
This article has been submitted to the HPCN Europe 1995 conference in Milano, Italy.

MERMAID

Modelling and Evaluation Research in MIMD ArchItecture Design

J. van Brummen A.D. Pimentel T. Papathanassiadis P.M.A. Sloot L.O. Hertzberger

Dept. of Computer Systems
University of Amsterdam�

brummen,pimentel,theopapa � @fwi.uva.nl

Abstract

The Mermaid project focuses on the construction of simula-
tion models for MIMD multicomputers in order to evaluate
them and to give estimates of the system’s performance. A
multi-layered approach was adopted in which three levels can
be distinguished. The application level describes application
behaviour in an abstract manner, unrelated to any hardware
or architecture specifics. Subsequently, the generation level
translates these application descriptions to a hardware depen-
dent trace of operations that drives the simulators. And finally,
the architecture level consists of the trace-driven architecture
simulation models.

Preliminary simulation results show that, despite the high
abstraction level at which is simulated, good accuracy can be
obtained.

1 Introduction

As the complexity of MIMD multicomputer architectures
grows, design options increase and time and budget
become more constrained, it is widely recognized that
MIMD design should include simulation techniques. With
simulation, new architectures can be evaluated and tested
long before the actual hardware is built. The evaluation
of design options can either focus on functional or perfor-
mance behaviour. In the scope of the Mermaid project
MIMD architectures are simulated from a performance
perspective. The Mermaid simulations are performed
by means of discrete event simulation and follow the
approach of [Muller93].

Two guiding principles were formulated at the begin-
ning of the project. The level of architecture abstraction
should allow simulation within reasonable time, prefer-
ably avoiding low-level (bus-cycle) emulation. And, ar-
chitecture choices are important design options which
must be simulated without too much remodelling effort.

The (distributed memory) MIMD architectures mod-

elled within Mermaid are the GCel and PowerStone
[Langhammer93] architectures of Parsytec. The GCel ar-
chitecture is based on the Inmos T805 transputer, whereas
the initial PowerStone architectures use multiple Mo-
torola PowerPC’s for computation and multiple T805
transputers for communication on a node. Since most of
the PowerStone architectures are still in design phase, an
important research objective of the Mermaid project is
to evaluate these architecture designs to be able to give
feedback to the designers. To this purpose, the existing
GCel architecture is used for validation of the simulation
models.

1.1 The Mermaid approach

Performance simulation of MIMD architectures requires
an environment in which a continuous development and
evaluation of application and architecture models is pos-
sible. It requires different levels of abstraction and con-
figuration. Depending on one’s research objective the
focus of performance simulation might either be at the
application level, or at the architecture level, or some-
where in between. It is for this reason that a multi-layered
approach was adopted.

Application behaviour is best described in terms unre-
lated to any hardware or architecture specifics, whereas
architectural behaviour is best described in terms of its
components and its interactions.

Bringing these two behaviours together to fully co-
operate requires an intermediate level where much of our
research has taken place. It includes research into compu-
tational models, communication models, programming
models, programming languages, operating system sup-
port, and network support. It bridges the gap between
architecture and application, and strives for efficient and
optimal architecture design and utilization.

1

The remainder of this article is structured in the fol-
lowing manner. First, the simulation environment of
Mermaid is described serving as a blue-print for the
overall project structure. Distinction is made between
computation and communication, resulting in two mod-
els of different abstraction level describing computational
and communication behaviour. Thereafter the architec-
ture simulation models are described as single-node re-
spectively multi-node models. These models have been
implemented in the object oriented simulation language
Pearl [Muller93]. Then the different levels of application
modelling are described. Subsequently, some prelimi-
nary simulation results are presented. Finally, conclu-
sions are drawn and future work is discussed.

2 Simulation environment

To evaluate MIMD parallel systems, a parameterized al-
gorithmic model was created. It is capable of supplying
the simulator with a (stochastic) trace of events, called
operations, representing processor activity, memory I/O,
and communication message passing. Figure 1 depicts
the simulation scheme.

Application level

Generation level

Architecture level

Stochastic appl.
description

Annotated appl.

Stoch. generator Ann. translator

Sim. models

GCel parameters

PowerStone 1 params.

PowerStone .. params.

Figure 1: Simulation scheme.

