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We propose a new way to model HIV infection spreading through the use of dynamic complex networks.
The heterogeneous population of HIV exposure groups is described through a unique network degree
probability distribution. The time evolution of the network nodes is modelled by a Markov process and
gives insight in HIV disease progression. The results are validated against historical data of AIDS cases
in the USA as recorded by the Center of Disease Control. We find a remarkably good correspondence
between the number of simulated and registered HIV cases, indicating that our approach to modelling the
dynamics of HIV spreading through a sexual network is a valid approach that opens up completely new
ways of reasoning about various medication scenarios.
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1. Introduction

Despite the availability of a large number of mathematical models describing the spreading of HIV,
a good understanding of the spreading dynamics through numerical analyses is still a major chal-
lenge. It is essential to combine epidemiological processes with sociological models and network
sciences. The true incidence of the HIV/AIDS-epidemic is quite uncertain since many people
may be unaware of their infection; moreover HIV has a very long asymptotic incubation period
which makes study of the actual infection spreading a very complicated task. The various routes
of infection and the inhomogeneity of the involved population pose additional problems [27].

Many mathematical models have been suggested to simulate HIV population dynamics. For
instance, statistical techniques like the back-calculation method and its related modifications are
widely used to estimate the incidence and short-term projection of HIV. Generally, these methods
are based on information from annual AIDS cases and incubation periods of the disease [1,2,33].
Popular epidemiological models like SIR models are often used to simulate HIV spreading. New
ways to account for homogeneous mixing [8,17,21] and the impact of, for instance, demographic
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1176 P.M.A. Sloot et al.

effects or drug resistance have been discussed [1,8,16,32]. An SIR model is an epidemiological
model that computes the theoretical number of people infected with a contagious illness in a
closed population over time. The name of this class of models derives from the fact that they
involve coupled differential equations relating the number of susceptible people ‘S’, number of
people infected ‘I’, and number of people who have recovered ‘R’.

One of the key drawbacks of those models is the difficulty to represent population heterogeneity
and related risk behaviour. Heterogeneity in these models can only be implemented through differ-
ent transmission probabilities or different number of contacts for people in risk groups [3,24–26].
An advantage of network-based epidemical models is the natural way in which heterogeneity can
be expressed through network degree probability distributions and assortative or disassortative
mixing [4,6,13]. The goal of the work presented here is to show that complex network (CN)
based modelling techniques provide a universal and natural way to describe any kind of infection
spreading and specifically HIV.

The paper describes the infection spreading as a stochastic process taking place over a socio-
logical sexual network. Key ideas like network structure, network generation, and node dynamics
are discussed and applied. The models are validated against real historical data.

2. Methods

2.1. Formal description of the model

Let us consider a CN-model as a set of the pairs {G, �}, where G is a graph, that is, an ordered
pair of disjoint sets (V , E) (vortices and edges), and � is an evolutionary operator, governing
network changes in discrete time steps t :

〈V, E〉t+1 = �〈V, E〉t ;
〈V, E〉t=0

def=〈V0, E0〉.
(1)

The evolutionary operator (1) can be represented as a composition of distinct operators
� = ⊗k�k corresponding to different dynamical aspects, ⊗ indicates a ‘direct’ non-commutative
product of the independent operators.

Figure 1 illustrates the effect of the evolution operators � on a set of three basic models of epi-
demiological networks, each of them corresponds to different mechanisms of infection spreading.
The simplest one is infection spreading on a static network, i.e., the network structure does not
change in time (Figure 1a).At each step an infected node (marked with a cross) can infect its neigh-
bouring nodes with a given probability. An important issue is the impossibility of changing the
links. This model of infection spreading corresponds to the so-called ‘nodes percolation problem’
for the static networks. This model is feasible for infection spreading of geographically segregated
agents; this process is represented by the network percolation operator �1.A more elaborate model
takes into account the network dynamics (Figure 1b). This reflects the fact that network links are
not stable and the network structure is evolving over time. The model is fully connected; even in the
case of a small number of links (for instance, only one for each node) the possibility to be connected
to an infected node cannot be disregarded. This advanced feature makes the model more applicable
to infection spreading inside a large society (city or country) and for sexually transmittable dis-
eases (STD), where almost all the people can be infected. This process is controlled by the network
link-dynamics operator �2. Figure 1(c) represents yet another kind of process occurring on network
epidemics models; some epidemics are able to last over a long period of time and people that have
been infected at the beginning of the epidemics may be removed from the initial population over
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International Journal of Computer Mathematics 1177

Figure 1. Schematic models of infection spreading through CNs: (a) static graph; (b) dynamic links; (c) dynamic nodes.
The circles with crosses indicate infected individuals, the black circles are individuals removed from the network see the
text for more details.

time (due to death, age, migration, etc.). This dynamics is captured by the network demographic
operator �3.

