
1'1 .S F.~I E I¢ Future Generation Computer Systems 10 (1994) 305-308

FGCS
~ U T U P , E

(tgEN E R A T I (~ N

(~ O M P U T E R
~ Y S T E M S

The CAMAS workbench: Computer Aided Migration
of Applications System

J.F. de Ronde *, P.M.A. Sloot, M. Beemster, L.O. Hertzberger
Parallel Scientific Computing and Simulation Group, Department of Computer Science - University of Amsterdam, Kruislaan 403,

1098 SJ Amsterdam, The Netherlands

Abstract

A simulation methodology for predicting the performance of sequential programs as well as data parallel (SPMD)
programs on parallel and distributed platforms is presented. The proposed methodology comprises a parameterised
description of the applications as well as the target machines. An integrated simulation procedure estimates the time
complexity of the (SPMD) application given a well-defined hardware platform and predicts the execution behaviour.
The methodology has been actualised in terms of a toolset currently under development at the University of
Amsterdam.

Key words: Performance estimation; Massively parallel platforms; SPMD

1. Introduction

Migration of large sequential applications to
parallel and distributed platforms is yet still in its
infancy. This is largely due to the fact that indus-
try (that has many large applications of great
social and economical relevance) is reserved to-
wards spending great amounts of money and
labour on adjusting their codes to parallel dis-
tributed memory machines (DMM), while it is not
clear that the effort spent will pay off eventually.
A simulation environment that can predict the
performance of SPMD applications on parallel
DMM is of crucial importance in the decision

* Corresponding author.

phase of such large projects. In addition it can
assist in choosing the most suitable parallel plat-
form for a specific application (e.g. a workstation
network or a massively parallel monolith). We
have developed a technique that can predict data
parallel program performance by means of pa-
rameterisation of the distributed memory ma-
chine as well as the data parallel application. The
Amsterdam Simulation Toolkit (AST) consists of
several tools to obtain these parameterisations
and to perform simulations using formal machine
and application descriptions (i.e. mapping the
parameterised application to the parameterised
machine). The AST is partially developed within
the CAMAS (ESPRIT III) project [5]. The aim of
this project is to develop an integrated work-
bench that can help in migrating existing sequen-

0167-739X/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0 1 6 7 - 7 3 9 X (9 4) 0 0 0 2 5 - A

306 J.F. de Ronde et al. / Future Generation Computer Systems 10 (1994) 305-308

tial Fortran 77 programmes to massively parallel
platforms.

Apart from the AST there are three tools
being developed within the CAMAS workbench
by the University of Southampton:
(i) An interprocedural dependency analyser

(IDA) which aids in unraveling dusty deck
Fortran 77 codes.

(ii) A domain decomposition tool (DDT) explic-
itly usable to decompose arbitrary finite ele-
ment meshes as for instance used in dynami-
cal car crash simulations.

(iii) A static performance estimator (SPE) which
statically estimates execution times of (sub-
set) High Performance Fortran data parallel
programs.

Below the AST will be discussed in more detail.

2. The Amsterdam Simulation Toolkit (AST)

The AST consists of several tools (Fig. 1):
(1) A machine database that to a high level of

detail describes DMM characteristics.
(2) A symbolic application description language

in which the SPMD code of interest can be
expressed.

(3) A mapping procedure to find an optimal
mapping of segmented data to a specific pro-
cessor topology.

(4) A simulation environment that integrates
these three items to obtain an estimation of
both the time complexity of the application
and the execution behaviour.

An application simulator is used to support the
development of the several tools [4].

dom~ I
decomposed X....~_ I Mapping

oro o o ,
data , l ~ ~1

Symbolic' ! I~---I 51mulatl°nd¢ I 71 Ev uation I ----J
application] ac~i
description J

I m e database J

Fig. 1. Overview of the AST.

2.1. The machine database

A model that can represent (up to a prede-
fined level of detail) the characteristics of (vir-
tual) DMM has been developed. It is validated by
means of timings on real machines (e.g. a Parsytec
512 T800 transputer platform [3]). For the devel-
opment of the machine model the machine pa-
rameters that influence the performance of data
parallel applications had to be identified:
(1) Communication parameters: e.g. hardware

and virtual topologies, latencies, throughput,
start-up time for a message and routing (al-
locating) processes.

(2) Processor parameters: e.g. time constants for
addition, multiplication, division etc. for dif-
ferent numeric types and flow control perfor-
mance (branch costs ~ pipeline efficiency).

(3) Memory parameters and caching: in the model
it is assumed that enough memory is avail-
able. This in order to avoid modelling of I / O
during execution. Memory speed (instruction
and operand fetch) is incorporated in other
parameters. Cache speeds are possible to time
but cache size is impossible to be used with-
out execution of target applications.

(4) 'Programming models': we consider SPMD
programming models supported by PVM [6],
EXPRESS [2] and MPI [1]. Of these message
passing environments the most cost intensive
primitives must be modelled: spawn (create a
process), synchronise (synchronisation be-
tween processors), send~receive (message
to/from neighbours), multi-cast (send a mes-
sage to a group).

(5) I / O is not modelled.