In this scheme, simulation of an application load on an
architecture takes place at three different levels:

� Application level: This level contains descriptions
and profiles of applications used for input to our
simulation model. This is done by either stochasti-
cally describing the behaviour of applications using
probabilities or by (manually) instrumenting real ap-
plications with annotations.

The application descriptions at this level may range
from full-blown parallel programs to small bench-
marks to be used to tune and validate the machine
parameters of the simulation model.

� Generation level: At this level a trace of operations
driving the simulation models is generated from the
application descriptions at the application level. The

generation process exploits knowledge of the target
architecture and runtime model in order to tune the
operation traces.

There are two types of generators, called the
stochastic generator and the annotation transla-
tor. The stochastic generator extracts information
on the behaviour of applications from the probabilis-
tic application descriptions to produce a “realistic”
stochastic trace of operations.

The annotation translator produces a trace of oper-
ations according to the manually inserted annota-
tions at the application level. In comparison with
the stochastic generator, this generator can model
the application’s behaviour more accurately. On
the other hand, manually instrumenting applications
with annotations is tedious for large applications. In
that case, the stochastic generator can be more flex-
ible and easier to use. Therefore, the annotation
translator is only used for validation of the simula-
tion model (benchmarks) and for initial application
modelling.

The use of annotations and the annotation translator
is further elaborated upon in section 4.1.

� Architecture level: This level consists of (operation)
trace-driven simulation models. To allow simula-
tion within reasonable time, these simulation models
do not fully emulate the hardware and only limited
state information is stored during simulation. For
example, the contents of a memory is not modelled
and simulated caches only hold addresses (tags), not
data.

Because of the limited state information, the sim-
ulators can not provide feedback to the generation
process. In other words, there exists an “off-line”
relationship between the generation level and the ar-
chitecture level [Muller93]. This restriction implies
that the generators can not make time-dependent de-
cisions, like scheduling decisions in a parallel appli-
cation. So only operation traces that are not affected
by simulation results can be generated.

Currently, the architecture level includes the GCel
model and the PowerStone One model. Every model
has a set of machine parameters that have been cal-
ibrated by either published information or bench-
marking.

2.1 Restrictive to the SPMD model

As a starting point for our research we have chosen
the SPMD (Single-Program, Multiple-Data) programming
model [Gupta91] because it is considered to be a very

2

realistic model when programming a massively parallel
MIMD platform. In this model every MIMD node executes
a single common program, exploiting implicit parallelism
by focussing on its share of the multiple data.

Applications adhering to the SPMD programming
model mainly exhibit a coarse-grain interaction of com-
putation and communication. The large parts of com-
putation within these applications are interchanged with
periods of communication.

Besides the SPMD programming model, support for ex-
plicit parallelism by means of multi-threading [Birrell89]
is another established aspect in parallel programming.
However, multi-threading does not mix with the SPMD

paradigm: threads may be scheduled to run in parallel on
different processors, thereby disobeying the SPMD pro-
gramming model.

An additional problem of multi-threading is that it is
difficult to model. The reason for this is that multi-
threading becomes important from a performance point
of view when latencies can be hidden. This makes the
thread scheduling depend on the hardware’s resources
and latencies, which implies that the application’s oper-
ation trace would be affected by the simulation results.
This would invalidate our approach of an off-line gener-
ated application trace.

Therefore, it was decided to limit the application be-
haviour at the application level to the SPMD programming
model. Explicit parallelism like multi-threading of ap-
plications is not supported.

2.2 Validation

The purpose of the simulation is to forecast performance
figures of a number of successive PowerStone architec-
tures for a characteristic application load. The machines
are under development and are not, or only very limited,
available for the purpose of validation. Full comparison
of simulation and execution results can only be done for
the existing GCel architecture, and in retrospect for the
successive PowerStone machines after completion.

The purpose of reflecting on validation must be a con-
tinuous effort during our simulation work as greater ac-
curacy and wider scope is strived for. A simulation of
a parallel application running on a MIMD architecture
with a lot of interacting hardware components on one
node and the node configured in a certain communica-
tion topology, is a difficult task. It is for this reason that
a process of stepwise refinement is preferred. With this
approach a degree of accuracy can be established for a
growing subset of operations and a growing complexity
of architecture.

