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Abstract  

A simulation methodology for predicting the performance of sequential programs as well as data parallel (SPMD) 
programs on parallel and distributed platforms is presented. The proposed methodology comprises a parameterised 
description of the applications as well as the target machines. An integrated simulation procedure estimates the time 
complexity of the (SPMD) application given a well-defined hardware platform and predicts the execution behaviour. 
The methodology has been actualised in terms of a toolset currently under development at the University of 
Amsterdam. 
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1. Introduction 

Migration of large sequential applications to 
parallel and distributed platforms is yet still in its 
infancy. This is largely due to the fact that indus- 
try (that has many large applications of great 
social and economical relevance) is reserved to- 
wards spending great amounts of money and 
labour on adjusting their codes to parallel dis- 
tributed memory machines (DMM), while it is not 
clear that the effort spent will pay off eventually. 
A simulation environment that can predict the 
performance of SPMD applications on parallel 
DMM is of crucial importance in the decision 
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phase of such large projects. In addition it can 
assist in choosing the most suitable parallel plat- 
form for a specific application (e.g. a workstation 
network or a massively parallel monolith). We 
have developed a technique that can predict data 
parallel program performance by means of pa- 
rameterisation of the distributed memory ma- 
chine as well as the data parallel application. The 
Amsterdam Simulation Toolkit (AST) consists of 
several tools to obtain these parameterisations 
and to perform simulations using formal machine 
and application descriptions (i.e. mapping the 
parameterised application to the parameterised 
machine). The AST is partially developed within 
the CAMAS (ESPRIT III) project [5]. The aim of 
this project is to develop an integrated work- 
bench that can help in migrating existing sequen- 
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tial Fortran 77 programmes to massively parallel 
platforms. 

Apart from the AST there are three tools 
being developed within the CAMAS workbench 
by the University of Southampton: 
(i) An interprocedural dependency analyser 

(IDA) which aids in unraveling dusty deck 
Fortran 77 codes. 

(ii) A domain decomposition tool (DDT) explic- 
itly usable to decompose arbitrary finite ele- 
ment meshes as for instance used in dynami- 
cal car crash simulations. 

(iii) A static performance estimator (SPE) which 
statically estimates execution times of (sub- 
set) High Performance Fortran data parallel 
programs. 

Below the AST will be discussed in more detail. 

2. The Amsterdam Simulation Toolkit (AST) 

The AST consists of several tools (Fig. 1): 
(1) A machine database that to a high level of 

detail describes DMM characteristics. 
(2) A symbolic application description language 

in which the SPMD code of interest can be 
expressed. 

(3) A mapping procedure to find an optimal 
mapping of segmented data to a specific pro- 
cessor topology. 

(4) A simulation environment that integrates 
these three items to obtain an estimation of 
both the time complexity of the application 
and the execution behaviour. 

An application simulator is used to support the 
development of the several tools [4]. 

dom~ I 
decomposed X....~_ I Mapping 

oro o  o , 
data , l  ~ ~1 

Symbolic' ! I~---I 51mulatl°nd¢ I 71 Ev uation I ----J 
application ] ac~i 
description J 

I m e database J 

Fig. 1. Overview of the AST. 

2.1. The machine database 

A model that can represent (up to a prede- 
fined level of detail) the characteristics of (vir- 
tual) DMM has been developed. It is validated by 
means of timings on real machines (e.g. a Parsytec 
512 T800 transputer platform [3]). For the devel- 
opment of the machine model the machine pa- 
rameters that influence the performance of data 
parallel applications had to be identified: 
(1) Communication parameters: e.g. hardware 

and virtual topologies, latencies, throughput, 
start-up time for a message and routing (al- 
locating) processes. 

(2) Processor parameters: e.g. time constants for 
addition, multiplication, division etc. for dif- 
ferent numeric types and flow control perfor- 
mance (branch costs ~ pipeline efficiency). 

(3) Memory parameters and caching: in the model 
it is assumed that enough memory is avail- 
able. This in order to avoid modelling of I / O  
during execution. Memory speed (instruction 
and operand fetch) is incorporated in other 
parameters. Cache speeds are possible to time 
but cache size is impossible to be used with- 
out execution of target applications. 

