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Abstract

We report on our iGrid2005 demonstration, called the “Dead Cat Demo”; an example of a highly interactive augmented reality application
consisting of software services distributed over a wide-area, high-speed network. We describe our design decisions, analyse the implications of
the design on application performance and show performance measurements.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

While the Grid paradigm has proven useful for high-
performance computing tasks in many occasions, using this
paradigm for visualization purposes remains a challenge,
especially when considering highly interactive visualization as
found in e.g. Virtual Reality environments. The reason for this
lies in the demands that this class of visualization applications
in general impose: graphical representations must be of high
quality, response to user interaction must be immediate, the
different components are often diverse and sometimes many.
Different demands may often seem irreconcilable as design
decisions on one invariably influence another. Addressing
these problems is a non-trivial task, especially considering the
distributed nature of a Grid. In this work we investigate some of
these issues through the design and implementation of a highly
interactive visualization application that consists of distributed
components. We use this application as a test case to investigate
the implications of a service oriented design (as proposed by
e.g. WSRF1) on distributed, highly interactive visualization
applications.
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2. Related work

Several publications report on Grid-based scientific visual-
ization: Brodlie et al., analyze and revisit the data flow concept
used in most visualization systems in the light of Grid com-
puting developments [1]. Similarly, Charters et al. present an
approach based on Web Services to provide desktop based vi-
sualization [2]. Their approach deploys the visualization on a
Grid by encapsulating every single element of the visualization
pipeline in a separate Web Service. In the CrossGrid project,
a framework is presented that deploys a flow-visualization ser-
vice on a Grid [3,4]. Stanton et al. discuss the integration of sci-
entific visualization facilities in a component based Grid mid-
dleware [5]. While the authors discuss the implications of Grid
and Web Service technology in scientific visualization, they do
not address the implications of their designs in highly interac-
tive visualization applications.

Singh et al. tackle the issues raised by remote visualization
in their “Tera-Vision” setup based on dedicated hardware used
for capturing, compressing, transferring and decompressing
image data in the form of video signals [6]. Also, Luke
and Hansen propose a framework for remote visualization
that implements various scenarios for distributing data
computation, visualization and rendering in a client–server
architecture [7].
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Fig. 1. Design of our demonstration.

3. Design of the demonstration application

For our test case, we designed a highly interactive
visualization application that can easily be broken down
into different software components, each providing a unique
functionality. We refer to these components from here on as
services.2 These services are loosely coupled over a generic
network connection and can thus be distributed over a Grid-like
environment.

The application provides intuitive access to visualizations
of data that is associated with physical objects. This data is
visualized “collocated” with the real object (superimposed on
top of it), allowing the user to inspect both the real object as
well as the computer generated images at the same time. For
this purpose, the user holds a hand-held display device in front
of the real object. The system renders images on the display
such that the user is given the impression of looking through
the device onto the real object, with the major difference,
though, that the user sees the visualized data in place of the
real object (see Fig. 1). When the user moves the display,
the image must change immediately to give the impression of
looking through the device. This method of highly interactive
visualization falls under the category “Augmented Reality” and
has been described in various works preceding ours, e.g. the
work of Tsang et al. [8], although we are not aware of any
such work that uses a comparably distributed design as we
used here.

To achieve the described functionality, we identify the need
for three main services, as shown in Fig. 2. In order to display
the images correctly onto the display device, the exact position
and orientation of the user’s point of view, the display device
itself, as well as the inspected object are required. These are

2 Please note that our application was not implemented using grid or web
services.
Fig. 2. A schematic representation of the system design.

obtained using a tracking service, which for obvious reasons
must be physically present at the user’s location. The positions
and orientations reported by the tracking service are provided
to a visualization service. This service translates the data to
be visualized according to the given positions and orientations
into geometric primitives (triangles, textured planes, etc.). The
geometric primitives are then handed over to a rendering
service. This service generates an image from the geometric
primitives and then transfers this image to a client for display.

3.1. Performance model

Clearly, to achieve the described impression, response of
the application must be close to immediate. To model the
performance characteristics of our design we analyze the
latencies introduced by each service. We consider the data flow
from the moment the user interacts with the system, moving
any of the tracked objects, to the moment the correct image
is displayed (see Fig. 3). The functional requirements of our
test case application require that these latencies are as small as
possible.

