimum, pulse (maximum - minimum),
negative index, NEG (fractional time during which the shear stress stays negative)
and oscillatory shear stress index (OSI). Reneman et al. (1993) used experimental and
computational models to study flow in bifurcation regions. Gijsen et al. (1997) sug-
gested a new experimental technique to determine the wall shear stress in vivo. Vorp
et al. (1998) used a coupled fluid structure interaction model to combine the influence
of mechanical stress and wall shear stress and concluded that the arterial diseases
most probably localise in regions of high mechanical stress and low wall shear stress.
However, the mechanical stress within the wall cannot easily be extracted unless
further development in imaging techniques and image segmentation algorithms are
achieved. In this study, we use Eq.(3.22) to compute the 9 components of the sym-
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metric stress tensor, i.e σαβ which represents the stress component in the β-direction
acting on the element with outward normal in the α-direction. Since the components
of any second order tensor can be reduced to an eigenvalue problem, it is possible
to transform the second order stress tensor into an eigenvalue problem and extract
the principal stresses λ1, λ2 and λ3 with their eigen vectors. These can be visualised
as a quadric surface (elliptical glyph), but in biomechanics, the traction forces, shear
stress and the von Mises effective stress are commonly used. The traction forces are
orientation dependent and need the surface normals. However, the von Mises effec-
tive stress, usually available in visualisation packages, is computed from the second
invariant of the stress tensor (see the next section) and is more suitable for Cartesian
grids than the surface traction, as the Cartesian grids introduce more approximation
when computing surface normals. The von Mises stress is commonly used in biome-
chanics to determine the effective stress (e.g.. Raghavan and Vorp, 2000). In this
study, we will focus on the time-behaviour of the effective von Mises stress.
For our simulations, a smoothed MRA image was provided by Charles Taylor, Stan-
ford University, U.S.A, with original resolution of 512 x 512 x 64 voxels, each voxel
occupies 1 byte. The spacing between each two successive recorded cut planes is
0.9375 mm. An image segmentation algorithm is applied to the original data set to
extract the aorta and the segmented aorta is then cropped and filtered to end up with
the simulation model shown in Fig. 8.1. It is worth noting that there is a limitation
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Figure 8.2: Change in Womersley parameter(left) and Reynolds number (right) along
the segmented aorta during resting and exercise conditions.

to obtaining high resolution non-invasive and low noise images. To have a stable so-
lution in the lattice Boltzmann method, the relaxation time τ must be greater than
0.5 in order to have a positive fluid viscosity. Having a Reynolds number Re within
a diameter nD, n being the spatial resolution of the image, for a fluid of blood viscos-
ity, will result in a relaxation time of 0.5 + 0.3nD/Re. Therefore, the stability scales
linearly with the spatial resolution. We have conducted a number of steady and
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Figure 8.3: Steady flow in the aortic bifurcation. The maximum Reynolds number is
1500.

unsteady flow simulations for the aorta model. As the cross section of each slice is
irregular, the Reynolds number is redefined as Re = 4mU/ν = 4Q

νP and the Womersley
number is defined as α = 2m

√

ω/ν, where m is the mean hydraulic depth which is
the ratio between the vascular bed A and the perimeter P. Figure 8.2 shows changes
in the Reynolds and the Womersley numbers downstream of the aortic model under
resting and exercise conditions, assuming a flow rate of 0.8 l/min with 65 beats/min
under resting and 5.36 l/min with 130 beats/min for exercise conditions (Moore and
Ku, 1994d).
The steady flow simulations are performed to asses the steady flow behaviour and to
check the validity of the used inlet and outlet conditions. We have used the bounce-
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Figure 8.4: Velocity profiles in the aortic bifurcation computed at every 36o of the
cardiac cycle, at 120 heart beats/min and a flow rate of 90 cm3/sec

