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ABSTRACT

The research presented here is a comparison of the
scalability of the simulated annealing algorithm on a
vector super computer (CRAY Y-MP) with the scalability
of a parallel implementation on a massively parallel
transputer surface (Parsytec GCel with 512 nodes of type
T805).

Some results of the annealing procedure applied to the
crystallization of Lennard-Jones particles on a sphere are
presented.

1 INTRODUCTION

The application that we are working on is a simulation of
crystallization with spherical boundary conditions. This is
implemented with a simulated annealing (S.A.) algorithm.
Since this is a problem that requires an enormous amount
of computing power even for modest problem sizes, we
started looking for methods of speeding up the
calculations.

In this work we will give the background of our
research in section 2. In sections 3 and 4 we will discus
the functional and implementation aspects. Sections 5 deal
with the theoretical time complexities. In section 6 we
give the results of the measurements of the vector
implementation and the parallel implementation. Finally
in section 7 we will give the conclusions and some brief
results of the optimal distributions found with the S.A.
engine.

This research was funded by the NCF (Stichting
Nationale Computer Facitliteiten) and the FOM
(Fundamenteel Onderzoek der Materie).

2 BACKGROUND

Particle dynamics simulations with spherical boundary
conditions for large numbers (103 - 106) of particles (e.g.
molecules) with Lennard-Jones or similar interactions at
high density, provide an important testing ground for the
study of closed 2D systems. Spherical boundary
conditions have been used as an alternative to periodic

boundary conditions to approximate bulk systems.
Although the spherical topology of the boundary
conditions has only a limited effect on the properties of
bulk systems, they do affect the properties of the
crystalline state in an essential way (for example by
inducing global symmetry). Particularly the study of
hierarchical clustering and the ordering of defects in a
spherical matrix is a challenging ‘close packing’ problem.

The hypothesis has been put forward [van Dantzig]
that in spherical bilayer vesicles (spontaneously formed
from fragmented biomembrane material), hierarchically
ordered arrangements of the lipid matrix may be induced in
the most densely packed ('backbone') shell of the vesicles.
Such patterns result from highly non-linear co-operative
effects. Like in the case of viruses, these patterns may be
very specific, reflecting the optimisation in enthalpy and
entropy in the self-assembly process. The study of
spherical crystallisation can test the hypothesis on
hierarchical regular polyhedral arrangements. In particular,
it may help to understand the quite remarkable observation
of 'quantum' jumps in the size of biomembrane vesicles
[Bont, 1978].

To study these types of phenomena we have to address
the long standing problem of equilibrium arrangements of
particles on a sphere under the influence of two-body
forces. In the case of Coulomb interactions, the problem
resembles the mathematical exercise of spreading a given
number of points equally spaced over a spherical surface.
This equivalence relates the physics of the problem to a
geometrical principle. It may be understood by considering
the geodesic connecting lines between N points, giving a
spherical polyhedral net with N vertices. Below N = 20
one has perfectly regular polyhedral nets corresponding to
the Platonic solids with 4, 6, 8, 12 and 20 vertices.
Beyond N = 20 no perfectly regular polyhedral net have
been observed.

Many problems originating from physics, chemistry
and mathematics, like the experiments that we are
working on, crystallisation of particles, can be formulated
as optimisation problems. A vast majority of these
problems involve the determination of the absolute
minimum of a underlying multidimensional function.
Usually optimisation of these complex systems is far
from trivial since the solution must be attained from a
very large irregular candidate space, containing many local
extrema. As a consequence the computational effort



required for an exact solution grows more rapidly than a
polynomial function of the problem size, the problem is
said to be NP (non-polynomial time) complete. Because it
is impossible to examine all solution candidates, even in
principle, approximation methods are required.

A well established computational scheme is the
Simulated Annealing (S.A.) method, a stochastic
optimisation procedure that mimics the essentials of
physical annealing. In physical annealing a material is
heated to a high temperature and then allowed to cool
slowly. At high temperature the molecules move freely
with respect to one another. If the liquid is cooled slowly,
thermal mobility is lost. The molecules search for the
lowest energy consistent with the physical constraints.