(4) 'Programming models': we consider SPMD 
programming models supported by PVM [6], 
EXPRESS [2] and MPI [1]. Of these message 
passing environments the most cost intensive 
primitives must be modelled: spawn (create a 
process), synchronise (synchronisation be- 
tween processors), send~receive (message 
to/from neighbours), multi-cast (send a mes- 
sage to a group). 

(5) I / O  is not modelled. 

2.2. The symbolic application description 

We describe SPMD programs by the following 
functional hierarchy: 
(1) statement block level, 
(2) control flow level, 
(3) data locality level. 
(1) The time complexity of a so called statement 

block is given by cumulation of all the individ- 
ual time complexities occurring in the block. 
For example an expression like: 
a = a + b * c  
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has a time complexity of Tassign + Tmulti- 
plication + Taddition. The corresponding ac- 
tual time measures in such formal expressions 
are filled in by the machine database (the 
parameterised machine description). 

(2) The control flow level introduces indeter- 
minability into the time complexity descrip- 
tion. In general the execution path taken, 
given a specific set of input parameters, is 
only determinable by means of explicit execu- 
tion. We approach this level in a (quasi) 
statistic manner by describing the possibility 
of branching in some specific direction along 
the execution graph. Branch directions in 
i f . . .  t hen . . ,  else constructs are specified by 
probabilities (P1, P2, . . . .  P N  (where we as- 
sume the number of branching directions = 
N), whereas in loop constructs the number of 
unknown iterations is presented by a stochas- 
tic variable that behaves according to a (user 
defined) probability density function. 

So a parameterised description on these 
two levels leads to a mixture of the time-com- 
plexities of basic statement blocks, probabili- 
ties and stochastic variables. 

(3) The locality level describes the fact that some 
fraction of data is involved in communication 
and the remaining part is not. In case of static 
domain decomposition these fractions are 
constant. In case of programs where these 
fractions are forced to change dynamically it 
is necessary to introduce a stochastic descrip- 
tion. 

2.3. The mapping procedure 

The mapping procedure aims to allocate data 
parallel processes on a multiprocessor system such 
that the time complexity function T is minimised. 
In other words, T is a cost function that has to be 
optimised using some generic optimisation algo- 
rithm such as simulated annealing or genetic al- 
gorithms. Assuming that an optimal workload 
balancing over the processes has already been 
achieved this implies that the communication ef- 
fort between processors has to be minimised: 
neighbouring processes should be on (physically) 
neighbouring processors. 
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Fig. 2. Parameterised application mapped on parameterised 
machine. 

Fig. 2 depicts the various layers out of which 
the simulation toolkit is constructed. 

2.4. The simulation environment  

The symbolic description of the program of 
interest consists of stochasts and statement block 
time complexities. A specific actualisation of all 
the parameters present will result in a number 
that represents the time consumption for the 
specific parameter actualisation. 

It is quite probable that parameters that were 
initially described as stochasts turn out to be 
dependent on input parameters in a simple 
straightforward manner, e.g. loop boundaries. It 
is necessary to identify these parameters and 
replace them by their absolute behaviour instead 
of describing them in a stochastic manner. Fur- 
thermore, identification of dominant parameters 
in the time complexity formula and the actual 
program part they originate from is required. If 
necessary the program expert can supply back- 
ground information on the behaviour of such 
parts. For example some loop boundary can turn 
out to have a well determinable stochastic be- 
haviour dependent on several input parameters. 

The symbolic description therefore has to al- 
low for reversibility: given a certain parameter 
the program part from which it originates must 
be tractable. 

3. Conclusions 

The simulation methodology introduced offers 
the possibility to estimate the time consumption 
of SPMD applications on arbitrary parallel dis- 
tributed memory machines. All tools are in their 
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final stage of development and validation. Pilot 
experiments indicate that this technique can sup- 
ply us with reasonable estimates of data parallel 
programs performance. We feel that this toolset 
can have a significant contribution in lowering 
the barrier for industry to use DMM. Currently 
the toolset is being validated by porting a very 
large complex crashworthiness code to a mas- 
sively parallel machine. 
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