2.2. The symbolic application description

We describe SPMD programs by the following
functional hierarchy:
(1) statement block level,
(2) control flow level,
(3) data locality level.
(1) The time complexity of a so called statement

block is given by cumulation of all the individ-
ual time complexities occurring in the block.
For example an expression like:
a = a + b * c

J.F. de Ronde et al. / Future Generation Computer Systems 10 (1994) 305-308 307

has a time complexity of Tassign + Tmulti-
plication + Taddition. The corresponding ac-
tual time measures in such formal expressions
are filled in by the machine database (the
parameterised machine description).

(2) The control flow level introduces indeter-
minability into the time complexity descrip-
tion. In general the execution path taken,
given a specific set of input parameters, is
only determinable by means of explicit execu-
tion. We approach this level in a (quasi)
statistic manner by describing the possibility
of branching in some specific direction along
the execution graph. Branch directions in
i f . . . t hen . . , else constructs are specified by
probabilities (P1, P2, P N (where we as-
sume the number of branching directions =
N), whereas in loop constructs the number of
unknown iterations is presented by a stochas-
tic variable that behaves according to a (user
defined) probability density function.

So a parameterised description on these
two levels leads to a mixture of the time-com-
plexities of basic statement blocks, probabili-
ties and stochastic variables.

(3) The locality level describes the fact that some
fraction of data is involved in communication
and the remaining part is not. In case of static
domain decomposition these fractions are
constant. In case of programs where these
fractions are forced to change dynamically it
is necessary to introduce a stochastic descrip-
tion.

2.3. The mapping procedure

The mapping procedure aims to allocate data
parallel processes on a multiprocessor system such
that the time complexity function T is minimised.
In other words, T is a cost function that has to be
optimised using some generic optimisation algo-
rithm such as simulated annealing or genetic al-
gorithms. Assuming that an optimal workload
balancing over the processes has already been
achieved this implies that the communication ef-
fort between processors has to be minimised:
neighbouring processes should be on (physically)
neighbouring processors.

data localit~ level
control flow level

statcn~nt block level

Imessage passm~ envtronmen
I machine database

Fig. 2. Parameterised application mapped on parameterised
machine.

Fig. 2 depicts the various layers out of which
the simulation toolkit is constructed.

2.4. The simulation environment

The symbolic description of the program of
interest consists of stochasts and statement block
time complexities. A specific actualisation of all
the parameters present will result in a number
that represents the time consumption for the
specific parameter actualisation.

It is quite probable that parameters that were
initially described as stochasts turn out to be
dependent on input parameters in a simple
straightforward manner, e.g. loop boundaries. It
is necessary to identify these parameters and
replace them by their absolute behaviour instead
of describing them in a stochastic manner. Fur-
thermore, identification of dominant parameters
in the time complexity formula and the actual
program part they originate from is required. If
necessary the program expert can supply back-
ground information on the behaviour of such
parts. For example some loop boundary can turn
out to have a well determinable stochastic be-
haviour dependent on several input parameters.

The symbolic description therefore has to al-
low for reversibility: given a certain parameter
the program part from which it originates must
be tractable.

3. Conclusions

The simulation methodology introduced offers
the possibility to estimate the time consumption
of SPMD applications on arbitrary parallel dis-
tributed memory machines. All tools are in their

308 ZF. de Ronde et al. ~Future Generation Computer Systems 10 (1994) 305-308

final stage of development and validation. Pilot
experiments indicate that this technique can sup-
ply us with reasonable estimates of data parallel
programs performance. We feel that this toolset
can have a significant contribution in lowering
the barrier for industry to use DMM. Currently
the toolset is being validated by porting a very
large complex crashworthiness code to a mas-
sively parallel machine.

Acknowledgements

Part of this research is funded by the Commis-
sion of European Communities within the Esprit
Framework under project number: NB 6756
(CAMAS). The excellent contributions of Berry
van Halderen and Arjan de Mes to the imple-
mentation of the toolset and furthermore the
helpful suggestions of the CAMAS consortium
(ESI-Paris, ESI-Germany, ACE-Nether lands,
University of Southampton, FEGS-England,
Parsytec-Aachen) are gratefully acknowledged.

References

[1] R. Lusky and B. Knighten, Minutes of the message passing
interface forum, Dallas, TX (May 12-14, 1993).

[2] Parasoft, Express user guide version 3.2, 1992.
[3] Parsytec, Parsytec GC, technical summary version 1.0,

1991.
[4] J.F. de Ronde and P.M.A. Sloot, The application simula-

tor, Technical report: CAMAS-TR-2.1.1.2 ESPRIT III,
May 1993.

[5] P.M.A. Sloot and J. Reeve, The CAMAS workbench,
Technical Report, CAMAS-TR-2.3.1 ESPRIT III, March
1993.

[6] V.S. Sundaram, PVM a framework for parallel distributed
computing, Concurrency and practice 2(4) (Dec. 1990)
315-339.

,|.F. de Rondo studied Computational
Physics at the University of Amster-
dam (graduated March 1992). Since
September 1992 he has been PhD.
student at the Department of Mathe-
matics and Computer Science within
the Parallel Scientific Computing and
Simulation Group.

