
CAMAS-TR-2.2.4.2
Progress Report

COMMISSION OF THE EUROPEAN COMMUNITIES

ESPRIT III

PROJECT NB 6756

CAMAS
COMPUTER AIDED MIGRATION OF APPLICATIONS SYSTEM

CAMAS-TR-2.2.4.2

SAD/PARASOL II Progress report

Date : SEPT.1993
Rev. 2.0

ACE - U. of AMSTERDAM - ESI SA - ESI GmbH - FEGS - PARSYTEC -
U. of SOUTHAMPTON.

Progress Report SAD/PARASOL II (march 15 - sept. 14 1993)
By Jan de Ronde, Berry van Halderen, Marcel Beemster and Peter Sloot.

University of Amsterdam
September 1993

Contents:

1-Introduction
2-Development of the SAD formalism
2.1 - Research focus
2.2 - Data Dependent control information
2.3 - The reduction/compression phase
3 - PARASOL II: Simulations/Experiments
3.1 - The undeterminable X
4 - Implementation issues: F2SAD
4.1- How to get from Fortran to a SAD description
4.2- Structure of the front-end of the f2sad compiler
4.3- The semantics and back-end of the f2sad compiler
4.4- Status

Appendix :
-Abstracting the SAD formula of an F77 kernel by hand
-Additional information to the SAD formula: Data Dependent control
-Mathematical manipulations on the SAD formula

1. Introduction
The above mentioned period effort has been spent on the design and development of
several tools (boxes in the overview picture below) that the University of Amsterdam
contributes to the CAMAS Workbench.

F2SAD

SAD parameter

initialisation

SAD

PARASOL II

(simulations/

experiments)

Machine

model in

data

structure
parasol I

intellectual

guesses

Time
estimates

MAP
seg.

data

data dependent
control
information

IDA

reductions/
compressions

reducable SAD

reductions/compr.

f77 spmd
program

input

DDT
allocation

2. Development of the SAD formalism.
The development of SAD (Symbolic Application Description) which is the mathematical
formalism that describes the time complexity of sequential and SPMD Fortran programs
has been one of the focal points this period. Firstly it was recognized that a mathematical
formalism describing such programs in order to represent a time complexity description of
the program, should consist of three separate levels:

We describe SPMD programs by the following functional hierarchy:

1) Statement block level (fixed complexities, machine dependent)
2) Control flow level (control dependent complexities)
3) Data locality level (data distribution dependent complexities)

2.1 Research focus
Investigations have been done on a formalism that can capture the first two levels in a
description. Therefore several typical Fortran 77 programs/program parts have been
analysed by hand. As the example in the appendix shows the first two levels of the
functional hierarchy allow a generic description of the form:

SAD = Pki

ki

K i

∏
mi

Mi

∏i=1

N∑ X
mi

S[Block(i)]

Where N is the number of isolated statement blocks (containing no control flow
characteristics whatsoever), Pki

 describes the ki -th nested branch probability of the total of
Ki branches in which S[Block(i)] is nested. Analogously Xmi

 describes the loop-count of the
mi--th nested loop of a total of Mi loops in which S[Block(i)] is nested. S[Block(i)] is the
time complexity of an isolated statement block labelled i .

1) The time complexity of a so called statement block S[Block(i)] is given by cumulation of
all the individual time complexities occurring in the block. For example an expression like:
a = a + b * c

has a time complexity of Tassign + Tmultiply + Taddition

The corresponding actual time measures in such formal expressions are filled in by the
machine database (the parameterised machine description).

2) The control flow level introduces indeterminability into the time complexity description.
In general the execution path taken, given a specific set of input parameters, is only
determinable by means of explicit execution. We approach this level in a (quasi) statistic
manner by describing the possibility of branching in some specific direction along the
execution graph. Branch directions in if..then..else constructs are specified by probabilities

P1, P2 , P3 Pn (where we assume the number of branching directions = n) whereas in
loop constructs the number of unkown iterations is presented by a stochastic variable X. So
a parameterised description on these two levels leads to a mixture of the time-complexities
of basic statement blocks, probabilities and stochastic variables.