Next we define an operator for HIV spreading as � = �1 ⊗ �2 ⊗ �3. Note that those operators
are non-commutative. In addition, a realistic description of any epidemiological process implies
a correct description of the state evolution of the nodes. In our case, one can formalize the time
evolution as an additional operator �4, which is defined in the form of changes in the CD4 T-cell
count in the blood of infected individuals (Figure 2). The rationale here is that the white blood
cells (T-cell lymphocytes) that express CD4 on their membrane are an indication of the health
of the individual. If the number of CD4 T-cells drop below ∼200 copies per ml the patient is
likely to enter the AIDS phase where opportunistic diseases like tuberculoses and cancer will
emerge.
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1178 P.M.A. Sloot et al.

Figure 2. Infected nodes evolution as a function of CD4 T-cell counts.

2.2. Analytical approximation of CNs dynamics

Generally, the interplay between the fraction of S, I, and R is described in the form of a standard
epidemic SIR model in terms of a system of differential equations. The simplest form can be
expressed as:

ds(t)

dt
= −λρ(t)s(t)

dρ(t)

dt
= −μρ(t) + λρ(t)s(t),

dr(t)

dt
= μρ(t)

(2)

where s(t) − susceptible, ρ(t) − infective, r(t) − removed. This is equivalent to the dynamics
described in Figure 1b, with exactly one link per node. Equation (2) can be interpreted as a
mean-field approximation to the dynamics shown in Figure 1 [35]. Note that if we disregard
demographic effects we can put s(t) + ρ(t) + r(t) = constant. Susceptible individuals could be
infected; infective individuals are capable of transmitting the disease; removed individuals have
had the disease and are dead. Parameters λ and μ are positive constants representing infection
and removal rates. The value λ is a characteristic of �1 only and is determined by the details of
the infection spreading. The value of μ depends on the disease evolution inside an infected node
before its death or isolated status in which it does not pass on the infection anymore.

The graph of changing CD4 T-cell counts for a node (Figure 1c) is depicted in Figure 2. The
shape of that curve is prototypical for infected individuals without treatment [30]. The mean
incubation time is close to 10 years, after which the CD4 T-Cell count drops to a lethal level
where the immune system is not capable of fighting against opportunistic infections anymore.
This condition is called AIDS and is considered as an isolated state for an infected node, which is
consequently removed from the network. The incubation period for an infected individual depends
on individual features and social as well as economic factors. The mean value of the incubation
time varies from 8.0 to 13.0 years [5,19].

The transition for each individual (per year) from state ρ to state r can be described in the form
of an irreversible Markov chain with a matrix of transition probabilities given by:

� =
⎡
⎣

1 0 0
0 1 − μ μ

0 0 1

⎤
⎦ , (3)

In particular, for HIV infected nodes μ may vary from μ = 0.15 for individuals without treatment
to μ = 0.08 for individuals with treatment [6]. The generalized matrix of transition probabilities
� may be easily extended to any number of intermediate stages of infection.
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Combining expressions (2) and (3) one can express the epidemic model with homogeneous
mixing in the form of a discrete Markov chain with a corresponding state vector given by: E =
[s, ρ, r]T:

Et = �TEt−1 + λ(I2 − I1)(Et−1I1)(Et−1I2)

E0
def=[1 − ρ0, ρ0, 0]T (4)

where I1 = [1 0 0]T, I2 = [0 1 0]T.
Expression (4) might be an integral representation of the evolution process (1) in terms of a

discrete distribution of s, ρ, r .
The SIR model represented in Equation (4) is too simple to be useful for real applications

but is a good starting point for more advanced models, these we will describe in the following
paragraphs.

2.3. Perspectives of HIV modelling

As a rule, real HIV epidemiological processes are rather complicated. So it makes sense to list
some of the procedures, proposed in the epidemiological literature, which make the SIR models
more suitable for real situations.

(1) In Equation (2), the population is assumed closed, that is, the population size is fixed (s(t) +
ρ(t) + r(t) = const). However, recent results reporting on the spread of HIV indicate the
existence of a strong interplay between HIV epidemics and age structures. The demographic
impact cannot be neglected. For instance, in Reference [6] the population in SIR models is
randomly refreshed to correspond to the age structure for a given country. Another approach
has been proposed in Reference [10] where a demographic rate has been introduced into a
set of coupled differential equations for the related SIR model.