back rule as a wall boundary condition. For the inlet, we use an assigned inlet pres-
sure to compute the inlet velocity (Zou and He, 1997) and assign equilibrium values
for unknown distributions. The outlet conditions are assigned accordingly with an
outlet pressure. The maximum Reynolds number is 1500. A velocity snapshot of
steady flow is shown in Fig. 8.3, from which we observe that the bended branch of the
aorta (the right iliac in this case) has less entrance velocity than the less curved one
(the left iliac). The velocity gradients before the bifurcation are smaller near to the
right lateral wall than those on the left lateral wall and the shear stress is expected
to be smaller. Also, the posterior wall receives less flow than the anterior wall and a
similar conclusion may be drawn. However, the unsteady nature of the locality of low
shear stress may be different as will be explained later.
For the unsteady flow simulations, an aortic pressure waveform is applied at the
entrance of the aortic model. Velocities are then computed from the distribution func-
tions coming from downstream, and the unknown distributions are set to their equi-
libriums. At the two outlets, constant pressure is applied. The total simulation time
is 2 hours on a single processor and reduces to 40 minutes when using 4 nodes. We
assume that the system converges after the change in conserved quantities (mass and
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momentum) is less than 2×10−5%. This results in an error that is less than 1% when
simulating rigid circular tubes, as claimed in the previous section. At least 40 com-
plete periods are needed to converge to the simulation criterion. Although it seems
longer than the required periods when using a finite element solver, the total simu-
lation time per period is far less. On a single processor, a period represented by 240
time-steps takes approximately 3 minutes. Flow fields and shear stress are recorded
during the last cycle as separate frames for each time-step. The phase of the full car-
diac cycle (360o) is split into a number of frames (vertical lines in Fig. 8.4) and each
frame is named after the corresponding phase angle. Vector magnitudes of velocity
profiles at 10 frames are visualised in Fig. 8.4.
At the beginning of systole (frame 0), the flow is relatively simple through the bifur-
cation model, except for a small velocity of maximum magnitude 5.0 cm/sec near to
the walls of the main branch. As the flow is increased (frames 36 and 72), the velocity
increases rapidly in the main branch and slowly in the iliacs. The left iliac receives
more flow than the right one (see the change in the red dot on top of the branch).
Close to the Aortic bifurcation, negative velocities of small magnitudes are frequently
observed (see Fig. 8.5). The flow then relaxes towards the end of systole (frame 108).
After that, a complex nature of the flow takes place in the main branch (see frames
144 and 180), involving two conjugate vortexes and flow mixing. This is clearly il-
lustrated by streamlines shown in Fig. 8.6. It is worth noting that, although the
flow reverses in the main branch during this period, the flow at the exits is forward
on average. This demonstrates the function of the aorta as a reservoir that provides
blood to the organs when the flow reverses. The second half of the cycle represents the
diastole (frames 216-324) during which the flow oscillates till it reaches the beginning
of systole where frame 0 is repeated.
Velocity magnitudes near the posterior wall are approximately the same as those
close to the anterior wall, as shown by the symmetry in colour. Throughout most of
the cardiac cycle, the flow is slightly skewed towards the anterior wall (Fig. 8.4).
Close to the bifurcation, the flow becomes quite complex. At about 15 mm proximal to
the bifurcation, the flow reverses near the walls during most of the cardiac cycle. It
was reported that the walls proximal to the aorta are frequently subjected to occlusive
atherosclerosis, although this region does not involve bifurcation or area expansion
which are two major factors that complicate the flow pattern (Moore et al., 1994c).
The locality of atherosclerosis in this straight segment is attributed to the low and
oscillatory near wall velocity profiles, which may result in mass transfer from blood
to the walls (Moore et al., 1994c; Taylor et al., 1996).
After the bifurcation, the flow is laminar. The left iliac receive more flow during sys-
tole. In order to have a clearer picture about the flow, streamlines are plotted for the
whole cardiac cycle. Except for periods of back flow, the streamlines are in general
uniform and show forward direction of the flow (data not shown). Vortex rings set up
during flow reversal at the end of systole (See Fig. 8.6), but they progressively damp
out when the flow is re-established. These vortices form a trap for fluid elements and
disturb the flow across the whole vessel. The reason for formation of vortices may be
attributed to the rapid flow reversal and the damp-out may be forced by the inher-
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Figure 8.5: Negative velocity profiles during the systole are frequently observed close
to the aortic bifurcation. The figure shows two snapshots of velocity 2.0 cm proximal
to the bifurcation.

ent stability of the flow. Some of these observations have been previously reported
by Moore et al. (1994c) in their extensive experimental MRA velocity measurements
of a glass blown idealised model of the abdominal aorta and by Taylor et al. (1996)
who observed large vortex development along the wall of the abdominal aorta, which
shrinks considerably under moderate exercise condition. It is worth noting that al-
though the models investigated by Moore et al. (1994c) and by Taylor et al. (1996) are
idealised, similar qualitative results could be observed.
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b

a

Figure 8.6: Velocity streamlines showing (a): Vortex formation during diastole (at
t = 0.4T ) and (b) flow mixing (at t = 0.5T ).

8.3 Shear Stress
Shear stress for a Newtonian fluid is conventionally estimated from gradients of mea-
sured or simulated velocity components, and the fluid viscosity. This process involves
some approximations which may lead to underestimation on the order of 10%–45%
(Luo et al., 1993) when the lumen is not circular. This large error is due to nonlinear
velocity profile at the wall and ignorance of the radial derivatives. An enhancement
was recently reported by Cheng et al. (2002) by introducing piecewise Lagrangian
basis functions and segmenting the vessel lumen with a level set method.
With LBM, the nine Cartesian components of the local stress tensor are directly ob-
tained using Eq. (3.22), as stated above without any further approximation than the
Cartesian geometry. The stress at any given point is completely determined by this
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stress tensor. A real benefit of the lattice Boltzmann solver is that these components
are computed independently from velocity gradients. In this study, we compute and
visualise the von Mises effective stress (Geiringer, 1953), defined as

