
1

A SIMULATION METHODOLOGY FOR THE PREDICTION OF
SPMD PROGRAMS PERFORMANCE

P.M.A. Sloot, J.F. de Ronde, M. Beemster, L.O. Hertzberger.
Parallel Scientific Computing and Simulation Group

Department of Computer Science - University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam

The Netherlands

ABSTRACT

A simulation methodology for predicting the performance
of data parallel (SPMD) programs on parallel and distributed
platforms is presented. The proposed methodology
comprises a parameterised description of the applications
as well as the target machines. An integrated simulation
procedure estimates the time complexity of the SPMD
application given a well defined hardware platform and
predicts the execution behaviour.

1. INTRODUCTION

Migration of large sequential applications to parallel and
distributed platforms is yet still in its infancy. This is
largely due to the fact that industry (that has many large
applications of great social and economical relevance) is
reserved towards spending great amounts of money and
labour on adjusting their codes to parallel distributed
memory machines (DMM) while it is not clear that the
effort spent will pay off eventually. A simulation
environment that can predict the performance of SPMD
applications on parallel DMM is of crucial importance in
the decision phase of such large projects. In addition it can
assist in choosing the most suitable parallel platform for a
specific application (e.g. a workstation network or a
massively parallel monolith). We have developed a
technique that can predict data parallel program performance
by means of parameterisation of the distributed memory
machine as well as the data parallel application. The
Amsterdam Simulation Toolkit (AST) consists of several
tools to obtain these parameterisations and to perform
simulations using formal machine and application
descriptions (that is mapping the parameterised application
to the parameterised machine) The AST is partially
developed within an ESPRIT III project (Sloot and Reeve
1993).

2. THE AMSTERDAM SIMULATION
TOOLKIT (AST)

The AST consists of several tools:
1) A machine database that to a high level of detail
describes DMM characteristics.
2) A symbolic application description language in which
the SPMD code of interest can be expressed.
3) A mapping procedure to find an optimal mapping of
segmented data to a specific processor topology.
4) A simulation environment that integrates these three
items to obtain an estimation of both the time complexity
of the application and the execution behaviour.
An application simulator is used to support the
development of the several tools (deRonde, Sloot et al).

domain
decomposed
data

Symbolic
application
description

Mapping
procedure

machine database

Simulation &
Evaluation

C
ostfunction

Figure I: overview of the AST

2.1 THE MACHINE DATABASE

A model that can represent (up to a predefined level of
detail) the characteristics of (virtual) DMM has been
developed. It is validated by means of timings on real
machines (e.g. a Parsytec 512 T800 transputer platform
(Parsytec 1991)). For the development of the machine
model the machine parameters that influence the
performance of data parallel applications had to be
identified:

1) communication parameters: e.g. hardware and virtual
topologies, latencies, throughput, start-up time for a
message and routing (allocating) processes.
2) processor parameters: e.g. time constants for addition,
multiplication, division etc... for different numeric types
and flow control performance (branch costs-> pipeline
efficiency).
3) memory parameters and caching: in the model it is
assumed that enough memory is available. This in order to
avoid modelling of I/O during execution. Memory speed
(instruction and operand fetch) is incorporated in other
parameters. Cache speeds are possible to time but cache
size is impossible to be used without execution of target
applications.
4) "programming models": We consider SPMD
programming models supported by PVM (Sundaram 1990),
EXPRESS (Parasoft 1992) and MPI (Lusky 1993) Of these
message passing environments the most cost intensive
primitives must be modelled: spawn (create a process),
synchron i se (synchronisation between processors),
send/receive (message to/from neighbours), multi-cast (send
a message to a group).
5) I/O is not modelled.

2

2.2 THE SYMBOLIC APPLICATION
DESCRIPTION

We describe SPMD programs by the following functional
hierarchy:

1) Statement block level
2) Control flow level
3) Data locality level

1) The time complexity of a so called statement block is
given by cumulation of all the individual time complexities
occurring in the block. For example an expression like:

a = a + b * c
has a time complexity of Tassign + Tmultiplication +
Taddition. The corresponding actual time measures in such
formal expressions are filled in by the machine database
(the parameterised machine description).