(2) The SIR models expressed in the form of Equation (2) are only valid for homogeneous mixing,
that is, all individuals are able to infect all others with an infectivity λ almost identical for
each individual [3]. Recent theoretical results on epidemics show that the rate of the epidemic
changes is highly affected by the dynamical behaviour of individuals. The inhomogeneity of
behaviour in the exposed groups can be taken into account by introducing a structured sexual
contact network. A number of papers show a power-law behaviour for such networks. An
interesting result can be found in [23, 24] where a set of coupled differential equations with
classes differentiated by connectivity is used for numerical evaluation.

(3) The removal rate μ in Equations (2) and (4) results from a very simple model describing
the progression of the time of infection to the final state of the disease. For infections with
short incubation time this rate can be described by a single value, but for diseases like HIV
the incubation time is comparable with the simulation time. Moreover some changes like
diagnosis or treatment [1,32] must be taken into account. This makes the model non-stationary.

Because of these observations we introduce a new method based on direct simulation of CNs in
the form given by Equations (1) and (4).

3. The network simulation procedure

HIV is a very special epidemic. Let us list some challenges and approaches arising in HIV
modelling:
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1180 P.M.A. Sloot et al.

(1) It is very difficult to build up an HIV model for all the exposure groups simultaneously. Each
of these groups has distinctive features and generally they are simulated independently. Some
models are used for a general population [22], but others for different exposure groups like
heterosexual [6] or homo/bisexual [1] groups only.

(2) The HIV epidemic is inhomogeneous over time. Three epochs pre-ARV (till 1987), antiretrovi-
ral therapy (ARV) (1988–1995) and highly active antiretroviral therapy (HAART)-treatment
can be distinguished. The system of diagnosis has been improved as well. Those changes
may be taken into consideration by non-stationary coefficients of the HIV progression and
the probability of infection per partner [1,33].

(3) Despite the improvement of HIV diagnosis only AIDS cases are recorded with some certainty
and there is a big uncertainty about early stages of the epidemics. Moreover, some important
factors like the size of exposure groups and the interplay with demographic and geographical
structures are far from obvious.

(4) With construction of the model in the form given by Equation (1), one should take into account
that HIV is primarily an STD. In our model, we identify three ways of HIV infection:
• men who have sex with men (MSM);
• heterosexual population;
• injection drug users (IDU). For this group HIV is not an STD.

Each risk group has its own probability of infection per partner λ and specific demographic factors
as well as related contact networks. Obviously sexual contact networks may not be described as a
homogeneous graph. Unfortunately the information concerning the structure of contact networks
for the third largest exposure group (IDU) is absent. That is why we choose a network model (4)
with homogeneous mixing only.

3.1. Modelling of sexual contact networks

We construct a network model as a dynamical scale-free network, wherein each individual is
represented by a node and the edges are the links between the individuals. The infection may
spread along these edges. There are a number of papers which describe scale-free properties of
sexual contact networks [18,28]. The scale-free property implies that network has a power-law
distribution in the number of outgoing links, with an exponent γ that determines the specific
structure of the network for each type of HIV spreading implemented in the model [11]:

P(k) ∼ k−γ , k ≤ kmax, (5)

where k is the number of sexual partners per year and γ is a parameter of the distribution. Small
γ denotes more limited sexual contact behaviour and corresponds to a smaller value of kmax

indicating the promiscuity and vice versa.
We use for the homosexual contact network the following parameters of the power-law distri-

bution γ1 = 1.6 and 250 < kmax < 300 (see [18] for more details). For the heterosexual network
we can take γ2 = 2.7 and 60 < kmax < 70. The cut-off kmax of the distribution is very important
as it indicates the possible number of superspreaders in the network. Actually, we may use life-
time statistics and build up the model on a static graph but the associated statistics is absent or
unreliable.

With respect to Equation (2), we use at each step a configuration model for the contact network
generation. This flexible approach is based on the generation of a degree sequence which allows
generating links between any two nodes according to its degrees taken from a specific distribution.
In Figure 3 the simulated network patterns for a heterosexual population (a) and MSM (b) are
depicted using recorded data.
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Figure 3. Sexual contact networks over a one-year period. Visualization is done using the Pajek software system [9].
(a) Heterosexual network; (b) MSM network.

From Figure 3 we observe that in the heterosexual contact network there is (at least) one
big component and a lot of pairs. For MSM network almost all the nodes belong to one giant
component.