σe f f =

√

A+6B
2

(8.1)

where
A = (σxx −σyy)

2 +(σyy −σzz)
2 +(σzz −σxx)

2 (8.2)

and

B = σ2
xy +σ2

yz +σ2
zx . (8.3)

This quantity is one of the three invariants of the stress tensor and therefore, is orien-
tation independent. In addition, it includes the effect of small directional variations
in the octahedral normal stress (the mean pressure) on the walls. The quantity B
vanishes in the principal coordinate system.
The effective stress in dynes/cm2 is shown in Fig. 8.7 , from which we observe that
the effective stress at the posterior and lateral walls is always small (less than
40 dynes/cm2) throughout the cardiac cycle. The stress is uniformly distributed along
the lateral walls. The minimum stress values are observed during the flow reversal
where the stress is very small through the whole vessel. The stress also oscillates in
magnitude and the stress vector oscillates rapidly. The high stress values near the
exits of the left iliac are attributed to the fact that this branch is subject to a small
curvature at these locations. Effects of outlet conditions are minor and are hardly
seen. The stress behaviour during the systole is described below. Let us first describe
the stress behaviour in the main branch. At the beginning of systole (frame 0), the
shear stress is small (less than 20 dynes/cm2) and is least around the walls, with the
posterior and right lateral walls having minimum values close to zero. The lateral
walls of the left iliac have higher shear stress than the lateral walls for the right iliac,
as predicted by the steady flow simulations.
The shear stress increases close to the walls as the systolic pressure is increased
(frame 36) a strip-like island of zero shear stress splits the region just before the bi-
furcation into a left and right regions, with the left region having higher stress than
the right one. The left anterior walls receive more stress (frame 72) of magnitude
greater than 60 dynes/cm2. Then the walls around the main are released from regions
of minimum stress (frame 108), with the posterior walls released first while the ante-
rior walls are not (frame 144). When the systole ends and the diastole begins (frame
180), the shear stress becomes again very small at regions far from the bifurcation,
with small islands in the centre with minimum shear stress. The stress on the ante-
rior lateral walls then increases, except for a small island in the middle of posterior
wall, just before the bifurcation (frame 216). The shear stress comes again to its min-
imum on the centres and at the distal posterior walls (frame 252), with maximum
shear stress (40dynes/cm2) on the walls. Then it gets smaller again, except near the
left anterior walls (frame 288). Near the end of the cardiac cycle (frame 324), the
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shear stress is low around the walls and on islands close to the bifurcation, spreading
from left posterior to right anterior and covering the right anterior sides. The left
anterior walls clearly has larger shear stress than the right side. At the end of the
cycle, frame 0 is repeated.
In summary, the posterior wall receives stresses greater than 60 dynes/cm2 during
one third of the cycle, less than 5 dynes/cm2 during another third and between 20−
40 dynes/cm2 during the rest of the cycle. The shear stress after the bifurcation is
higher in magnitude than the main branch, except for some islands and edges.
At the beginning of systole (frame 0), the regions directly after the bifurcation have
minimum shear stress in an island on the right iliac spreading toward the right lat-
eral and posterior walls, while the left iliac has higher magnitudes on the outer walls
and minimum values on the inner walls. The bend near the exit makes the shear
stress highest at these locations (> 150 dynes/cm2). The stress is also maximum in
the centre of the exit of left iliac artery and one-third from the exit of the right iliac.
The inner walls of the right iliac receive minimum shear stress. The near-end (after
the bend) outer walls receive minimum shear stress. In summary, at the beginning of
systole, the inner walls have less stress than the outer ones and the right iliac artery
has less shear stress than the left one.
As the systole develops, the stress first goes higher towards the bifurcation (frame 36),
but remains minimum for some islands on the right iliac: close to the bifurcation and
near the inner posterior walls (frame 72). Near the exits, the stress at the anterior
walls of the left iliac becomes minimum at the bend (frame 108), and gets less for
the inner walls. The islands in the right iliac are shifted towards the posterior inner
walls (frames 144 and 180) till they are accompanied by high stress islands spreading
toward the outer and anterior walls of both iliacs (frame 216). The stress reaches its
maximum directly after the beginning of diastole (frame 252) and oscillates around
lesser values (frames 288 and 324) till the systole begins again (frame 0).
From this description, we see that the effective von Mises stress is minimum close
to the lateral and posterior walls of the abdominal aorta segment before the bifur-
cation, at the inner walls of the iliacs, and at islands in the right iliac artery; and
is maximum at anterior walls, outer walls of the iliacs and at islands on both iliacs.
Comparable results have been obtained in the literature (e.g. Raghavan and Vorp,
2000; Moore et al., 1994b; Taylor et al., 1996) leading to similar conclusions about
the relationship between locality of cardiovascular diseases and the complex nature
of stress. However, in this study, we did not measure the oscillatory shear index,
although it is known to have an influence on the locality of cardiovascular diseases.
This will be presented in a future article in which the full abdominal aorta will be
studied.