When modelling MIMD architectures using operation
traces to drive the simulators, three areas can be distin-

guished where validation is necessary:

� Does stochastic generation of a synthetic trace of
operations resemble the behaviour of real applica-
tions?

� Is the translation from annotations to operations
accurate for a given target processor and runtime
model?

� Does the architecture model resemble the latencies
of the real operations under different loads of oper-
ations?

To verify the accuracy of the stochastic generation, the
performance critical parts of a typical application can be
adapted to generate an exact algorithmic operation trace
of the application that exactly follows its data and instruc-
tion access patterns. From this trace of operations the
amount and locality of the application’s local and global
data access, its instruction access, and its communication
behaviour is quantified. The resulting quantification can
then be used during or after stochastic generation as a
semantic accuracy check.

On the other hand, the stochastic generator does not
always have to strictly operate within the range of ap-
plication behaviour, as there is the additional interest in
performance degradation and its successive bottle-neck
analysis under very extreme architecture loads.

Validating the translation of annotations to operations
can be done by a comparison of generated assembly code
and generated simulation operations, if a compiler for
the target processor is available. Specific compiler op-
timizations can be detected, which may result in tuning
the annotations or even in adjusting the translator.

For the validation of the architecture models a suite of
annotated benchmarks producing high quality operation
traces can be simulated, after which the results are com-
pared with executed performance results. These bench-
marks can be simple and only concentrate on rudimentary
architecture operations. Once these operations have been
correctly calibrated, validation can be extended to cover
larger and more complicated benchmarks or applications.

2.3 Level of simulation

Trace-driven simulation can be performed at different
abstraction levels. Depending on the research objec-
tive, the operation traces can either be simulated at the
level of bus-cycles, instructions, basic blocks or even
tasks [Hartel93]. Accuracy improves by descending in
abstraction level, but this results in an increased compu-
tational intensity.

3

To arrive at the proper abstraction level of architec-
ture simulation and to establish its interface of supported
operations the following ground rules were adhered to:

� The operations must abstract from the nitty-gritty
details of the processor architecture’s instruction
sets.

� The operations must be abstract enough to inter-
face to the architecture model of the GCel as well
the architecture models of the different PowerStone
architectures.

� It is necessary that the operations abstract from
programming languages and computational models,
and are capable of representing the applications at
the algorithmic level.

2.3.1 Computation versus communication

Because of the coarse-grained interaction of communica-
tion and computation within SPMD applications and the
fact that latencies of computation and communication
are so diverse in terms of architecture modelling, simula-
tion of application behaviour was split into two different
models. Both of the models define their own set of op-
erations. The first model is typical for the application’s
computational behaviour and models at an abstraction
level in between bus-cycles and instructions. This model
drives the second model by providing it with information
about computation at task level. The second model is
typical for the application’s communication and synchro-
nization behaviour. This model operates at task level for
computation and at instruction level for communication.
It implements the computational tasks, derived from the
computational model, as delays between communication
requests.

This approach results in a hybrid model which is only
valid if the performance of computation and communi-
cation do not influence each other. This is a reason-
able assumption for state-of-the-art SPMD programming
in general.

2.3.2 Basic simulation operations

Computational instructions of both the Inmos T805 and
the PowerPC processors, the computational building
blocks of respectively the GCel and PowerStone archi-
tectures, do not modify memory. Memory access is only
possible through explicit loads and stores, or through in-
struction fetching. Thus, it makes sense to define the
architecture of our simulation model as a RISC load-store
architecture [Hennessy90] with memory-to-register and
register-to-memory transfers.

The operations available to the computational simula-
tion model are shown in Table 1.

load(memory-type, address)
store(memory-type, address)
load([f]constant)
add(arithmetic-type)
sub(arithmetic-type)
mul(arithmetic-type)
div(arithmetic-type)
cmp(arithmetic-type)
...
ifetch(address)
branch

Table 1: Computational operations

The operations can be subdivided into three categories.
The first category consists of operations for transferring
data between the architecture’s registers and memory hi-
erarchy. Parameters of these operations indicate the type
of memory reference and, if appropriate, the memory
location.

The second category of operations are arithmetic func-
tions that solely operate on registers. The associated pa-
rameter indicates the type on which the function should
be performed. This can be integer, single precision or
double precision floating point. Besides the arithmetic
operations shown in Table 1 there are some additional
geometric operations.

