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Spectral decomposition of flow cytometric 
datafiles of arbitrary dimension reveal infor- 
mation of both the signal and the noise corn- 
ponents that constitute the histograms. This 
spectral information is used to construct a 
low-pass digital filter, which removes the cal parameters. 
high-frequency noise from the actual data. It 
is shown that this procedure guarantees non- 
trivial smoothing of the flow cytometric data 

in accordance with the local experimental sit- 
uation. Gs a consequence optimal reconstruc- 
tion of the signal is possible, which facilitates 
unambiguous interpretation of the data files 
and mathematical estimation of the statisti- 

Key terms: Fourier transform, noise rejection 

Interpretation of flow cytometric (FCM) data is ham- 
pered by the presence of noise superimposed on the 
signal of the studied phenomenon (e.g., fluorescence, 
light scatter). Both deterministic and stochastic noise 
may contribute to the histograms. Deterministic noise 
is present as a consequence of (known) unavoidable non- 
systematic instrumental errors (17,21,22), whereas sto- 
chastic noise may arise from a statistically insufficient 
number of cells (15,16). The main purpose of analyzing 
FCM data is the classification and detection of homoge- 
neous (sub)populations. This can be accomplished by 
means of statistical parametric and nonparametric anal- 
ysis which may be extended by iterative algorithms 
(1,10,11,13,14,24). 

The reliability of histogram analysis and the conver- 
gence time of iterative parametric procedures are 
strongly correlated to the estimation accuracy of the 
initial parameters (e.g., mean and [colvariance) (10,141. 
Furthermore, the statistical significance of nonparame- 
tric analysis such as randomization algorithms is af- 
fected by the signal-to-noise ratio (1,11,13,24). Flow 
cytometry is a technique whereby fluorescence andor 
elastic light scatter of biological entities, such as cells, 
are studied. The response of a population of cells to the 
incident light deviates from a one-channel histogram as 
a result of instrumentional resolution and biological 
spread (i.e., slight differences in size, chromophore up- 
take, and optical density). This homogeneous broaden- 
ing (of a single population) extends over several channel 
numbers and may be regarded as one period of a basi- 
cally low-frequency signal. The actual signal, however, 
may be corrupted by (for instance) additive white noise 

(which is composed of frequency components with no 
preference to any special frequency). Therefore, it is 
assumed that the Fourier coefficients of the intrinsic 
signal decrease with increasing frequency, whereas the 
Fourier coefficients of the noise remain approximately 
constant (7). The validity of this assumption is investi- 
gated by means of spectral analysis of FCM data. As a 
consequence the Fourier tranform (FT) of the FCM data 
must contain information to discriminate between sig- 
nal and noise. 

In the present study we describe a procedure to specify 
the significant signal part of FCM data. This informa- 
tion facilitates the design of a digital filter with charac- 
teristics tuned to the specific local experimental 
situation, which allows unambiguous interpretation of 
FCM histograms. 

MATERIALS ANI, METHODS 
Spectral Analysis 

FCM histograms may be considered as a discrete rep- 
resentation of a (continuous) detector-signal distribu- 
tion, which is digitized into an N-channel histogram by 
means of analogldigital conversion. This raw distribu- 
tion is converted to a histogram with a fixed class width 
and a fixed number of classes (e.g., 0-5 V is mapped to 
0-63 channels). 

The frequency content of the histogram (represented 
by the function fix]) can be studied by means of spectral 
decomposition. This is established by calculating the 
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discrete Fourier transform (DFT) F(w) from the N-chan- 
nel histogram qx] (9,20): 

N-1 

where F(w) is composed of an imaginary part (Im[F(w)] 
and a real part (Re [F(w)]). The normalized frequency 0 
5 w 5 1 is defined by w = f T; T is the interval between 
each of the N data points; and 0 

Since we are especially interested in the relative am- 
plitude of the Fourier coefficients, the output is con- 
verted to polar coordinates: 

f 2.x (12). 

1 A(w) I = {Re[F(w) l2 + Im [F(w) 12}” 
9 (w) = tan-’ (Im [F(w) ] ]/{Re [F(wf J ] (2) 

with (A(w)I the absolute value of the magnitude of the 
Fourier coefficients and 4 (w) the corresponding phase. 
To speed up the computational procedures a widely used 
algorithm derived by Cooley and Tukey (3), the fast 
Fourier transform (FFT), is used. 