3.2. Modelling the dynamics of the infected nodes

The Markov chain model with the matrix of transition probabilities given by Equation (3) is
a reductive model of infected nodes dynamics, which is equivalent to the model described by
Equations (2). Taking into account duration of the incubation period, availability of treatment
and the effect of diagnosis (awareness about infection may affect the transmission probability),
more advanced models with a larger number of states could be used. In particular, Aalen et al. [1]
proposed a multi-state Markov model to represent stages of HIV infection and the diagnosis and
treatment. This model is very convenient for back-calculation models [1,2,33], SIR models, and
for including SIR models into a network model.

The pre-AIDS stages of HIV infection are defined in terms of the level of CD4+ T lymphocytes
(CD4 counts). Four states are specified corresponding to CD4 counts of 500 or higher (×106

cells/l), 350–499, 200–349, and below 200. The mean occupancy times for states 1, 2, 3, and 4
are 5.5, 2, 2, and 1 year, respectively. It reflects a median incubation time of 8.6 years and a mean of
10.5 years. It is assumed that HIV testing became available gradually during 1984, and that general
access to testing was available from the beginning of 1985. After years of improvement these tests
are assumed to be constant since 1990. Furthermore, we assume that treatment was introduced in
1988 and has been substantially improved after the introduction of combined therapies in 1996.
The rates of diagnosis, treatment and other coefficients for this model can be found in a series of
papers [1,2].

3.3. Modelling of demographic effects

As was shown in Figure 1c, a demographic rule for the network implies permanent changes inside
the network that have a strong interplay with the age structure of the population. The easiest
way to describe this feature is to define two coefficients d1and d2 which reflect the percentage of
the nodes removed (infected and healthy) or embedded (healthy only) in the network at random,
respectively. If d1 > d2 the population (network size) is decreasing, if d1 < d2 the population
is growing. Our assumption is that the population size (i.e., the risk group) is stationary, that is
d1 = d2. This assumption has proven to be quite realistic for last three decades for many developed
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1182 P.M.A. Sloot et al.

countries [34]. For instance, if the network describes the population in the ages of 15–39 years,
the coefficient d = d1 = d2 would be roughly 4%, due to the lack of precise information on the
size of this risk group we allow this value be ‘tunable’.

3.4. Modelling of spreading process

The structure of the operator �1 is quite simple. For each kind of infection an infected node
can infect its neighbouring nodes with a given probability λ. The problem is how to estimate
this unknown value. Many papers report a probability value of infection per unprotected sexual
contact in the range of 0.002% to 40% [20,30]. For this we have chosen to make this value as a
free ‘tunable’ parameter as well. Optimization of λ with a numerical solution r(t) of the model
system described in Equation (2) is done through minimization of the following functional:

2005∑
Y=1981

[r(Y, λ) − NY ]2 −→ min. (6)

Here NY is the annual officially registered number of AIDS cases in a given country. For
instance, data for the USA and Europe can be found in [14,15].

The advantage of this model is the relative scale of modelling, this allows us to avoid a direct
approximation of exposure groups’ size and to recalculate the scale of the simulation by data
reported in literature. For the optimization procedure we use a standard steepest decent method
with adaptive step-sizes.

The optimization result for the population in the USA showed a value λ = 0.44. Of course, this
value is much larger than the infection probability per sexual partner which is hard to compare
since the number of unprotected sexual contacts is not well known.

Additional ‘tunable’ parameters are the demographic coefficients d1, d2 and the initial size of
the infected group for the first years of simulation ρ0 (for 1975), that define the initial conditions
for our model in Equation (4).

3.5. The direct simulation algorithm

The basic simulation procedure can be written down in a number of consequent steps:

(1) Generate a network using a given node degree probability distribution with an initial number
of randomly infected nodes ρ0.

(2) Infect nodes with probability for every link (per partner).
(3) For each infected node apply a rule of progression from HIV to AIDS (see paragraph 3.2.).

Nodes with AIDS are removed from the network.
(4) Apply the demographic rule.
(5) Store the current nodes state and generate a new random network.
(6) Shift current time to one step forward and repeat (2)–(5).
(7) Repeat (1)–(7) till statistical significance has been obtained.

For simulation of heterosexual spreading the network is represented as a bipartite graph and the
transmission probability from men to women is taken to be twice as efficient. Note that operators
�1, �2, �3, �4 correspond to Steps (2), (1), (4), and (3), respectively.