Finally, the third category of operations are associated
with instruction fetching. With the ifetch operation, an
instruction fetch from memory location address can be
modelled.

As the simulation will not emulate the operations, the
simulator will not be aware of loops and branches. The
application trace generator evaluates loop and branch-
conditions, and generates the operation trace for the in-
vocated control flow. This implies that every invocation
of a loop body is individually traced and leads to recurring
addresses of instruction fetches.

The branch operation models the target processor’s
branching latency and triggers its branch prediction
scheme if available.

The basic communication operations that act as input
for the communication model relate to the functionality
that is provided by the operating system running on both
the GCel and PowerStone machines. This operating sys-
tem, called PARIX [Parsytec92], uses virtual links as the
basic means of communication.

4

send(message-size, destination)
recv(source)
asend(message-size, destination)
arecv(source)
compute(duration)

Table 2: Communication operations

The operations available for the communication model
are listed in Table 2. The source and destination identifi-
cations are based on the PARIX numbering scheme of its
two-dimensional grid communication architecture.

There are both operations for synchronous and asyn-
chronous communication. Currently, the asynchronous
communication operations are not yet implemented. Ad-
ditional to the support for communication, the computa-
tional requirements within the communication model are
modelled at task level by means of the compute operation.

3 Architecture modelling

As application behaviour divides in computational be-
haviour and communication behaviour, two different ar-
chitecture models of the MIMD platform are required.

The architecture model for computation involves one
single-node of the MIMD platform with its processors,
caches, bus, and memory. Simulation will be performed
in between instruction and bus-cycle level.

The architecture model for communication imple-
ments the MIMD node in a very abstract manner as just
a processor and a router. The nodes are linked together
resulting in a multi-node model to reflect the platform’s
interconnection scheme. The router corresponds with
the platform’s physical communication topology, which
is a two-dimensional

�����
grid for the Parsytec archi-

tectures. Simulation of computational requirements is
performed at task level, while communication is simu-
lated at the lower instruction level.

3.1 Single-node architecture

The architecture models for the simulation of computa-
tion are generic in the sense that they can be parameter-
ized to represent several node architectures. The model
is shown in Figure 2.

The base node model for computation is capable of
modelling both the GCel and the PowerStone node archi-
tectures without making dramatic changes. It has been
configured for the GCel which is based on the T805 trans-
puter, and for the PowerStone One which is based on a

Processor

L2 Cache

Bus

MEMORY

CPU

L1 Cache
Communication

Figure 2: The base single-node model.

combination of Motorola PowerPC 601 and T805 trans-
puter technology. The same model will be used for future
PowerStone architectures.

The CPU component simulates the CPU of the node
architecture. It supports an operation set, as described in
section 2.3.2, which is more abstract than the real ma-
chine instruction set. The operations are associated with
fixed execution latencies. The CPU must be configured
with an operation set, operation latencies in clock cycles,
the clock speed, the on-chip registers, and specific details
on pipelined and super scalar processing.

The L1-cache simulates the first level cache of the
memory hierarchy. It implements a cache coherency
protocol if multiple CPUs are configured on one node.
Both the configurations as a separated instruction/data
cache and a unified cache are possible. Other parameters
are the cache size, its associativity, its block replacement
strategy, its write strategy, and the latencies associated
with cache hits, misses, and replacements. Additionally,
instead of cache it can also be modelled as on-chip static
memory.

The bus simulates the main bus of the node architec-
ture as a simple forwarding scheme implementing bus
arbitration upon multiple access. Depending on node
configuration it is placed either between L1-cache and
L2-cache, or between CPU and L1-cache. It is param-
eterized with bus-width, bus clock-rate, and arbitration
details.

The L2-cache simulates the second level cache of the
memory hierarchy if available in the architecture. It sup-
ports the cache coherency protocol of the L1-cache if
required. It can be configured either as separated instruc-
tion and data cache, as unified cache, or as stream cache
[MacroTek93]. Parameters include cache size, associa-
tivity, block replacement or stream pre-fetching, and the
latencies associated with hits, misses, and replacements
or pre-fetches.

The memory simulates a simple DRAM memory. It is
parameterized with memory size, memory refresh rate,

5

and memory access latencies.
The communication component models the process-

ing of communication requests. The computational node
behaviour as defined in previous sections does not in-
volve this component. For this reason the component is
currently ignored. However, it could become important
in the future at the level of board design when different
implementation choices for communication processing
must be considered. This is especially true for the Pow-
erStone architectures with its diversity of communication
hardware components.