The interpretation of the spectral analysis i s  straight- 
forward: Assume that the relevant information in flx) 
can be described by a signal function s(x) containing 
only the low-frequency components, and a function n(x) 
with a random distribution of frequency components 
representing the noise that needs to be rejected: 

flx) = s(x) -t n(x) (3) 

Since the FT is a linear operation, the Fourier transfor- 
mation of equation 3 is constructed of a monotonically 
decreasing function S(w) and a more-or-less constant 
part N(w), where S(w) and N(w) result from the FT of s(x) 
and n(x), respectively. From this Fourier spectrum the 
cutoff frequency, wc, above which no relevant informa- 
tion is expected, can be deduced. This is accomplished 
by means of a linear regression fit of the right part (w 
0.5) of the normalized spectrum and extrapolation to the 
intersection with the monotonically decreasing left part 
of the spectrum. This procedure guarantees that no sig- 
nificant signal information is lost. 

The Low-Pass Filter 
Once the cut off frequency w, is estimated, the high- 

frequency part of the spectrum (w > w,) can be removed 
by convolution of the histogram function flx) with a 
function h(x), which is onIy sensitive to the low-fre- 
quency part s(x) (w 5 wc) of Ax) (6). 

Here we illustrate some asymptotic properties of the 
functions in the frequency domain: 

Fourier transformation results in 

where the convolution theorem (20) is applied; H(w) (the 
transfer function) is the FT of h(x) and * denotes the 
convolution. 

Rearranging equation 4 results in 

from which two regions (see Fig. 1) can be deduced: 

(i) I N(w) I B I s(w) I : 

(ii) I N(w) I Q I S(w) I : 
The irrelevant high frequency part where I Hh)  1 -+ 0 

The relevant low frequency part where 1 H(w) 1 -+ 1 

The convolution of the histogram function with an im- 
pulse response having a frequency characteristic com- 
parable to that shown in Figure 1 results in rejection of 
the high-frequency components of the data and therefore 
results in an  unambiguous smoothed histogram. Similar 
low-pass filter techniques are common in signal and 
time series analysis (2,8). 

The Window Definition 
For computation purposes, a finite number of impulse 

response terms is used in the estimation of H(w). There- 
fore, a certain overshoot in the frequency domain of 
H(w), near the discontinuity wc, will occur [Gibbs phe- 

0.0 

FIG. 1. The Fourier transform of the magnitude of an ideal impulse 
response function vs. the normalized frequency. w,: the cutoff frequency. 
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nomenon (611. This error can be reduced by means of a 
modifying window w(n). Several windows for special 
purposes have been proposed in literature 1,2,23). In this 
study, the kernel of a very simple Lanczos window is 
applied (2), in order to make the implementation on a 
microcomputer more feasible: 

1Np-l J 
where m depends on the span of filter (2.Np). The opti- 
mal m for a certain number of smoothing points Np can 
be derived from the effective transfer function Weff (w): 

Several filter parameters have to be taken into account: 
The transition band width (6) which defines the steep- 
ness of the discontinuity in Figure 1, and the passband 
tolerance ( E )  which is defined by the amount of overshoot 
in the regions on both sides of wc. The values of both 
parameters should be minimal for an  optimal filter. If m 
in equation 6 increases, E decreases and 6 increases. 
However, if m decreases, E increases and 6 decreases. 
Apparently, for a certain number of smoothing points, 
NP, an  optimal value for m can be calculated. From 
equations 4 and 6 the filtered histogram P(x) is calcu- 
lated by means of a discrete convolution of the modified 
symmetric impulse response function b(n) with the orig- 
inal data fix): 

NP c bin) [f (x-n) + f (x+n) 1 f*(x) = 
n = O  

where 

(8) 
sin w,nr 

b(n) = na win) 

The first term of b(n) results from the inverse Fourier 
transform of the ideal transfer function H(w) (with an 
ideal rectangular frequency response characteristic-see 
Fig. 11, whereas the second term is defined by equation 
6. The span of the filter depends on the required accu- 
racy and the maximum allowable computation time. 
Calculations demonstrated that half times the number 
of channels (N) is an acceptable value for Np. Equation 
8 implies that once Np, wc, and m are defined, b(n) can 
be calculated and the filtered histogram results from a 
number of simple multiplications. Furthermore, a n  ad- 
equate definition of Np, wc, and m allows noise reduction 
of the original FCM data in accordance with the local 
system performance and the current type of experiment. 
Finally, equation 8 implies a simple extrapolation to a 

filter algorithm for arbitrary dimensions, e.g., two-di- 
mensional (bivariate) distributions. 

The computations were carried out on a computer con- 
figuration based on an MC68000 microprocessor (Moto- 
rola) in the language C. The final program was imple- 
mented in BASIC on a microcomputer interfaced to a 
FACS IV flow cytometer. 

RESULTS 
In this section the characteristics and the advantages 

of  the special-purpose low-pass filter in relation to one- 
dimensional simulated FCM data are investigated. In 
addition the results are extrapolated to higher dimen- 
sions and a multiparametric filter algorithm is de- 
scribed. Furthermore, the fundamental assumption i s  
studied that FCM data are constructed of a low-fre- 
quency signal part, whereas the noise is confined to a 
high-frequency part. 