Although S.A. guarantees the finding of the global
minimum, the time required for the algorithm to converge
increases rapidly with increasing number of particles
and/or local minima. In the biophysical problem we are
dealing with, the number of particles to investigate is
typically larger than 105 and the number of local minima
is also very large. Therefore conventional annealing
implementations do not apply and more efficient methods
need to be investigated. A method to lower the
computational time is to use vector super computers.
With the new breed of parallel machines and programming
paradigms, other very fast implementations come within
reach.

3 FUNCTIONAL ASPECTS

3 . 1 The sequential version

The S.A. algorithm for solving combinatorial
optimisation problems was formulated by [Kirkpatrick et
al., 1983]. It was based on a method developed by
[Metropolis et al., 1953] to study the equilibrium
properties of very large systems of interacting particles at
finite temperature. In terms of the crystallization problem
at hand the procedure works as follows. First N particles
are randomly placed on a virtual supporting sphere. The
annealing begins by creating a Markov chain, of given
length, at a certain temperature. The Markov chain grows
by randomly displacing particles and calculating the
corresponding change in energy of the system. To
calculate ∆E the energy of the particle before the move
and after the move is required where ∆E is the energy of
the new situation minus the energy of the current
situation. Both energy calculations take N-1 two-body
potential energy calculations. The moves are accepted with
probability P(∆E,T) at temperature T according to the
following scheme :

  

P ∆E, T( ) = exp −∆E/ T( ) if ∆E > 0 1( )
P ∆E, T( ) = 1 if ∆E < 0 2( )

Unaccepted moves are undone. This choice of P(∆E,T)
guarantees that the system evolves into the Boltzmann
distribution [Metropolis et al., 1953].

After a certain number of steps the radius is perturbed.
This is done by calculating the energy of the system at a
randomly generated new radius and subtracting the current
energy. Acceptance is also decided according to the
probability scheme given above.

After a chain has ended the temperature is lowered by
multiplying the temperature with the cool-rate, which is a
number between 0 and 1 (typically 0.9) after which a new
chain is started. This process continues until a stop
criterion is met. The stop criterion in our implementation
is met when the standard deviation in the final energies of
the last ten chains falls below a certain value (typically
10−6 ). The energy of the system is defined by the energy
per particle. This removes the dependency of the energy on
the number of particles such that the stop criterion can be
fixed.

3 . 2 The vector version

The vectorized version is based on the sequential
algorithm described above. The SIMD-Parallelism of the
target machine, the CRAY Y-MP, is parallelism on the
level of floating point operation. The add and multiply
units are divided into components, this is the basic idea of
pipelining. In a vector computer one instruction is issued
to a functional unit, for example a floating-point add, for a
series of operands. The functional unit will generate the
results for each operand at the rate of typically one result
per clock cycle.

The performance of a program on a vector computer
depends on many elements of the hardware design. Among
these are: the size and number of vector registers, number
of concurrent paths to memory, instruction issue rate and
number of duplicate functional units (multiple 'vector
pipelines'). The execution time of any vector instruction
consists of the start-up time and a processing time that is
proportional to the vector length (number of elements of
the vector).

3 . 3 The parallel version

The parallel version actually consists of two kinds of
decompositions, the first is a decomposition of the
Markov chains (systolic), the second is a functional
decomposition of the energy calculation in a step in the
Markov chain.



A synchronous algorithm that does not mimic
sequential annealing is systolic S.A. [Aarts et al. 1986].
In systolic S.A. a Markov chain is assigned to each of the
available processors. All chains have equal length. The
chains are executed in parallel and during execution
information is transferred from a given chain to its
successor. Each Markov chain is divided into a number of
sub chains equal to the number of available processors.
The execution of chain k+1 is started as soon as the first
sub chain of chain k is generated. Equilibrium is not yet
established by then. Quasi-equilibrium of the system is
preserved by adopting intermediate results of previous
Markov chains.