3.2 Multi-node architecture

The communication load of the SPMD application results
in a communication trace for each node of the MIMD

platform. The main objectives of this approach are:

� It allows for all kinds of load balancing scenario’s by
means of different compute operations on different
nodes.

� It allows for all kinds of synchronization scenario’s
because every node can communicate with every
other node.

� It models the routing latency of non-neighbourhood
communication.

� It models the possible impact of routing overhead
on the node’s computational processing.

The required architecture model to simulate these
traces has to model the communication hardware and
software at each MIMD node. The node model consists
of a processor and a router. It connects to maximal four
full-duplex communication links. Processor and router
don’t have to be implemented by different hardware com-
ponents. The GCel uses its T805 transputer both for
computation and routing, whereas the PowerStone One
architecture uses two PowerPC’s for computing and four
transputers for routing. The two PowerPC’s on one node
in the PowerStone One can either be modelled as two
separate nodes or as one node in which the multiple Pow-
erPC’s are abstracted away. The node model is shown in
Figure 3.

The nodes are configured as a two-dimensional
� � �

grid by connecting all neighbouring nodes with the full-
duplex links. The processor object of the node reads
the incoming operation trace, processes the compute
operations, and dispatches the communication requests
to the router object. The router object dispatches in-
coming communication requests from the processor to
multiple packets if required. Further, the router ob-
ject routes the resulting and all other incoming packets

operation trace
Processor

Node

Router

Link 1

Link 2

Link 3

Link 4
Out

In

Out

In

Out

In

Out

In

Figure 3: The base multi-node model.

through the two-dimensional grid using the determinis-
tic XY-routing strategy [Ni91] with store-and-forward
switching. The router object can be replaced to im-
plement the deterministic geometric routing scheme of
[Badouel91]. Router replacement allows the model to be
adapted for a range of other routing strategies like those
of [Annot87, Mooij89, Schwiebert93, Ni91] in order to
evaluate their performance impact.

The platform’s routing strategy is just one example of
architecture behaviour which is implemented in software
and which must be taken care of. The way in which
messages are split-up in different packets and whether
and how messages are synchronously or asynchronously
sent. These are all examples of implementation defined
behaviour of the MIMD platform’s message passing layer.

Node Node

NodeNode

Link

Link

Link

Link

Figure 4: The base topology model for communication.

The communication topology is automatically gener-
ated by configuring

� � �
nodes and connecting the nodes

with the appropriate uni-directional connections. Pairs of
two uni-directional connections of opposite direction be-
tween two nodes implement the node’s full-duplex com-
munication links. The configuration is demonstrated in
Figure 4.

6

GCel node GCel node

GCel nodeGCel node

Figure 5: The GCel interconnections.

 PS1 node PS1 node

 PS1 node PS1 node

Figure 6: The PowerStone One interconnections.

3.2.1 GCel grid architecture

The GCel communication architecture consists of linking
T805 transputers in a two-dimensional

� � �
grid. The

T805 transputer is responsible for both computation and
communication which implies that routing overhead has
its impact on computation. Figure 5 shows the single
transputer links between the nodes. The GCel commu-
nication model is parameterized with the packet size,
and with the T805’s link setup, link transmission, packet
routing, and packet store-and-forward latencies.

3.2.2 PowerStone One grid architecture

Figure 6 shows the PowerStone One communication
architecture with its two dimensional

� � �
grid with

four T805 transputer links between neighbouring nodes.
PARIX regards the four T805 transputer links as four sep-
arate

� � �
grids. Messages are split-up in packets which

are divided over the four grids. The packet protocol on
every grid layer remains the same. In this way PARIX

maintains its transputer implementation model while in-
creasing communication capacity.

The PowerStone One communication model is param-
eterized with the packet size, with the T805’s link setup
and packet routing latency, but with a factor 4 down-
scaled T805 transmission and store-and-forward latency
because of the four T805’s working in parallel.

4 Application modelling

Most of the SPMD programs that run on MIMD plat-
forms are scientific applications dealing with large multi-
dimensional floating-point arrays. Modelling these ap-
plications by means of operation traces implies that these
traces will have to contain the application’s characteris-
tics.