8.4 Summary
We have demonstrated that the lattice Boltzmann method is a successful mesoscopic
solver to time dependent blood flow in the arterial system. Simulated results of sys-
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tolic flow in a 3D rigid tube at haemodynamic Reynolds and Womersley parameters
have recovered the analytic Womersley solutions within acceptable accuracy. Steady
and unsteady flow fields in a realistic aorta geometry, reconstructed from Magnetic
Resonance Angiography have been successfully obtained and compared to the avail-
able literature, showing qualitative agreements. As the shear stress plays a crucial
role in cardiovascular diseases and since it is directly and independently computed in
the lattice Boltzmann solver, we strongly encourage researchers from haemodynam-
ics to consider this method as an alternative blood flow solver. More benefits are seen
from easy grid generation and straightforward parallelism, easy and feasible adap-
tation to changing geometry. Further investigation of the complete aorta model and
experimental validations are under development in our group.

0           36         72         108        144

180       216        252      288         354
Figure 8.7: Effective stress on the walls of the aortic bifurcation computed at every 36o

of the cardiac cycle. The posterior wall has low values throughout the whole systolic
cylce, while relatively high values of the stress near the curved exits are observed.
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Chapter 9

Summary and Conclusions

In this final chapter, we summarise the main result and conclusions presented in this
thesis, and future work to enhance the numerical model.
In the present study, the lattice Boltzmann method is presented as a robust and ac-
curate haemodynamics numerical solver at mesoscale. The capabilities and short-
comings of the method are discussed. It is demonstrated that the lattice Boltzmann
is of second order in space and time at low Mach numbers. The stress tensor is ob-
tained from the non-equilibrium parts of the distribution functions without any need
to approximate the shear-rate.
Various steady and unsteady numerical simulations are performed, all yielding excel-
lent agreement with analytical solutions, other numerical methods, and/or available
experimental data. Machine accuracy was obtained for some simple flow problems
such as the channel and the Couette flows, even with the bounce-back rule, which is
known to be of first order behaviour.
For 2D unsteady flows driven by a body force, a shift in time has been observed and
analysed. The lattice Boltzmann BGK model is found to be more accurate when a half
time step correction is added to the time coordinates. The effects of the Womersley,
the Reynolds and the Strouhal numbers have also been studied in a number of sim-
ulations which showed that the shift in time is reduced at high Reynolds numbers.
The obtained accuracy in time for time-dependent flows is of first order.
Using a quasi-incompressible D3Q19 model for the 3D simulations of oscillatory tube
flow we have recovered the analytical Womersley solution with an average error of
about 15 % with bounce-back on the link at relatively high Mach number which re-
duces to less than a percent at low Mach numbers, at a cost to computational time. A
body fitted curved boundary condition, recently proposed by Bouzidi et al. (2001) is
found to produce better results and is of second order accuracy.
As the purpose of building this numerical solver is to use it as an interactive flow
solver in the promising Cross Grid environment now under development, perfor-
mance of the method was enhanced by introducing the Mach number annealing as
an acceleration technique for unsteady flows. With Mach number annealing, it is
possible to perform simulations that are of the order of the annealing factor times
faster than non-annealed simulations. Composite annealing procedures in which both
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Reynolds and Mach numbers may be annealed would be adopted for further acceler-
ation in the future.
The influence of walls, inlet and outlet boundary conditions on accuracy and perfor-
mance is studied in detail as a function of Mach and Knudsen numbers. It is found
that the bounce-back on the links could be more efficient if used at low Mach numbers
when the Mach number annealing technique is used. With the Mach number anneal-
ing, we recommend the bounce-back on the links as a better alternative than other
sophisticated boundary conditions which are difficult to use in the field of haemody-
namics.
Another application of interest in simulation environments is changing the geometry
on-the fly and investigating the robustness of the numerical method in producing
accurate results without a need to restart the simulation. The lattice Boltzmann
method is found to be fully adaptive, as demonstrated by simple test cases. More
investigation is necessary to demonstrate the real benefit of this feature. This is
recently under study in our group.
Simulation results of steady and unsteady flow in a model of the human aortic bifurca-
tion reconstructed from Magnetic Resonance Angiography are presented as a typical
haemodynamic application. The computational model under study involves only the
bifurcation region, directly after the IMA, and includes parts of the left and right iliac
arteries.We have conducted a number of steady and unsteady flow simulations for the
aorta model. Results on velocity fields and stress are successfully obtained and are
qualitatively compared to literature.
As the shear stress plays a crucial role in cardiovascular diseases and since it is
directly and independently computed in the lattice Boltzmann solver, we strongly en-
courage researchers from haemodynamics to consider this method as an alternative
blood flow solver. More benefits are seen from easy grid generation and straight-
forward parallelism, easy and feasible adaptation to changing geometry. Further
investigation of the complete aorta model and experimental validations are under
development in our group.
A main conclusion in the thesis is that, even with the most simple lattice Boltzmann
methods, comparable results to the most sophisticated traditional solvers are possi-
ble. However, the thesis has left open many questions to be answered. Some of them
are

• The method is not yet matured in solving models involving fluid-structure in-
teractions. Some recent developments based on coupling the fluid lattice Boltz-
mann with solid models (Chopard1 et al., 2002, personal communication) to in-
vestigate thrombosis are promising.