The first group of delays is specific to the tracking service
and depends on the technology used to track objects. The next
delay is specific to the connection between the tracking service
and the visualization service. In our distributed design, this is
often a network connection. The following delays are specific
to the visualization service and include also delays related to
the chosen visualization method and its resource requirements.
To increase performance, this service could be executed on
a dedicated visualization platform. The next delay is again
related to the connection between the services. The delays
within the rendering service are specific to the used hardware.
For performance reasons, the images are often compressed
by the service. The delay between the rendering service and
the display device depends on the connection method used.
Finally, the last group of delays is related to the display device,
specifically the reception, decoding and displaying of the image
served by the rendering service.

3.2. Demonstration setup

For SuperComputing (SC2004) in Pittsburgh and the iGrid
2005 workshop in San Diego, a demonstration application of
the described architecture was developed. All the services are
hand-configured and managed manually in this early prototype.
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Fig. 3. A diagram representing the various latencies that affect the responsiveness and interactivity of the system.
The tracking service uses an optical tracking system
provided by ART GmbH.3 This system allows tracking position
and orientation of multiple objects at an average update rate of
60 Hz.

The visualization service uses SGI OpenGL Volumizer4 and
Kitware’s Visualization Toolkit (VTK) [9]. For the rendering
service, we use SGI OpenGL Vizserver.5 A Vizserver client
application is executed on the display device: an HP 1100
Tablet PC running Windows XP Tablet edition is used as
a display device. The images are displayed full-screen at a
resolution of 1024×768 pixels and 32 bit color depth. Vizserver
provides image compression algorithms on the server and
decompression on the client.

For visualization and rendering we use an SGI Onyx4 with
24 MIPS R16000 processors running at 600 MHz, 20 GB of
memory and 10 FireGL X2 graphics cards, hosted at SARA
Computing and Networking Services in The Netherlands.6 The
Onyx4 uses a VANier board to do pixel read-out in hardware.
This provides a considerable speedup compared to performing
the same operation in software. By running both services on the
Onyx4, we minimize the communication overhead between the
visualization and rendering services.

A 100 year old preserved panther cub was used as the subject
of interest. The panther cub is conserved in a glass jar and was
scanned with a CT scanner at the Academic Medical Center
(AMC), Amsterdam. The data set consists of 172 by 246 by
167 voxels, each represented by two bytes of data, resulting in
a raw data size of about 13.5 MB.

In our setup we track a cap worn by the user (to retrieve
the position of the user’s head), the display device, as well as a
small rectangular frame used for user interaction. The glass jar
with the panther cub is placed into a fixed position and is not
moved during demonstrations.

4. Results and discussion

The demonstrations at SuperComputing and iGrid gave us
two opportunities to test the performance on long distance
network connections. In both cases, the hardware for the

3 http://www.ar-tracking.de/.
4 http://www.sgi.com/products/software/volumizer/.
5 http://www.sgi.com/products/software/vizserver/.
6 http://www.sara.nl/.
tracking service and the display device were physically present
at the demonstration site, while the Onyx4 running the
visualization and rendering services was located in Amsterdam
and accessed remotely.

For the demonstration during iGrid we used a routed path
from San Diego over Chicago/StarLight, over Abilene to New
York and from there over the transatlantic SURFnet link
directly to Amsterdam. The main challenges were the high
round-trip-time (160 ms) and the slowest link in the connection:
the 100 Mb ethernet interface of the Tablet PC. The bandwidth
delay product for this setup results in approximately 2 MB [10].
For the demo at iGrid the window sizes were set to 16 MB on
each side, which was more than sufficient. Since this network
connection is used to transfer only the image data produced by
the rendering service, the amount of transferred data depends
only on the resolution of the images and the compression
achieved by the rendering service; it is independent of the size
of the data set being visualized. Additionally, TCP Selective
Acknowledgements were used on the Onyx4 in Amsterdam,
due to the use of large TCP window sizes.

At both Supercomputing and iGrid, we achieved frame rates
of approximately 4 frames per second (fps). The latency of
our setup was noticeably high, as can be expected from our
performance model. To further investigate the performance of
the different components in our setup, we conducted more
detailed experiments in Amsterdam. To recreate the high
latencies experienced at the demonstration locations, traffic
between the Onyx4 and a client was routed over a loop to New
York and back. The average latency on this connection was
approximately 176 ms. For this loop, the TCP window size
of the Onyx4 and the client was set to the bandwidth delay
product: 2.1 MB. This setup was compared to a local area
network connection between the Onyx4 and the client.