Generation of operation traces using annotation tech-
niques and exploitation of knowledge of the target archi-
tecture and runtime model should automatically lead to
an accurate view of application behaviour. However, the
use of the stochastic generator for producing application
loads is less trivial. In order to produce high quality
stochastic operation traces, care must be taken that the
generated traces reflect the application behaviour with
respect to:

� the amount and locality of instruction-fetches repre-
senting the application’s performance critical inner
loops,

� the mix of load, store, and computational operations
to represent the application’s characteristic opera-
tion mix,

� the amount and the locality of data loads and stores
on the stack representing scratch values of interme-
diate sub-expression and function results,

� the amount and the locality of data loads and
stores in global memory with respect to the applica-
tion’s single- or multi-dimensional global or static
floating-point arrays,

� the amount and locality of communication data and
the locality of communicating processes with re-
spect to processor topology,

� synchronization of data consuming processes and
data producing processes.

At the current stage of the project trace genera-
tion is only possible through annotation of applica-
tions. Formalisms that express application behaviour

7

using stochastic methods still need to be devised. Con-
sequently, the stochastic generator has not yet been de-
signed and implemented.

The remainder of this section describes the methods
used for application modelling by means of annotations.
Additionally, the idea of an SPMD communication model
is presented. Eventually, this model should be the basis
of all application’s communication behaviour modelling
within the Mermaid project.

4.1 Application modelling by means of
annotations

Instrumentation of applications to generate operation
traces can be performed automatically during compila-
tion of the application. Such an automatic instrumen-
tation of code with annotations is convenient. In fact,
doing this manually is a tedious job which can be easily
lead to mistakes. However, in this simulation project au-
tomatic instrumentation was not feasible. The reason for
this was two-fold: compiler sources were not available
for adaption, and more importantly the project targets
for simulation as a means of evaluating future processor
choices in an early stage without silicon or compiler be-
ing yet available. In this project this was typically the
case with the PowerPC processor.

4.1.1 Modelling computation

It was decided to restrict modelling of the computational
behaviour of an application to just those parts of the ap-
plication being computationally intensive. These parts
are often referred to as the kernel functions of the ap-
plication. They are an important ingredient to the over-
all performance estimate of the application. To achieve
speed-ups they are carefully optimized to avoid unnec-
essary overhead for function calls, loops, computations,
and memory references.

At the application level, these kernel functions are
manually instrumented with annotations that follow the
original control flow of the function and represents the
function’s memory and computational behaviour. The in-
strumentation is such that the kernel functions can either
be compiled for execution or for trace generation.

At the generation level, the annotations are translated
to a representation of basic operations. This transla-
tion is guided by a number of principles which must be
carefully adhered to. Every function variable used in a
kernel function has an entry in a table of function vari-
able descriptors that determines: whether the variable is
a function argument or a function automatic, the offset
in the stack-frame where the variable resides, whether

the variable is placed in a register or not, the type of the
variable. Register re-assignment of function variables
can be modelled by dynamically updating their descrip-
tors. When, for example, an annotation indicates that
a variable should be loaded, the generator will translate
this into one or more instruction fetches and appropri-
ate memory operations according the runtime model and
addressing capabilities of the targeted processor

4.1.2 Modelling communication

Annotations describing communication behaviour at ap-
plication level directly map onto the PARIX virtual-link
communication primitives. At the generation level, the
annotations are translated to the appropriate communica-
tion operations (listed in Table 2). These communication
operations reflect the architecture’s underlying physical
communication topology with its communication proces-
sors, interconnections and routing strategies.

Currently, only communication defined on the phys-
ical communication topology can be modelled. Sup-
port for modelling communication within application-
defined communication structures, called virtual topolo-
gies [Simon93, Rottger94], is not yet available. In order
to include such support, an extra translation step is re-
quired that translates the virtual communication requests
to physical communication requests. This translation
must be guided by a pre-established mapping of the vir-
tual communication topology on the platform’s physical
communication topology. Efficient mapping of virtual
topologies is a topic of on-going research [Rottger94].
For this reason, it might be more flexible to incorpo-
rate the mapping of a virtual topology as a configuration
parameter at generation level rather than including the
mapping algorithms.