• The lattice Boltzmann method with simplified BGK approximation has many
troubles at high Mach and Reynolds numbers, but not at haemodynamic Wom-
ersley numbers. However, this issue is quite sensitive to the boundary conditions

1It is worth noting that Chopard suggested to the author in 2000 that this coupling would be useful
if applied in Haemodynamics. At that time we were not sure if even the lattice BGK yields acceptable
results. When that has been cleared out, there is no time left for this interesting direction.
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and the lattice BGK boundary conditions are known to be viscosity dependent,
except for a few of them. This has direct influence on the stability of the method.
A solution is to consider using generalised lattice Boltzmann equations (GLBE).
However, the computational cost raised by using GLBE needs to be investigated
versus the accuracy and compared to the engineering accuracy.

• It is well known that the non-Newtonian models produce significantly different
results than Newtonian ones. Although the global structure remains similar,
the profile of the stress tensor is significantly different near the walls. It is
relatively easy to perform non-Newtonian flows in lattice Boltzmann models,
but GLBE may be a better option than the lattice BGK.

• As early turbulence may build up in the circulation, turbulent models need to
be approached in an ideal haemodynamic solver. A number of turbulent models
are available in previous literature, most of which use GLBE.

• With the development in imaging techniques and the increase in microscopic
understanding of atherosclerosis, traditional CFD solvers may not be useful and
mesoscopic models may join wider acceptance.

In conclusion, the lattice Boltzmann methods are accurate and robust computational
fluid dynamics solvers in the mesoscale, with elegant computational characteristics.
This makes them feasible alternates to traditional macroscopic solvers in a wide
range of applications.



106 Summary and Conclusions



Bibliography

[1] Abe T (1997): Derivation of the Lattice Boltzmann Method by Means of the Dis-
crete Ordinate Method for the Boltzmann Equation. Journal of Computational
Physics131: 241–246.

[2] Aharonov E, Rothman DH (1993): Non-Newtonian flow (through porous-
media)- A Lattice-Boltzmann Method. Geophysical Research Letters 30: 679–
682.

[3] Aidun CK, Lu YN (1995): Lattice Boltzmann Simulation of Solid Particles Sus-
pended in Fluid. Journal of Statistical Physics 81: 49–61.

[4] Argyris JH (1952): Energy Theorems and Structural Analysis. Aircraft Engi-
neering 26: 347-56, 383-87.

[5] Artoli AM, Kandhai BD, Hoekstra AG, Sloot PMA (2000): Accuracy of shear
stress calculations in the Lattice Boltzmann Method. In: Proceedings of the
9th International Conference on Discrete Simulation of Fluid Dynamics, New
Mexico USA, http://cnls.lanl.gov/Conferences/DiscreteSimulation/agenda.htm.

[6] Artoli AM, Hoekstra AG, Sloot PMA (2002a): Time dependent flow in a rigid
tube using the Lattice Boltzmann Method. In: Boon JP, Coveney PV, Succi S
(Editors), International Conference on Discrete Simulation of Fluid Dynamics,
in series Europhysics Conference Abstracts, 25:3.

[7] Artoli AM, Kandhai BD, Hoefsloot HG, Hoekstra AG, Sloot PMA (2002b): Shear
Stress in Lattice Boltzmann Simulations. In: F. Hossfeld and K. Binder (Edi-
tors), Europhysics Conference on Computational Physics. Aachen, Germany,
5-8 September 2001. Book of Abstracts, John von Neumann Institute for Com-
puting, in series Publication Series of the John von Neumann Institute for Com-
puting, 8: A127. 2001.

[8] Artoli AM, Hoekstra AG, Sloot PMA (2002c): Accuracy of 2D pulsatile flow
in the lattice Boltzmann BGK method, in Sloot PMA; Tan CJK; Dongarra JJ;
Hoekstra AG (Editors), Computational Science - ICCS 2002, Lecture Notes
in Computer Science, 2329: 361-370. Springer Verlag, April 2002. ISBN 3-
54043591-3.



108 Bibliography

[9] Artoli AM, Hoekstra AG, Sloot PMA (2003a): Accelerated Lattice BGK method
for unsteady flow simulations through Mach number annealing, Accepted, In-
ternational Journal of Modern Physics C.

[10] Artoli AM, Hoekstra AG, Sloot PMA (2002d): 3D Pulsatile flow with the lattice
Boltzmann BGK method. International Journal of Modern Physics C 13: 1119–
1134.