3) The locality level describes the fact that some fraction of data is involved in
communication and the remaining part is not. So far only the first two levels have been
considered in the SAD formalism. How exactly the 3rd level will eventually appear in the
time complexity formula is part of future work. This will among others depend on how the
MAP subtask will evolve.

2.2 Data dependent control information
As is clear from the overview picture PARASOL II plays a key-role in the Workbench
structure. What in fact happens in PARASOL II is actualisation of the parameters present in
the SAD formula. The machine parameters are obtained from the machine database
developed under Parasol I and have a clear origin (some existing or what-if hardware
architecture that is). The other parameters originating from control flow and -when the 3rd
level will be concerned- from data locality also need to be initialized in order to obtain a
time complexity measure for the program of interest.The question of how to actualize these
parameters is to be answered in PARASOL II.
Control dependency information will be substracted from the parse tree generated in the
F2SAD transformation sequence. The ideas behind the implementation of such an
automatic transformation tool will be discussed in one of the paragraphs below.
Furthermore in the appendix an idea of what control dependencies will be substracted will
be given. At this point obviously the Interprocedural Dependency Analyser of Southampton
can be brought into the picture.

2.3 The reduction/compression phase
Given a general F77 numerical application. It can consist of thousands of lines of code and
consequently performing F2SAD on it will lead to a formal expression that is out of
proportion. Therefore in order to have an expression that is manageable it has to be reduced

in size by means of compression and reduction techniques. One can think of purely
mathematical manipulations as the "Simplify" operation in Mathematica or reductions
based on information obtained from data dependency analysis. For some examples of such
reduction and compression operations see the appendix. The mathematical manipulation
package Mathematica offers the possibility of performing reduction/compression
techniques and several reductions/compressions can also automatically be performed within
the F2SAD tool The reduction task consists of manipulating the SAD formula using
control dependency information (and probably also expert programmers knowlegde) to do
realistic actualisations of the parameter set that comprises the SAD formula. So the
manipulations are reductions/compressions and actualisation of parameters. Both have to
be done using some mathematical manipulation package. The solution to problems arising
in actualizing the parameters are part of future research. The paragraph below will shed
some light on the status of the simulation strategies as they have been developed until now.

3 PARASOL II: simulations/experiments
The goal of PARASOL II is : given the following:
- A reduced SAD description of a data parallel (SPMD) Fortran 77 application
- A Machine parameterization
- A Mapping tool which optimizes the data distribution

to obtain a prediction of the time consumption of the application given a spectrum of input
values and machine parameters (PARASOL I). This would mean in the idealized case: Fill
in the various input parameters to the SAD expression and the time complexity given the
specific actualization rolls out of the black box. Due to the undeterminability of control
flow this procedure will only work for generic applications when in fact the code is
executed. Program execution is undesirable for a variety of reasons:

-Probably performance prediction on a "What-if machine", or "still-to-be-built "machine is
desired so that execution is not possible.
-The time complexity response on "What-if" input may be of interest.
-Simulation allows for the exploration of different coding strategies for core codes without
actually being forced to implement every strategy explicitly.

3.1 The undeterminable X
The SAD contains a number of specific parameters originating from the three hierarchical
levels. Some of these parameters will depend trivially on input parameters (e.g. problem
size = N) others will depend on the entire program evolution (e.g. the stop condition in a
matrix inverting algorithm). The parameters with trivial dependendce are to be identified
using control dependency analysis . The problematic ones are to be approximated using
stochastic modelling. That is: based on characteristic features of a parameter (of
importance) that can be supplied by the expert programmer or that can be derived from the
source code (reversibility) the respons of such a parameter on variations δ

�

I of the input
vector

�

I can be approximated/modelled.