Let P be the number of processors, L the length of the
Markov chains, SL = (L/P) the length of the sub chains,
Tk the temperature in Markov chain Mk, and Xk,m,i the
i-th configuration vector of sub chain Mk,m.

The first configuration of a new sub chain, Xk,m,1,
m>1, is either the last configuration of the previous sub
chain, Xk,m-1,SL, or the final configuration of the last
generated sub chain of Mk-1, Xk-1,m,SL. The choice is
made on the same probability scheme as given above in
formulae (1) and (2) with ∆E = Ek-1,m,SL - Ek,m-1,SL.
The overlap enhancement [Kim et al., 1990] consists of
transferring the final configuration of Mk–P to Mk. Mk
chooses probabilistically between Xk-P,P,SL and Xk-
1,1,SL. We have used a fixed cooling schedule based on
the cool-rate.

In addition to this parallel algorithm we have exploited
the parallelism that can be obtained from an ordinary
Monte Carlo algorithm. Here the most time consuming
part of the program is the calculation of the energy
difference resulting from the perturbations. Since these
calculations are independent we parallelize this part of the
program by functional decomposition [ter Laak et
al.,1992].

4 IMPLEMENTATION ASPECTS

4 . 1 The vector version

The potential energy calculation turns out to be the most
time consuming part of the simulation according the S.A.
algorithm. The potential energy is calculated on two
different occasions: for each move of a particle the
potential energy for that particle has to be calculated and
for perturbing the radius we need the energy of the total
system. The total energy calculation is implemented as an
outer loop with index 'i' running from 1 to N-1, and an
inner loop 'i'+1 to N. The inner loops are done in vector
mode. The implementation of the inner loops is equal to
the implementation of the calculation of the one particle
potential as described above.

In the inner loop the condition is imposed that the
distance between two particles is smaller than the cut-off
distance. The actual calculation of the Lennard-Jones
potential, is only executed when the condition is true. The
state of the condition is handled by means of a vector
mask operation. The vector mask register elements are set
to one whenever the condition is true. Only those vector
elements for which the corresponding vector mask register
elements are equal to one are eventually stored in memory.

4 . 2 The parallel version

The systolic algorithm has a simple communication
pattern that can be efficiently implemented as a ring. The
communication overhead is small since each processor
contains a complete independent database for the
optimisation problem. To interchange information about
the intermediate state it only has to send and receive at the
end of each sub chain.

To calculate ∆E for a particle displacement we have to
do two times N-1 two-body potential energy calculations.
Since the N-1 calculations are independent we can perform
them in parallel. If we connect a processor farm to a
master processor that generates Markov chains it can
assign ∆E calculation jobs to processors in the farm. If
we use a hybrid implementation, systolic S.A. with
energy calculations in a farm, we need a farm attached to
every processor in the systolic decomposition.

In order to cut the communication costs of the farm for
the energy calculation, we use a tree configuration and let
every processor hold a copy of the complete configuration.
The set of N particles is divided into   Ptree , seven in our
implementation, equally sized subsets. Each of the   Ptree

processors is assigned to one of the subsets. The master
processor is the root of the tree. If a move is accepted an
update message is sent to the slave processors together
with the next move that has to be calculated. The energy
calculation for a perturbation of the radius is handled
analogous

5 TIME COMPLEXITIES

5 . 1 The sequential version

Each step in a Markov chain consists of the displacement
of a particle and the calculation of the energy difference
with an update if the move is accepted. The radius is not
perturbed every step, in this paper we will use that the
radius is perturbed once every N steps of particle moves.

The time needed for the particle move is independent of
the number of particles. The energy calculation resulting
from a particle move is of order N. The energy calculation



for a perturbation of the radius is of order N2 , but since
this calculation is used once every N steps we can also put
this contribution to the time complexity to be of order N.
The complete time complexity of one step in the Markov
chain can be described by :

  
T

1
seq = Tm + Te N( ) + Tr N( ) = c1 +c2N 3( )

where :

  T1
seq  is the time needed for one step in the Markov chain

with a radius update once every N steps,

  Tm  is the time needed for displacing one particle,

  
Te N( )  is the time needed for calculation the energy

difference of a displacement,

  
Tr N( ) is the time needed for perturbing the radius and

calculating the energy difference once every N steps.