[11] Artoli AM, Hoekstra AG, Sloot PMA (2003b): Simulation of a systolic cycle in
a realistic artery with the Lattice Boltzmann BGK method, textitInternational
journal of Modern Physics B 17: 95-98.

[12] Artoli AM, Hoekstra AG, Sloot PMA (2003c): Mesoscopic simulations of systolic
flow in the Human abdominal aorta, Submitted, Journal of Biomechanics.

[13] Artoli AM, Hoekstra AG, Sloot PMA (2003d): Lattice Boltzmann, a robust and
accurate solver for interactive computational haemodynamics. In: Sloot PMA;
Abramson D; Bogdanov AV; Dongarra JJ; Zomaya AY; Gorbachev YE (Editors),
Computational Science - ICCS 2003, Lecture Notes in Computer Science 2657:
1034–1043. Springer Verlag, Berlin, June 2003. ISBN 3-540-40194-6.

[14] Artoli AM, Hoekstra AG, Sloot PMA (2003e): Simulations of a systolic cycle
with lattice Boltzmann method: Accuracy versus performance, submitted, Com-
puters and Fluids.

[15] Artoli AM, Hoekstra AG, Sloot PMA (2002d): Proceedings of the 11th interna-
tional conference of Discrete simulation of fluid dynamics and soft condensed
matter, Shanghai, China, August 5–9 (2002).

[16] Aziz AK (Ed.) (1972): The Mathematical Foundations of the Finite Element
Method with Applications to Partial Differential Equations. Academic Press,
New York.

[17] Baker RC (1991): Responce of Bulk flowmeters to Multiphase flows. In: Pro-
ceedings of the Institution of Mechanical Engineers Part C. Journal of Mechan-
ical Engineering Science 205, pp 217–229.

[18] Balakrishnan R, Agarwal RK (1997): Numerical simulation of Bhatnagar-
Gross-Krook-Burnett equations for hypersonic flows. Journal of Thermophysics
and Heat Transfer 11: 391–399.

[19] Batina T (1993): A gridless Euler/Navier-Stokes solution algorithm for com-
plex aircraft applications. In: 31st Aerospace Sciences Meeting and Exhibition.
American Institute of Aeronautics and Astronautics. Reno, NV.

[20] Behrend O, (1995): Solid-Fluid boundaries in Particle suspension simulations
via the Lattice Boltzmann method. Physical Review E 52: 1164–1175.



Bibliography 109

[21] Belleman RG, Sloot PMA (2000): The Design of Dynamic Exploration En-
vironments for Computational Steering Simulations. In: Proceedings of the
SGI Users Conference. Academic Computer Centre CYFRONET AGH Krakow,
Poland.

[22] Belleman RG, Sloot, PMA (2001): Simulated vascular reconstruction in a vir-
tual operating theatre. In: H.U. Lemke; M.W. Vannier; K. Inamura; A. G. Far-
man and K.Doi, (Editors). Computer Assisted Radiology and Surgery. Excerpta
Medica International Congress Series 1230. Elsevier Science B.V., Berlin.

[23] Benzi R, Succi S (1990): 2-Dimensional Turbulence with the Lattice
Boltzmann-Equation. Journal of Physics A 23: L1–L5.

[24] Benzi R, Succi S, Vergassola M (1992): The lattice Boltzmann Equation: Theory
and applications. Physics Reports 222: 145–197.

[25] Berger SA (1993): Flow in Large Blood Vessels. Contemporary Mathematics
141: 479–517.

[26] Berger SA, Jou LD (2000): Flows in stenotic vessels. Annual Review of Fluid
Mechanics 32: 347–382.

[27] Bernaschi M, Succi S, Chen HD, Zhang RY (2002): International Journal of
Modern Physics C 13: 675–687.

[28] Berthier B, Bouzerar R, Legallais C (2002): Blood flow patterns in an anatomi-
cally realistic coronary vessel: influence of three different reconstruction meth-
ods. Journal of Biomechanics 35: 1347–1356.

[29] Bhatnagar PL, Gross EP, Krook M (1954): A model for collision processes in
gases. I. Small amplitude processes in charged and neutral one-component sys-
tem. Physical Review 94: 511–525.

[30] Bird RB, Stewart WE, Lightfoot EN (1960): Transport Phenomena. John Wiley
& Sons. New York.

[31] Boltzmann L (1872): Weitere Studien übrt fsd Wormegleichgewicht unter Gas-
molekulen, Sitzungsber. Akad. Wiss. Wein 66: 275-370. Cited in Lebowitz and
Montroll, Editors (1983).

[32] Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P
(2000): Haemodynamics in the carotid artery bifurcation: a comparison be-
tween numerical simulations and in vitro MRI measurements. Journal of
Biomechanics 33: 137–144.

[33] Bouzidi M, Firdaouss M, Lallemand P (2001): Momentum transfer of a
Boltzmann-lattice fluid with boundaries. Physics of Fluids 13: 3452–3459.
Computers and Structures79: 2031–2037.