The three different types of infection (heterosexual, MSM, IDU), are simulated independently.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

A
m

st
er

da
m

] A
t: 

17
:1

9 
12

 J
ul

y 
20

08
 

International Journal of Computer Mathematics 1183

4. Results

4.1. HIV data

The United States data [14] are used for model identification and tuning mainly because they pro-
vide relatively good statistics of AIDS cases, several kinds of infection spreading and a possibility

Figure 4. Simulation results and reported data for the AIDS epidemic in USA. (a) MSM exposure groups, power-law
distribution with γ = 1.6 and kmax = 250, I0 = 0.32%, d = 0.04, λ = 0.44; (b) Heterosexual exposure group, power-law
distribution with γ = 2.7 and kmax = 60, I0 = 0.2%, d = 0.05, λ = 0.28; (c) IDU exposure group, homogeneous mixing,
simulation parameters are I0 = 0.16%, d = 0.025, λ = 0.72. Circles are the annual officially registered number of AIDS
cases; the solid line indicates the simulation results.
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1184 P.M.A. Sloot et al.

Figure 5. Simulation result for annual HIV cases in USA. (a) MSM exposure groups, power-law distribution with
γ = 1.6 and kmax = 250, I0 = 0.32%, d = 0.04, λ = 0.44; (b) heterosexual exposure group, power-law distribution with
γ = 2.7 and kmax = 60, I0 = 0.2%, d = 0.05, λ = 0.28; (c) IDU exposure group, homogeneous mixing, simulation
parameters are I0 = 0.16%, d = 0.025, λ = 0.72. Measured data are not shown on this figure, because statistic about
annual HIV cases is relatively good for past decade only and there is a big uncertainty about early stages of epidemic.

to explore the effects of treatment. These data include at least three epochs of the epidemic evolu-
tion: pre-ARV, ARV, and HAART-treatment; and three kind of HIV spreading. For each of these
epochs and the three distinct kinds of infection, HIV spreading behaviour was studied.
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4.2. Validation: comparison with annual AIDS data

As we can observe from Figure 4 the simulation results are very close to the estimation of the
officially registered annual AIDS cases. We should, however, consider these result very carefully,
since some of model deficiencies may have been diminished by the free ‘tunable’parameters. The
obvious effect on all the figures shown, is a substantial decline of AIDS cases after introduction of
HAART (1996). As can be observed for the homosexual and heterosexual populations, the peaks
of the AIDS epidemic are not the same. From a computational point of view the existence of these
peaks can be explained as a result of depletion of people with high risk behaviour and a shift of the
epidemic to the generic population (with ‘normal’ risk behaviour), for instance through bisexual
contacts. The stable number of AIDS cases in recent years may be explained by the stationary
number of HIV infection over a long period of time (see Figure 5).

4.3. Reconstruction: annual HIV cases

The simulation result of annual HIV cases reconstruction for different exposure groups is presented
in Figure 5. It is encouraging that those estimations are close to the official estimation by the Center
for Disease Control [7], which represents approximately 40,000 new transmissions per year all
the way from 1990 to the present time, after the peak of 1985 with approximately 150,000 annual
HIV cases (for all groups simultaneously).

Some of the effects that we observe from Figure 4 for AIDS cases are present in the graphs
for HIV as well. For instance, the stationary flow of HIV epidemics over more than a decade is
reflected in the stationary flow of the number of annual AIDS cases. The largest and not obvious
difference is a lack of decline of HIV cases after introduction of HAART. It probably means that
the process of HIV infection is quite independent from the effect of treatment and that a stationary
flow of epidemics may be explained by the balance of rate of infection, incubation period, and
demographic factors (supporting the size of risk groups).

We note that the best fit of the demographic coefficient (3–5%) is closely related to the group
size (20–40 years) which is generally considered as the size of the exposure groups for different
kinds of HIV spreading.

5. Conclusions

We present a parameterized CN model describing the dynamics of HIV spreading. The model
has some distinctive features: it takes into consideration all the existing kinds of HIV spread-
ing. Homosexual and heterosexual spreading is described by a scale-free network, drug users
spreading is described with the assumption of homogeneous mixing inside the exposure group.
All the network parameters have been taken from the medical literature and were fixed during the
numerical experiments. The experiments show a promising correspondence between the model
results and real demographic historical epidemiological data. This CN model will be included into
a generic system of predictive models for HIV infections and associated drug-ranking strategies
[29]. As such it will be part of the ViroLab decision support system [31].

• Sexual contact network dynamics is coupled to an inhomogeneous Markov model of HIV
infection, diagnosis, and AIDS progression.

• The model was initialized by real historical data. Annual HIV cases were reconstructed by
historical annual AIDS cases.
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The proposed model may be used as a ‘back-calculation’ [12] model and as a predictive model,
because the CN technique mimics the underlying mechanism of HIV transmission.
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