4.2 The SPMD communication model

Modelling of communication that is strictly defined on
the architecture’s physical communication topology, as
described in the previous section, still reflects all of the
underlying hardware characteristics. By modelling vir-
tual communication topologies, these architectural de-
tails can more or less be hidden at the application level.
In this section, we will go one step further and present
an SPMD communication model that abstracts from all
kinds of explicit communication at the application level.
This model will be used as a basis for future develop-
ment of formalisms expressing application’s communi-
cation behaviour, both for the stochastic and annotation
approaches.

In the SPMD communication model, communication
behaviour of an application is modelled at the applica-

8

Single Program of SPMD instances

Architecture modelling

Communication modelling

Processor Array

Virtual Communication Topology

Physical Communication Topology

Multiple Data of SPMD instances

Figure 7: The SPMD Communication Model.

tion level in the form of an abstract description of data
requests without any details on communication primi-
tives or underlying communication architecture. The
generation level first translates these abstract requests to
communication operations for a virtual communication
topology. After that the virtual communication requests
are further translated to the basic communication opera-
tions at architecture level.

Figure 7 shows all three levels at which communica-
tion is expressed: the SPMD’s Multiple Data and Single
Program represent the application level, the virtual com-
munication topology represents the generation level, and
the physical communication topology and communica-
tion processors represent the architecture level.

4.2.1 Communication at application level

At application level the model regards communication
behaviour as an implicit result of accessing distributed
data in one shared address space. This approach is simi-
lar to that originally proposed by [Kennedy88] and later
adopted by the HPF-FORTRAN initiative [HPF-Forum93].
The parallel SPMD program consists of multiple SPMD

instances which will be called SPMD processes. The
SPMD processes share a single program which must be
accessible from every processor. The shared address
space encompasses data and instructions, and of which
the data segment represents virtually shared data. The
virtually shared data incorporates the SPMD application’s
distributed data. Distributed data can either be allocated
with the process itself or with one of the other processes.
Access to distributed data will result either in a memory
request or in a communication request depending on its
distribution scheme.

Figure 7 demonstrates the distribution of SPMD data
(black areas) filling up slots of the SPMD shared data

address space. Distributing SPMD data equally over mul-
tiple SPMD processes is not necessarily the case and will
depend on the balance of required computational power
versus the amount of processed data. If certain data
areas are very computationally intensive the SPMD pro-
grammer could decide to split these areas over multiple
processes producing a more balanced program behaviour
and higher throughput.

There are a number of issues that must be carefully con-
sidered when modelling the communication behaviour of
an application with the SPMD communication model:

� Access of distributed data needs to be synchronized
to avoid data hazards like RAW (read after write),
WAR (write after read), and WAW (write after
write) for the parallel executing SPMD processes;
these hazards are similar to the data hazards with
instruction pipelining [Hennessy90].

� Some computational models or applications imple-
ment the owner-computes-rule which specifies that
only one SPMD process owning the left-hand-side
of an expression computes its corresponding right-
hand-side and updates the left-hand-side’s data item
[Kennedy88].

� The compute-latencies must be derived from the
computational modelling, and must be embedded
in the communication model between the commu-
nication requests.

� Rather than instrumenting the application to gener-
ate a communication trace it might be more efficient
and flexible to model its communication behaviour
stochastically.

4.2.2 Communication at generation level

At generation level the model translates the SPMD

data requests to communication requests within a pre-
established virtual communication topology. At the level
of virtual communication the connectivity of the uncon-
strained point-to-point SPMD data request is reduced to
just those connections available within the virtual topol-
ogy. This means that virtual topology routing must be
introduced to service the ‘unconnected’ point-to-point
communication requests. Such virtual topology routing
can be implemented as a sequence of multiple virtual
topology communication requests.

After generating the virtual communication requests
the generation level takes care of translating them further
to physical communication requests. This translation
step is equal to the one described in section 4.1.2.

9

5 Experiments

Currently, the Mermaid project has come to a stage in
which the GCel models are to be validated. This can be
done by comparing the simulation results with real exe-
cution results on the GCel machine. After the validation
stage, experiments can be extended to include Power-
Stone One and future PowerStone architecture simula-
tions.