110 Bibliography

[34] Caflisch RE (1983): Fluid Dynamics and the Boltzmann Equation. In: Lebowitz
JL, Montroll EW (Editors) Nonequilibrium Phenomena I. The Boltzmann Equa-
tion. North-Holland Publishing Company: 195–226.

[35] Caro CG, Fitzgerald JM, Schroter RC (1969): Arterial wall shear and distribu-
tion of early atheroma in man. Nature 223: 1159–1161.

[36] Caro CG, Pedley TJ, Schroter RC, Seed WA (1978): The mechanics of the circu-
lation, Oxford University Press.

[37] Carrel A (1912): In: Nobel Lecuture in Physiology or Medicine, 1901–1970.
Elsevier Publishing Company, Amsterdam.

[38] Cauchy AL (1823): Researches sur l’équilibre et le mouvement intérieur des
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Samenvatting

In dit laatste hoofdstuk vatten wij de belangrijkste resulaten en de conclusies samen
die in dit proefschrift worden besproken, samen met toekomstig onderzoek om het
numerieke model te verbeteren.
In dit proefschrift wordt de rooster–Boltzmann methode beschreven als een robuuste
en nauwkeurige hemodynamische numerieke oplossingsmethode op mesoscopische
schaal. Zowel de mogelijkheden als de tekortkomingen van deze methode worden be-
sproken. Er wordt aangetoond dat de rooster–Boltzmann methode van tweede orde is
in ruimte en tijd bij lage Mach–getallen. De spanningstensor wordt daarbij verkregen
uit de niet-evenwichts delen van de distributiefuncties, zonder de afschuif snelheid te
benaderen.
Diverse numerieke simulaties zijn uitgevoerd, die allen een uitstekende overeen-
komst opleveren met analytische oplossingen, andere numerieke methodes, en/of be-
schikbare experimentele gegevens uit de literatuur. Machine-precisie nauwkeurig-
heid werd verkregen voor enkele eenvoudige stromingsproblemen, zoals Poiseuille en
Couette stroming, zelfs met de ”bounce-back”regel, van welke bekend is dat deze van
eerste orde is.
Een quasi-onsamendrukbaar D3Q19 model voor de 3D simulaties van een oscille-
rende buisstroom reproduceert de analytische oplossing van Womersley opnieuw op-
gelever met een gemiddelde fout van ongeveer 15 procent met ”bounce-back” op de
verbinding met een vrij hoog Mach–getal en minder dan een procent bij lage Mach–
getallen. Een gebogen randvoorwaarde, zoals onlangs door Bouzaidi et al. (2001) is
voorgesteld, aangepast aan het object, levert betere resultaten op en is tot op tweede
orde nauwkeurig.
Aangezien het doel van het ontwikkelen van deze numerieke methode het gebruik
is als interactieve oplossingsmethode in het CrossGrid project dat momenteel in ont-
wikkeling is, werden de prestaties van de methode verbeterd door simulaties op een
hoog Mach getal te starten en vervolgens tijdens de simulatie te verlagen naar de
gewenste waarde (Mach-Annealing).
Hiermee is het mogelijk om simulaties uit te voeren die in de orde van de annealing
factor sneller zijn. Samengestelde procedures waarin zowel de Reynolds– als Mach–
getallen dynamisch worden ingesteld, kunnen voor verdere versnelling in de toekomst
in aanmerking komen.
De invloed van de wand–, in– en uitvoer–randvoorwaarden op de nauwkeurigheid en
prestaties is in detail bestudeerd als functie van de Mach– en Knudsen–getallen. Er
is zo aangetoond dat de ”bounce-back” op de verbindingen efficiënter zou kunnen zijn
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indien toegepast bij de lage Mach–getallen wanneer de annealing techniek wordt ge-
bruikt. Met de Mach–annealing techniek adviseren wij opnieuw de ”bounce-back” op
de verbindingen als beter alternatief in vergelijking met andere verfijnde randvoor-
waarden die moeilijk te gebruiken zijn op het gebied van de hemodynamica.
Een andere toepassing van belang in simulatieomgevingen is het interaktief veran-
deren van de geometrie en het bestuderen van de robuustheid van de numerieke me-
thode bij het produceren van nauwkeurige resultaten zonder de simulatie opnieuw
op te hoeven starten. De rooster–Boltzmann methode blijkt volledig aanpasbaar te
zijn, zoals in eenvoudige tests is aangetoond. Meer onderzoek is noodzakelijk om het
echte voordeel van deze eigenschap aan te tonen. Dit maakt onderdeel uit van huidig
onderzoek.
De resultaten van de simulatie van een stabiele en instabiele stroming in een mo-
del van de menselijke aortavertakking die met behulp van een angiografie op basis
van Magnetische Resonantie gereconstrueerd wordt, zijn beschreven als een typische
hemodynamische toepassing. Voor onze simulaties werd een MRA beeld geleverd
door Charles Taylor van de Universiteit van Stanford, U.S.A, met een oorspronkelijke
resolutie van 512 x 512 x 64 voxels, elke voxel ter grootte van 1 byte. De afstand
tussen elke twee elkaar opeenvolgende geregistreerde snijvlakken is 0.9375 mm. Een
beeldsegmentatie algoritme is toegepast op de originele gegevensreeks om de aorta
te extraheren waarna de gesegmenteerde aorta eruit gelicht wordt en gefiltreerd om
uiteindelijk het simulatiemodel uit Fig. 8.1 over te houden. De drukgradiënt bij de
ingang van de aorta wordt verkregen uit een gemiddelde van de stroomsnelheid uit
de literatuur (Moore et al., 1994c; Taylor et al., 1999). Het bestudeerde computatio-
neel model betreft slechts het vertakkingsgebied, direct na IMA, en omvat delen van
de linker en rechter iliac–slagaders. Het gehele model is onderwerp van studie. Wij
hebben een aantal stabliele en instabiele stroomsimulaties voor het aortamodel uit-
gevoerd. Resultaten voor snelheidsvelden en de spanning zijn met succes verkregen
en zijn kwalitatief vergeleken met de literatuur.
Aangezien de schuifspanning een essentiële rol bij cardiovasculaire ziekten speelt en
aangezien deze direct wordt berekend, bevelen wij onderzoekers op het gebied van
hemodynamica deze methode sterk aan als een alternatieve methode voor bloedstro-
ming. Meer voordelen worden duidelijk door eenvoudige rooster generatie en recht–
toe–recht–aan parallellisme en een eenvoudige en uitvoerbare aanpassing aan een
veranderende geometrie. Verder onderzoek van het complete aorta model en experi-
mentele validatie is in ontwikkeling in onze groep.
Een hoofdconclusie uit dit proefschrift is dat zelfs met de eenvoudigste rooster–
Boltzmann methoden resultaten mogelijk zijn vergelijkbaar met de meest verfijnde
traditionele oplossings methoden. Nochtans heeft dit proefschrift vele vragen onbe-
antwoord moeten laten. Enige opgelaten vragen zijn:

• De methode is nog niet rijp voor het oplossen van modellen die vloeistof–
structuur interactie betreffen. Sommige recente ontwikkelingen gebaseerd op
het koppelen van de vloeistof aan vaste stof rooster–Boltzmann modellen (Cho-
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pard1 et al., 2002, persoonlijke mededeling) om trombose te onderzoeken zijn
veelbelovend.

• De rooster–Boltzmann methode met BGK–benadering heeft vele problemen bij
hoge Mach– en Reynolds–getallen, maar niet bij hemodynamische Womersley–
getallen. Nochtans is deze kwestie vrij gevoelig voor de randvoorwaarden. Van
de rooster–BGK grensvoorwaarden is bekend dat ze viscositeitsafhankelijk zijn,
op enkele uitzonderingen na. Dit heeft directe invloed op de stabiliteit van
de methode. Een oplossing is om gegeneraliseerde rooster–Boltzmann verge-
lijkingen te beschouwen (GLBE). Echter, de rekentijd die voor GLBE benodigd
is moet worden afgewogen tegen de nauwkeurigheid en met de engineering–
precisie worden vergeleken.

• Het is bekend dat de niet–Newtoniaanse modellen beduidend verschillen van
Newtoniaanse. Hoewel de globale structuur gelijk blijft, is het profiel van
de spanningstensor beduidend anders in de buurt van de wanden. Het is
vrij gemakkelijk om niet–Newtoniaanse stromen in de modellen van rooster–
Boltzmann uit te voeren, maar GLBE kan dan een betere optie zijn dan het
rooster–BGK.

• Aangezien vroege turbulentie zich in de circulatie kan opbouwen, zijn turbu-
lentie modellen noodzakelijkerwijs benaderd door een ideale hemodynamische
oplossings methode. Een aantal turbulentie modellen zijn beschikbaar uit de
literatuur, waarvan GLBE de meeste gebruikte is.

• Met de ontwikkeling in beeldtechnieken en het toegenomen microscopisch be-
grip van atherosclerose, kunnen traditionele CFD solvers niet nuttig blijken te
zijn en kunnen mesoscopische modellen een plaats vinden.

Samenvattend zijn de rooster–Boltzmann methoden nauwkeurige en robuuste CFD
oplossings methoden met elegante berekeningskarakteristieken die hen tot alterna-
tieve technieken maken, meestal zonder enige beperkingen.

1Het dient opgemerkt te worden dat Chopard aan de auteur in 2000 voorstelde dat deze koppeling,
toegepast op de Hemodynamica, nuttig zou zijn. Op dat ogenblik waren wij er echter zelfs niet zeker
van of de rooster–BGK methode aanvaardbare resultaten oplevert. Toen dat dat duidelijk was, was er
geen tijd meer voor deze interessante suggestie.
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