First, the FT of the product of the impulse response 
function with the window function (equation 7) is calcu- 
lated for wc = 0.5, Np = 32 (= 1/2N) at different values 
of m. The results, shown in Figure 2, suggest an  optimal 
window for 1 < m < 3. Since no complex values of w(n) 
are permitted (m is an  integer), further study is required 
to estimate the best value of m. In accordance with the 
fundamental assumption, as mentioned above, an  arti- 
ficial histogram is constructed The amplitude of the 
numerically generated white noise resembles a Gaus- 
sian distribution with a mean value at zero amplitude 
(no noise present) and a standard deviation (S) that 
fulfills the condition that 99.7% of the white noise has 

0.0 
~ 

0.5 

FIG. 2. The influence of the window parameter m on the quality of 
the filter. Np = 32, wc = 0.5, B(w) = absolute value of the magnitude 
of the transfer function. 
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an amplitude between 0 and 10% of the top value (TV) 
of the signal: 

3s = TV110 (9) 

By means of a pseudo-random generator (4),64 elements 
were chosen to construct a packet of superimposed white 
noise. 

The normalized signal was presented by a Gaussian 
distribution with a standard deviation of ten channels 
and a mean value of 31: 

(10) 

The result, obtained with the particular noise in this 
sample, is shown in Figure 3a-c. From these distribu- 
tions the FFTs were calculated. Figure 3d and f show 
the estimated cut-off frequency for the signal with and 
without additional noise, respectively. All tested noise 
and data files showed the same relation between the 
“real” and the estimated w, namely, that the latter has 
a slightly higher value. This is a consequence of the 
large number of frequency components of the noise, rel- 
ative to the number of frequency components of the 
signal, near wc. Therefore a small but negligible amount 
of the noise i s  still present, whereas the filter procedure 
assures that no signal information is lost. 

Since the information derived from Figure 3d is nor- 
mally not available, the filter algorithm (equation 8) 
with wc = 0.19 (Fig. 3f), Np = 32, and m= 0, 1, 2, 3, 4, 

5 is applied to the simulated data file (Fig. 3c). The 
influence of the window parameter m on the filter pro- 
cedure is studied by comparing the filtered histogram to 
the “original” signal (Fig. 3a) by means of a chi-square 
test. The typical result shown in Figure 4 indicates an 
optimal value for m = 2. Various packets of noise were 
chosen and added to the same and other signal distribu- 
tions. The results were comparable to those shown in 
Figures 3 and 4 (data not shown). Therefore the value m 
= 2 was applied to construct the window. The result of 
the filtered histogram with m =  2 is shown in Figure 5 .  
In order to investigate the influence of the applied filter 
to the Gaussian shape of the signal function (Fig. 3a), 
the smoothed histogram was fit to a normal distribution. 
No significant changes in shape could be detected. This 
is in line with the general phenomenon that no ampli- 
tude distortion is expected as long as the cutoff fre- 
quency (w,) is chosen beyond the signal region. 

After establishment of the characteristics of this filter 
procedure and the window parameters, the algorithm 
was extended to higher dimensions, implemented on a 
microcomputer, and tested with several experimental 
(FCM) histograms. 

In Figure 6a, a masked plot of a bivariate scatter 
histogram (64 x 64 channels) of a mixed population of 
human peripheral blood lymphocytes and monocytes, 
isolated as described by Figdor et al. (51, and measured 
with a FACS IV, is shown as an  example. Although the 
total number of cells in this histogram is 50,000, the 
maximum number of cellslchannel is only 170 (in the 
lymphocyte population), due to the broad monocyte dis- 

FIG. 3. A construction of a typical FCM data file, and the Fourier transform (FT) of the artificial FCM 
data file. w:  normalized frequency. 1 A(w)l: polar representation of the FT coefficients. The arrows indicate 
the estimated cutoff frequency wc. a) The normalized signal (s[x]) vs. arbitrary units. b) The random chosen 
white noise (n[x]) vs. arbitrary units. c) The complete data set (f(x)) vs. arbitrary units. d) FT of the 
normalized signal (S(w)) vs. w. e) FT of the random chosen noise N(w)) vs. w. f, FT of the complete data set 
(FM) vs. w. 
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0 1 2 3 4 5 
+m 

PIG. 4. Relative chi-square (x2) vs. the window parameter m. Calcu- 
lated by comparing the filtered histogram to the original signal 
(Fig. 3a). 