Notational:
�

I represents the list of input parameters that is given as ordinary input to enable
an application to execute. E.g. : the elements of a matrix and a vector when the calculation
of a matrix vector product is concerned. Formally we shall denote the list with input values
as:

�

I = {i1, i2 ,....., in}

In general the parameters X or P that describe loop and branching constructs in the SAD
are functions of the input vector

�

I : X = f (
�

I). What is desired is an estimation of this
function, as the only way to get the exact representation of X = f (

�

I) is execution of
substantial parts of the application. Furthermore,some measure telling how probable this
function tells the "truth" is convenient. E.g. for a specific X you can show that within a
deviation of δf (

�

I) the used function is approximated. In other words:

X = f (
�

I) + δf (
�

I)

The picture below gives an idea how this undeterminable behaviour would appear in the
time complexity function when varying one of the input parametersi, the other paramters
kept constant. The error bar characterizes the uncertainty for specific i that the time
complexity formula T (= SAD formula) has at this point. These error bars are present for
the whole spectrum of i.

T(i)

i

error bar

So X is in general a function which depends on the input vector
�

I . Suppose we have a row
of M functions

f1
� f2

� f3
� fM

�

I() where f 	 g means: the function f acting on the function g

that consecutively operate on

I . The complexity of these functions determines if you can
calculate the response that these functions cause in a simple manner or that one has to flee
to approximation methods. One can roughly discriminate several grades of complexity to
obtain knowlegde about the dependence of a parameter X on the input list:

- X directly corresponds to some element i of
�

I : X = i
- X depends on

�

I via a simple function and this function is tractable via some data
dependency analysis.
- X depends on

I via a function that is not simple but corresponds to the computation of
significant parts of the application.

The problem with approximating the responses using some deviation function lies in the
fact that in general the sequence of functions that act on the specific input list changes
when a fluctuation δ

�

I is superposed on
�

I . So a continous variational solution method is not
applicable to this problem (see picture below for elucidation). Formally one could write this
down as:

im → T(im)

im +δim → T(im +δim)

T(im +δim) - T(im) = ?

where T denotes the time complexity formula and im denotes an input variable which is
varied and is an element from the input list :

�

I = {i1, i2 ,....., in}

The ? denotes the fact that a small variation in the input can lead to small variations in the
response function and to large non-linear jumps. So it is clear that the problem of how to
model/estimate response functions in this area is part of future research.

depending on the input list another trajectory through
the function tree below is actualized

f
g1

h1

h2

g2
w1

w2

T(I) = f(g1(h1(I)))

T(I+δI)= f(g1(h2(I+δI)))

T(I+δI')= f(g2(w1(I+δI')))

T(I+δI'')= f(g2(w2(I+δI'')))
Input lists

The picture above visualizes the non linear behaviour of the respons to variations of the
input list. f, g1, g2, h1, h2, w1, w2 are functions.

4. Implementation issues : F77 to SAD

4.1 How to get from Fortran to a SAD description

To obtain a SAD description of a Fortran program, a transformation of the source code has to
be done. This translation process, implemented as a compiler, takes Fortran 77 source code
augmented with communication primitives for the SPMD programming model as input and
builds the SAD formula with the corresponding data dependent control flow and additional
information about the program.

In the section below the general structure of such a translator is discussed. We then turn to the
implications of trying to process Fortran. Finally we turn to the way the translation process
can be implemented.

4.2 Structure of the front-end of the f2sad compiler

Fortran was the first high level programming language ever developed. Unfortunately, during
the development of this early programming language a number of decisions were made which
turned out to be bad practise in computer language design. Therefore the standard tools (lex &
yacc) for compiler engineering are not directly applicative to Fortran 77.

There are several difficulties with Fortran which must be solved before standard tools can be
used. These problems will be discussed in the software layer where they are solved.

’yacc’ generated

syntax analyzer

’lex’ generated

lexical analyzer

preprocessor

file

reader

SPMD F77

parse-tree

characters

filtered characters

stream of tokens

f2sad front-end

The structure of the front-end of the f2sad compiler is structured as shown in the above
figure, which is comparable to the generic model of a compiler [1]. The source program --
Fortran 77 code-- is read using a separate module. This module performs tasks like buffering,
keeping track of the file position, line and column numbering. It also contains routines for
returning errors back to the user.