The tracking service uses UDP to transmit packets to the
rendering system. In our setup three objects are tracked and we
have measured that on average, one packet is 502 bytes long
(including header). Measurements indicate that packet loss is
negligible, and considering the small amount of data, payload
transfer time can also be neglected. As such, the only latencies
introduced by the tracking service are the data acquisition and
the output time. On average, data acquisition takes 16.7 ms. The
output time is only limited by the network latency.

Since both the visualization and the rendering service are
deployed on the same system, there is no transfer of primitives
over the network as depicted in Fig. 3. Our measurements
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Table 1
Comparison between volume rendering and polygon rendering applications

Volume rendering Polygon rendering
Min Avg Max Min Avg Max

Render time (ms) 156.59 222.9 365.78 3.82 4.64 22.58
Read backa (ms) 17 21.4 30 0 1.98 17
Compress/encodea (ms) 12 14.01 22 18 25.53 50

Server frame ratea (fps) 2 4.28 7.5 41.9 53.45 60.7
Discardeda (fps) 0 0.001 2 32.7 43.26 51
Client frame ratea (fps) 2 4.28 7.5 6.2 10.21 14.7

a Values measured using the utility “vsmonitor”, part of Vizserver.

(see Table 1) show that the calculation of rendering primitives
and the rendering thereof introduce a considerable latency: on
average, it takes 222.9 ms to render one frame.

The Vizserver server reads back images as fast as possible.
If the display device running the Vizserver client is too slow
to show the same frame rate as the server provides, the
latter discards older frames, only transmitting the latest frame.
Because of the high latency in image generation, the Vizserver
server only reads images at 4.28 fps. Because this rate is so
low, barely any frames are discarded and the same frame rate is
achieved on the client.

Running the same application over a local area network
connection, we found comparable values for all the latencies
except the network latency. This results in similar values for the
achieved frame rate, although the responsiveness is obviously
higher. Measurements of the bandwidth usage for the image
transfer show that the communication between the Onyx4 and
the client reaches less than 1 MB/s.

For comparison, we performed the same measurements over
the high latency loop with another visualization (see Table 1).
In this case we used a very simple scene which on average takes
4.64 ms to render. The rendering service reads back images at
an average of 53.47 fps, but discards them at a rate of 43.26 fps,
resulting in a frame rate of 10.03 fps on the client. Repeating the
same measurements over the local network connection yields an
average frame rate on the client of 16.85 fps (between 12.1 and
21.3). The bandwidth usage of the communication between the
Onyx4 and the client in both cases increases only marginally to
about 1.2 MB/s.

Our measurements show that the main bottleneck of our
demonstration lies in the image generation, which causes
the low frame rate. The measurements with the simpler
visualization show that also the high network latency reduces
frame rate. It must be noted at this point that the technology
used to transfer images over the network adds a proprietary
acknowledgment scheme on top of the native scheme of TCP.
Our measurements give us reason to believe that this causes
sub-optimal bandwidth use.

The overall measured latency (neglecting payload transfer
time) of our test setup in Amsterdam results in 465.02 ms.
Even disregarding the high latency of the image generation,
the latency still results in 242.12 ms, which clearly needs to
be improved for highly interactive applications.
5. Conclusions and future work

This demonstration shows that a highly interactive
application as described can be implemented on a Grid
environment using a service-based architecture. One of the
main challenges in this design is posed by the requirements to
the network infrastructure.

We would like to point out that there is currently no control
over the network resources for the deployment of such highly
interactive applications. We believe that it would be extremely
beneficial for the realization of architectures as we envision in
this paper, to have access to services that could allocate the
required network resources in a similar way as computing and
storage resources can be allocated in a Grid environment.

Another aspect that should be addressed is the networking
protocol used for image transfer from the rendering service
to the client. The technology used in our prototype employs
TCP, which suffers some limitations that make it less suitable
for long distance high performance data transfer. Also,
the communication scheme implemented by this technology
additionally decreased performance. We therefore believe that it
would be beneficial to replace the current implementation of the
image transmission using alternative technologies, e.g. using
revised versions of TCP [11] or UDP-based protocols [12,13].

Considering the various limitations in the currently chosen
platform for the visualization and rendering services, we are
also looking into alternatives to speed these up. The modularity
of our design proves of advantage in this case, since it allows us
to easily implement these services on other resources without
major changes in the overall architecture, nor in the other
services.

If issues related to image generation and network protocols
are neglected, the network imposes the highest latency on
our system design. To achieve a lower latency – which is an
unavoidable necessity for highly interactive visualizations – this
latency needs to be reduced further, although both technical
as well as physical limitations set boundaries to the possible
improvements.
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