The single step described in the time complexity
analyses above has to be multiplied by the length of the
chain (L) to get the time taken by producing one chain.
We then have to multiply the time for one chain with the
number of chains generated for reaching a stable minimum
(M) to get the time complexity of the complete annealing
algorithm.

L is dependent on the number of particles because the
convergence slows down if the number of particles
increases. In this work we will use L=50*N.

M has an almost constant value. This can be explained
as follows. We adjust the radius of the sphere so that the
average distance between neighbouring particles is
constant with varying N. Since moving one particle
mainly affects particles in the neighbourhood, because of
the short range of the Lennard-Jones interaction, the
average ∆E per move is independent of N. Consequently,
we can keep the initial temperature fixed.

5 . 2 The vector version

In the vector version a limited part of the algorithm is
vectorized. The total time complexity consists of the time
complexity of the sequential part plus the time
complexity of the vectorizable part

For the time complexity analyses we have to know
which parts of the program can be done in vector mode.
The perturbation of a particle which appears as a constant
in the sequential time complexity has no parts that can be
vectorized. The subroutines that do have parts that are
vectorized are the potential energy calculation for
perturbations of a particle and the radius.

The calculation of the potential energy step of one
particle move consists of two potential energy calculation

loops. These loops are performed in vector mode. We
estimate that the number of arithmetic operations within
one potential energy loop is 11 when the distance is larger
than the cut-off. An additional 6 arithmetic operations are
performed if the Lennard-Jones potential is calculated.

If we choose a cut-off distance of 2 (distances are scaled
with the minimum of the potential energy) then on
average 15 particles fall within the cut-off distance. This
is the case at the density where there is a global energy
minimum on a flat surface. For a large number of
particles the optimal density of a sphere approximates the
optimal density of a flat surface.

With these numbers and the machine parameters τsetup

and τclock  we were able to determine the time complexity
of this step [Hockney and Jesshope,1988].

To find the time complexity of the perturbation of the
radius we can multiplicate the previous described time
with N and an appropriate constant. This can be done
since the calculation of the complete potential energy of
the system involves 0.5*N*(N-1) calculations and the
potential energy of a particle takes 2*(N-1) calculations.

The complete time complexity is the same as the
sequential part only the two parts of one step in the
Markov chain that involve potential energy calculations
have to be changed :

  
T

1
vec N( ) = Tm + T

e
vec N( ) + T

r
vec N( ) 4( )

where :

  

T
e
vec N( ) = 2* τsetup +

11

2
N −1( ) +

90

2







τclock









 5( )

T
r
vec =

1

4
N −1( )Te

vec N( ) 6( )

5 . 3 The parallel version

Our parallel implementation is a combination of systolic
S.A. and functional decomposition of the energy
calculation. First the functional decomposition is
discussed.

The time for the calculation of the energy difference
during a perturbation of a particle in the tree
decomposition is now more than just a constant times the
number of particles as in the sequential version. In fact
since the work is done by more processors the time needed
is devided by   Ptree . But a communication overhead
constant has to be added. The perturbation time for the
radius is handled in an analogous manner.

The time complexity of one step in the Markov chains
is same as the sequential time complexity but now with
the appropriate formulas for the tree decomposition.



  

T
1
fun = Tm + c3

N

Ptree

+ Tc1









+ c4

N

Ptree

+ Tc2









 7( )

In systolic S.A. P (the number of processors) chains
are generated at the same time. This means that in the
time that in the sequential version one chain is generated
in the systolic version P chains are generated. Again a

communication time,   Tc , is associated with the

implementation.
The number of chains that are generated in systolic

S.A. is somewhat more than the sequential version since
the algorithm has to start up the processors in the ring
one by one. This means that the total number of chains is
the number of chains in the sequential version and added to
this is the number of processors in the ring minus one.