This stream of characters is then filtered using a preprocessing module. Its output is a
modified stream of characters where the following set of problems is solved.

- If a line starts with a label then it will be preceeded by a special indicating character.
This will enable the lexical analyzer to distinguish these labels from integers, which
in turn is needed in the syntactic analyzer.
Labels after goto's and other jump statements are not preceeded by this indicator
because the syntactic analyzer does not need to know this.

- All spacing characters except newlines are removed. Many programming languages
have a free layout (spacing characters may be inserted freely between tokens), Fortran
unfortunately takes this even one step further: spacing characters are insignificant. If
you separate the characters within the keyword if with a space (making i f) the
compiler should still recognize it as one keyword if instead of two variables i and f.

- Continuation lines are glued together to produce one line.
- Comment lines are deleted.
- Since Fortran officially only defines uppercase letters,the compiler is so friendly to

convert lowercase letters to uppercase.
- Note that this preprocessor module breaks the direct correlation between the line

numbers in the inputand the output. We want however to be able to go back from the
generated SAD desciption to the source code, therefore this correlation needs to be
restored. This is solved by the module which reads the file. The semantics desciption
is able to refer to the file position of the tokens using a seperate information passing
mechanism.

The lexical analyzer for Fortran is written using lex, a tool for generating lexical analyzers
using regular expressions. Because the preprocessor has made some changes to the source
input it is now possible to tokenize the input. The lexical analyzer not only converts
characters into tokens, it also stores the lexical value (lexeme) for later use.

The following irregular behaviour patterns were necessary in the implementation of the
lexical analyzer (using lex).

- If a label indicator is encountered in the input stream then the next token is a label
instead of an integer. The label indicator character is further ignored.

- Within certain contexts, the context-free parser cannot distinguish an assignment to
an array element from a function definition statement (this is discussed further on).
Therefore the lexical analyzer indicates, on request of the parser, by inserting a
special token whether this statement is an assignment or a function definition
statement. It can determine this by looking if the identifier in the statement is defined.
If the identifier is indeed defined to be an array then we are dealing with an
assignment, otherwise with a function definition or an error.

- As said earlier; Fortran considers white spaces as insignificant. Suppose we have the
input if foo. This should be tokenized into two tokens, the keyword if and the
identifier foo. Unfortunately, because spaces are deleted and lex always tries to match
the longest token it will consider if foo as one identifier iffoo. By checking prefixes
of lexemes we can detect keywords, bypass the ``longest matching token'' rule and
consider the remaining characters as part of the next token.

4.3 The semantics and back-end of thef2sad compiler

The yacc generated syntax checker, is normally used to make a parse tree. A parse tree
represents the input source program in a structured way, in the same way the grammar is
written down. Yacc does not automate the building of the parse tree, but allows you to
execute actions on the nodes of the abstract parse tree. In this way you can build the parse tree
yourself.

The translation process of the compiler can be viewed as the rewriting process of the parse
tree into a tree representing the output. The output can then be generated by a traversal of the
latter tree.

There are tools (e.g. [2]) available which assist in coupling the syntax checker and a parse tree
manipulator, but most tools have the disadvantage of defining their own lexical and syntax
analyzing languages. These restrict the classes of languages that can be handled and since
Fortran parsing needs some special tuning of the lexical and syntax analyzers this presents a
severe problem. It is possible to overcome these problems by creating an additional layer or
by using a self-made tool.

The rewriting proces of the Fortran parse tree into the SAD formula is not extremely difficult,
the only complication is that Fortran may contain goto statements, possibly creating so called
spagetti code.

The data dependent control flow contains information by which the control flow can be
described in terms of its input parameters. Generating this data dependent control flow
information about the program is a more serious problem which still needs a lot of our
attention.