2) The control flow level introduces indeterminability into
the time complexity description. In general the execution
path taken, given a specific set of input parameters, is
only determinable by means of explicit execution. We
approach this level in a (quasi) statistic manner by
describing the possibility of branching in some specific
direction along the execution graph. Branch directions in
if..then..else constructs are specified by probabilities P1,
P2..,.PN (where we assume the number of branching
directions = N) whereas in loop constructs the number of
unkown iterations is presented by a stochastic variable that
behaves according to a (user defined) probability density
function.
So a parameterised description on these two levels leads to
a mixture of the time-complexities of basic statement
blocks, probabilities and stochastic variables.

3) The locality level describes the fact that some fraction X
of data is involved in communication and the remaining
part (1-X) is not. In case of static domain decomposition
these fractions are constant. In case of programs where
these fractions are forced to change dynamically it is
necessary to introduce a stochastic description.

2.3 THE MAPPING PROCEDURE

The mapping procedure aims to allocating data parallel
processes on a multi-processor system such that the time
complexity function T is minimised. In other words T is a
cost function that has to be optimised using some generic
optimisation algorithm such as simulated annealing or
genetic algorithms. Assuming that an optimal workload
balancing over the processes already has been achieved this
implies that the communication effort between processors
has to be minimised: Neighbouring processes should be on
(physically) neighbouring processors.

2.4 THE SIMULATION ENVIRONMENT

The symbolic description of the program of interest
consists of stochasts and statement block time
complexities. A specific actualisation of all the parameters
present will result in a number that represents the time
consumption for the specific parameter actualisation.
It is quite probable that parameters that were initially
described as stochasts turn out to be dependent on input
parameters in a simple straightforward manner. For example

loop boundaries. It is necessary to identify these
parameters and replace them by their absolute behaviour
instead of describing them in a stochastic manner.
Furthermore identification of dominant parameters in the
time complexity formula and the actual program part they
originate from is required. If necessary the program expert
can supply background information on the behaviour of
such parts. For example some loop boundary can turn out
to have a well determinable stochastic behaviour dependent
on several input parameters.
The symbolic description therefore has to allow for
reversibility: given a certain parameter the program part
from which it originates must be tractable.

machine database

data locality level
control flow level

statement block level

message passing environment

Figure II: parameterised application mapped
on parameterised machine

machine-application interface

3. CONCLUSIONS

The simulation methodology introduced offers the
possibility to estimate the time consumption of SPMD
applications on arbitrary parallel distributed memory
machines. All tools are in their final stage of development
and validation. Pilot experiments indicate that this
technique can supply us with reasonable estimates of data
parallel programs performance. We feel that this toolset
can have a significant contribution in lowering the barrier
for industry to use DMM. Our current work concentrates on
validating the toolset by porting a very large complex
crashworthiness code to a massively parallel machine.

Acknowledgements:

Part of this research is funded by the Commission of
European Communities within the Esprit Framework under
project number: NB 6756. The excellent contributions of
Berry van Halderen and Arjan de Mes to the implementation
of the toolset are gratefully acknowledged.

References:
R. Lusky and B. Knighten.1993. "Minutes of the Message
Passing Interface Forum" Dallas, Texas. May 12 -14 1993.

Parasoft 1992. "Express User Guide version 3.2"

Parsytec 1991. "Parsytec GC, technical Summary"
version1.0

J.F de Ronde and P.M.A. Sloot 1993. "The Application
Simulator". Technical Report: CAMAS- TR-2.3.1.1. ESPRIT
III. (May).

P.M.A. Sloot and J. Reeve. 1993. "The CAMAS
Workbench". Technical Report: CAMAS- TR-2.1.1.2
ESPRIT III. (March).

V.S. Sundaram. 1990. "PVM a framework for parallel
distributed computing " Concurrency and practice, vol.2(4)
(December): 315-339

3