tribution. Therefore, high variance of histogram values 
is present in the data file, which indicates the necessity 
of spectral analysis. The result of two-dimensional Fou- 
rier transform is shown in Figure 6b. These data show 
that there are indeed two distinct regions of interest: 
one containing the signal information and one contain- 
ing the noise information. The frequency spectrum of 
other data files showed a close resemblance to the data 
shown in Figure 6b. Estimation of the cutoff frequency 
in two orthogonal directions resulted in a mean value of 
w, in the forward-scatter (FS) direction of approximately 
0.20 & 0.02 (= wcx), whereas for the side-scatter (SS) 
direction a value of 0.29 f 0.03 (= wcy) was calculated. 
Similar results were obtained with other FS vs. SS data 
files. It was concluded therefore that routine application 

channel number 

FIG. 5 .  The filtered artificial histogram (heavy line) plotted together 
with the original data from Figure 3c (thin line): m = 2, Np = 32 and 
W E  = 0.19. 
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of the filter procedure with wcx = 0.20 and wcy = 0.29 is 
allowed. Consequently, no precalculation of the cutoff 
frequencies by means of an  FT is necessary, and direct 
convolution can be applied. 

To smooth this bivariate histogram a neglible correla- 
tion between the FS intensities and the SS intensities is 
assumed (18). This implies that the FCM histogram can 
be separated. Therefore a cascade of two one-dimen- 
sional filters is applied: one operating on the rows and 
one operating on the columns (2). The data in Figure 6c 
show the filtered histogram calculated in accordance 
with the filter procedure described by equation 8. Pre- 
liminary statistical parametric analysis of the smoothed 
bivariate histogram shows a close resemblance to mor- 
phological characterization, by means of May-Griinwald 
Giemsa staining of cytocentrifuge preparations of the 
original sample (5). This indicates that no significant 
shape changes or amplitude deformation is introduced 
by the filtering procedure, as was expected from theoret- 
ical considerations in the previous section. 

DISCUSSION 
In this study a mathematical technique is presented 

to reject noise from FCM data files of arbitrary dimen- 
sion. It i s  demonstrated that the fundamental assump- 
tion, that FCM data may be regarded as functions with 
fast-fluctuating noise components superimposed on 
slowly varying signals, is valid. One exception, which 
might lead to misinterpretation, occurs when the loga- 
rithmic noise distribution at the origin (due to a non- 
zero trigger threshold level on the master signal) is 
smoothed to look like a real subpopulation (Fig. 6). In 
routine application, however, this artifact will not ob- 
scure the interpretation of the complete data set. 

When relatively high-frequency signals are studied, a 
sharp discrimination between noise and signal becomes 
more difficult and phase reversals may occur in the filter 
procedure (121, thus leading to errors in the smoothed 
data file. However, in the data files we have studied so 
far, no high-frequency components of the signal could be 
detected, and therefore it seems fair to conclude that 
spectral analysis results in a unique estimation of both 
the signal and the noise part of the data, Moreover, 
spectral analysis showed only minor changes in the cut- 
off frequencies of different data files. Consequently, in- 
formation of the cutoff frequency is available, and appli- 
cation of a low pass digital filter becomes feasible. In 
addition, spectral analysis allows experimental mini- 
malization of the noise present. Accordingly it can be 
used to study the local system performance or interpret 
the physical parameters of the experiment. 

The results presented here indicate that the applica- 
tion of the proposed filter procedure facilitates unambig- 
uous smoothing of FCM data in accordance with the 
frequency content of the histograms. Furthermore, a 
straightforward generalization to higher dimension is 
allowed, provided that the correlation between the var- 
ious detection parameters is small enough to allow the 
application of a cascade of one-dimensional filters. From 
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a - forward scatter \ 

0 

0 0 5  10 - forward scatter C - I , ,  

b 
FIG. 6. Illustration of the described filter procedure for rnultiparameter histograms. a) Bivar- 

iate histogram of a mixed population of human lymphocytes and monocytes. b) Spectral decom- 
position of the histogram. c) Modified histogram after noise rejection. 

previous theoretical calculations it is concluded that 
only a small correlation is present between FS and SS 
for nucleated blood cells, such as peripheral blood lym- 
phocytes, whereas other combinations of parameters re- 
sult in even smaller correlations (18). Therefore, 
application of a cascade of two one-dimensional filters 
instead of a more complex and time-consuming multidi- 
mensional filter procedure is justified. 

In the method presented here, we, Np, and m can be 
chosen in dependence of the histograms at hand, whereas 
the individual coefficients b(n) cannot be modified. Con- 
sequently, adaptation of the histogram data is limited. 
On the other hand, however, few parameter methods 
allow simpler and faster handling of the filter algo- 
rithm. The complete process of (off-line) filtering of a 
bivariate data file, with predetermined cutoff frequen- 
cies, takes only a few minutes if the algorithm is written 
in BASIC and implemented on a micro-computer. Imple- 
mentation of the algorithm (written in the language C) 

on locally-designed light-scatter equipment indicates 
that the procedure is also applicable to other-than-com- 
mercially available flow cytometers (19). 

The sources of the various programs are available 
from the authors upon request. 
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