Modelling and analyzing data dependent control flow interacts with analyzing data
dependency. Therefore techniques used within the IDA (interprocedural dependency
analyzer) tool may be very similar to techniques we need to use. Information generated by the
IDA tool may enhance the data dependent control flow information. Future interaction
between SOTON and the UoA therefore seems fruitful.

4.4 Status

The lexical- and syntax desciptions, the file reader and the preprocessor for Fortran are
finished. The tool for building and rewriting the parse tree is nearing completion (in the
testing phase). The description of the semantics of Fortran is currently being constructed.
All finished parts are tested, but can only be tested thoroughly when the entire tool has
been completed.

Bibliography
[1] Alfred V. Aho and Ravi Sethi and Jeffrey D. Ullman Compilers, Principles, Techniques
and Tools Addison-Wesley 1986
[2] The TXL programming language, Syntax and informal semantics, Version 7

APPENDIX

Abstracting the SAD Formula from a Fortran 77 kernel by hand
In this appendix the SAD formalism describing the first two levels of the functional
hierarchy of Fortran 77 (or C) will be derived using a scientific Fortran 77 kernel extracted
from the so called Livermore Loops. This example will clarify the SAD expression that is
chosen to describe the functional structure of Fortran 77 programs. Several F77 examples
have been transformed to SAD by hand and these have shown the direction in which the
F2SAD tool currently is being developed.
The Livermore Loop we're handling as an example of F2SAD by hand has the following
form:

 PROGRAM SADTST

 PARAMETER (NN = 100, LOOP = 100)

 DIMENSION X(NN), V(NN)

 N = 1000

 DO 23 J = 1, NN

 V(J) = EXP ((REAL(J) - 50.)**2) / 5.0

 23 X(J) = EXP ((REAL(J) - 50.)**2)

 DO 200 L = 1, LOOP

 II = N

 IPTNP = 0

222 IPNT = IPNTP

 IPNTP = IPTNP + II

 II = II / 2

 DO 2 K = IPNT + 2, IPNTP, 2

 I = I + 1

 2 X(I) = X(K) - V(K) * X(K-1) - V(K+1)*X(K+1)

 IF(II. GT. 1) GO TO 222

200 CONTINUE

 END

BLOCK(1)

BLOCK(2)

BLOCK(3)

BLOCK(4)

BLOCK(6)

BLOCK(5)

The Livermore Loop under consideration descends from an ICCG (Incomplete Cholesky
Conjugate Gradient). The basic statement blocks (level 1) are pointed out. Writing out the
SAD expression by hand leads to:

SAD(program) = S[Block(1)] + X1S[Block(2)] + X2{S[Block(3)] + X3{S[Block(4)] + X4{S[Block(5)]} + S[Block(6)]}}

or

SAD(program) = S[Block(1)] + X1S[Block(2)] + X2S[Block(3)] + X2 X3{S[Block(4)] + S[Block(6)]} + X2 X3X4S[Block(5)]

Where S[Block(i)] denotes the cumulation of the atomic time complexities in the statement
blocks. For example: S[Block(1)] = Taic : That is the time to assign an integer constant.

The other statement blocks have the same form though of course in large statement blocks
much more different atomic times are involved.
Further:

X1 corresponds to the loop boundary of the DO 23 -- 23 loop
X2 corresponds to the loop boundary of the DO 200 -- 200 loop
X3 corresponds to the loop boundary of the IF(II.GT.1) GOTO 222 loop
X4 corresponds to the loop boundary of the DO 2 -- 2 loop

We see that loop boundaries (originating from do loops or from if..goto loops) are
parameterized in the SAD expression. Further investigations of generic Fortran 77
constructs have shown that an equivalent parameterization can be applied for handling the
presence of if..then...elseifendif constructs in Fortran 77. The various branching
directions offered in a branch construct are modelled by chances that describe the
probability that a branch in a certain direction is realised. It turns out that an analogous
nested expression arises as in the above expression. Furthermore it became clear that the
probability and the loop boundary parameters could be handled as normal factors in a
factorized expression. Therefore after having done several F2SAD actions by hand we can
state that as long as the code is structured (no spaghetti) a symbolic expression for such
programs can be realized and furthermore the general form for such a SAD expression is:

SAD = Pki

ki

K i

∏
mi

Mi

∏i=1

N∑ X
mi

S[Block(i)]

Where :Pki
 describes the ki -th nested branch probability of the total of Ki branches in which

S[Block(i)] is nested. Analogously Xmi
 describes the boundary of the mi-th nested loop of a

total of Mi loops in which S[Block(i)] is nested.

Additional information to the SAD formula: Data Dependent control
As we consider the parameter set X1, X2 , X3 , X4{ } we notice the following:

X1= NN ----> Input
X2 =LOOP---> Input
X3 =function of N:=f(N) ----> N :----->Input
X4 =function of a function of N: = g(f(N))--> N:----->Input
So as was stated above: every parameter in the SAD expression depends on the input in a
simple or less trivial manner.

Given a specific input set all parameters can exactly be calculated if the functions f and g
are relatively simple. In the case of the example above some algebraic effort can determine
the forms of the two functions f and g. As an example we'll derive the form for f:

From the program shown above we note that the loop boundary that X3 describes depends
on a function which we call F. This function has the following formwhen it acts on its
argument II (double I not Pi).

F(II) =
II
2







Where the floor function acting on argument a : a  means: return the truncation of the real
value a . So 1.5 = 1, 2  = 2 etc.....

Further analysis by hand shows that the value of X3 which depends on the initial value of
II (= N) can be calculated using the condition:

Fm II() > 1

Fm+1 II() ≤ 1



 where Fm = Fm−1(F) and m is integer

The value of m that satisfies the above condition is m = 2log N()  = f(N).

Analagously such types of dependency analyses can be performed for all parameters that
have no direct correspondence with an input parameter. Of course very often the back
tracing of such control flow dependencies will turn out to be execution in reverse order of
the program. That is wat we do not want. How to circumvent such problems is part of work
to be done in PARASOL II.

Mathematical manipulations of the SAD formula
Now several possible reduction/compression techniques on the SAD formula will be
discussed.

A Simplify action:
Generally the SAD expression for an arbitrary statement block S[Block] is a cumulation of
all the atomic time consumptions in the block. What a Simplify action (such as offered by
the mathematical manipulation package Mathematica) does is accumulating the times in the
expression of the same name. Example:

S[Block] = T1 + T2 + T1 + Tl

Simplify[S[Block]] → 3Tl + T2

and for a general expression we can write

S[Block] = Ti + Tj + Tk +....+Tl

Simplify[S[Block]] → α
i
Ti

i
∑

where Ti , Tj , Tk etc.... denote the various atomic machineparameters .

On control level: Suppose you have an expression

P1 * S[Block(i)] + P2 * S[Block(j)]:

where
S[Block(i)] = α iTi

i
∑

S[Block(j)] = β jTj
j

∑
and these statement blocks -although not related in any manner-turn out to satisfy the
condition that the difference in their explicit time complexities is less than some small

value ε , then one can compress the total expression to a form in which only one statement
block describing the time complexities of both original blocks remains:

if: β j
j

∑ Tj − α iTi
i

∑ << ε ⇒ p1 + p2()S[Block(i, j)]

Another example of a possible reduction: given two statement blocks that are added
together; contraction of the prefactors of the atomic times is another compression/reduction
step:

S[Block(j)] + S[Block(i)] = β i
i

∑ Ti + α iTi
i

∑ → (α i + β i)Ti
i

∑

Or suppose the expression below arises:

X * S[Block(j)] + S[Block(i)]

When during simulations in PARASOL II X turns out not to be affected significantly by
fluctuations δ

�

I of the input vector
�

I . Then the variable nature of X can be omitted and
replaced by a constant. Consecutively one of the reduction techniques that are mentioned
above can be used to reduce the expression further.