  
T

p
hyb = T

1
fun * L /P+ Tc( )* M +P-1( ) 8( )

  Tc  can be neglected for large N because the

communication contribution to the total time is much
lower than that of the calculation of the sub chains.

6 MEASUREMENTS OF THE TIME
COMPLEXITIES

6 . 1 the vector version

To find the actual time taken by the implementations we
have done experiments in order to find the constants
appearing in the descriptions of the previous section.

We found for the vector implementation on the Cray
that :

  

T
e
vec N( ) = 53. 4 + 0.154N  µ s

T
r
vec N( ) = N −1( ) 26. 7 + 0. 039N( ) µ s

Tm = 125. 0 µ s

The complete time complexity for the vectorized version
is now given by :

  
Tvec N( ) = 205 + 0.193* N( )* L* M µs

6 . 2 the parallel version

From the parallel implementation on the T805 transputer
platform we found for the tree decomposition that :

  

T
e

tree

= 4. 4* N + 960  µs

T
r
tree = 2. 0* N +

960

N
  µs

Tm = 1400 µs

For the communication time associated with the

systolic S.A. implementation we found   Tc = 75* 103 µs.

The complete time complexity for the hybrid
implementation, systolic S.A. and the tree decomposition,
is given by :

  

T
1
tree = 2. 4* 103 +

9. 6* 102

N
+ 6. 4* N











Thyb N( ) = T
1
tree *

L N,P( )
P

+ 75* 103











* M +P−1( )

The S.A. algorithm is an inherently sequential
scheme. Parallelizing it by the systolic S.A. method we
introduce a functional difference to the sequential version.
This parallelization has consequences for the accuracy of
the iterative processes. For the vectorized version the
values of M and L are the same as the sequential version
and also if we use the tree decomposition nothing
changes. But the systolic algorithm is functionally
different. We notice that if we increase the number of
processors in the ring that the number of chains that have
to be generated increases. This is because the smaller the
sub chains, the more chains have to be generated before a
stable minimum is found. This leads to a decrease in
efficiency. Together with the increase of the number of
chains the found solution gets worse. This means that we
actually have the dependency L(N,P) if we want to keep
the same quality of the solutions. If we determine what
the chain length L(N,P) should be we find that the
execution times for these new chain lengths are such that
there is a minimum at a certain number of processors. If
more processors are used the execution time will only
increase.

7 CONCLUSIONS AND SOME
RESULTS

From the section about the vector time complexity it
turns out that vector computing does not have the ability
to be adapted to a specific problem but its power lies in
the fact that you can easily adapt the sequential code. With
a minimum of trouble, you can achieve high speedups.

A massively parallel machine allows various
implementations. Therefore different implementations can
be tested to find the one which performs best. It turns out



that the systolic implementation in the present form is
not capable of using large numbers of processors. In the
following figure we plot the measured times for the vector
and the systolic implementation without the tree
decomposition :

403020100
0

1000

2000

3000

4000
Tvector
Tsystolic
Thybrid

Number of processors

T
im

e 
(s

ec
on

ds
)

With small number of processors the systolic S.A. is not
faster than the vectorized version. This is due partly to the
fact that the clock speed of the Cray is much higher than
on the T805. In a short while a T9000 based transputer
platform will be installed at this institute. The clock speed
of those transputers is higher that the T805 of the
Parsytec GCel. Also the communication will be
completely handled by hardware. Preliminary results
[Bader et al,1993] show that the T9000 will be about a
factor 5 to 8 faster. With those processors we will be able
to outrun the Cray.

100500
-3.5

-3.0

-2.5

-2.0

-1.5

Number of particles

N
or

m
al

iz
ed

 E
ne

rg
y

The S.A. program gives the configuration, the energy
and the radius after the annealing procedure. Other output
consists of the number of chains that had to be generated
and the time taken by the program.

After a number of runs with different numbers of
particles we can make the previous figure of the potential

energy of the system versus the number of particles. It is
clear that at some N there are configurations of lower
potential energy than surrounding values of N.
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