This section describes the results that were obtained
by simulating the architecture behaviour of the GCel ma-
chine for a number of benchmarks. The operation traces
were obtained by instrumenting the benchmarks with an-
notations. The GCel platform used for validation belongs
to the

��� 3 � (Interdisciplinary Center for Complex Com-
puter facilities Amsterdam) and consists of 512 T805
transputers.

Simulation results of architecture loads due to compu-
tation relate to a single node of the GCel platform and
simulation results of architecture loads due to communi-
cation relate to multiple nodes of the GCel.

5.1 Computation

The computational benchmarks that have been performed
are:

� Ddot, a double precision innerproduct

� Ddot4, a loop unrolled version of Ddot

� Daxpy, a double precision vector update

� The kernel function of the Elastic Light Scattering
simulation of [Hoekstra94] called dipole.

The ddot, ddot4 and daxpy benchmarks are scaled to an
array size

�
of 8192 doubles by performing 8192� outer

iterations in order to maintain precision at smaller array
sizes.

The measurements of the benchmarks are shown in
Figure 8. The three figures for the ddot, ddot4, and
daxpy measurements contain graphs for results of GCel
execution and simulation. The fourth graph shows the
error margin of simulation compared to execution. And
the results of the dipole benchmark are shown in Table 3.

GCel execution GCel simulation Error %

13664 13144 3.8

Table 3: Dipole results in micro seconds.

50

55

60

65

70

75

80

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
m
s
)

Array size (doubles)

real GCel ddot
sim GCel ddot

40

45

50

55

60

65

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
m
s
)

Array size (doubles)

real GCel ddot4
sim GCel ddot4

50

55

60

65

70

75

80

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
m
s
)

Array size (doubles)

real GCel daxpy
sim GCel daxpy

-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

64 128 256 512 1024 2048 4096 8192

E
r
r
o
r

%

Array size (doubles)

daxpy
ddot
ddot4

Figure 8: Results for ddot, ddot4, and daxpy.

10

The simulation model behaves reasonable well for
these benchmarks as can be seen from the error mar-
gins. Simulation of the more complex dipole benchmark
even gives a proper estimation.

The dip in the error margin graph of Figure 8 at an
array size of 4096 is probably caused by the modelled
(paged) DRAM, since we measured an increased number
of page-hits at this particular size.

5.2 Communication

The communication benchmarks that have been per-
formed are parameterized for a fixed message size of�

bytes and are scalable to any amount of processors
�

.
All benchmarks use synchronous communication.

One benchmark, called ping-pong, was used for fine-
grain validation of the communication model. It sends
a message of size

�
bytes from one node to another

node after which the message is sent back again. So
this benchmark measures the transmission time of single
messages. The other three benchmarks are somewhat
more sophisticated and are used for stress-testing the
communication model. These benchmarks iterate over a
pre-defined number of time slots and generate:

� A synchronized all-to-all communication load in
which every processor communicates with all other
processors resulting in

����� ���
1 � overall commu-

nication requests of
�

bytes per time slot.

� A synchronized point-to-point communication load
in which every processor communicates with one
fixed partner

���
1 times resulting in

�	�
� ���
1 �

overall communication requests of
�

bytes per time
slot. The partner tuples are formed by the map-
ping

�������� �
2 ��� � � mod

� � which result in approx-
imately equal-distanced routing paths. This bench-
mark will be referred to as equal-distance commu-
nication from now on.

� A synchronized point-to-point communication load
similar to that of the previous load but with a differ-
ent partner mapping

������ ���
1 � ��� � which results in

a much bigger variety of routing paths ranging from
minimal 1 or 2 to maximal 2

��� ���
1 � hops. This

benchmark will be referred to as unequal-distance
communication from now on.

The number of time slots starts at 600 (at a message size
of 64 bytes) and is scaled down for larger message sizes
according the formula: #time slots ��� 200

��������� �"!#��$&% '(�
128) .

Further, the communication benchmarks were limited to
at most 64 processors to avoid hazards like excessive
simulation time and excessive disk storage for the trace
files.

The results of the ping-pong benchmark are depicted
in Figure 9. The graph displays the error margin between
execution and simulation for several hop-counts (the dis-
tance of the message destination). With an error margin
that does not exceed the 7 percent, one can conclude that
the communication model is fairly accurate for simple
single-message modelling. The higher error margin for
small messages demonstrates that smaller messages ex-
perience greater influence of implementation dependent
optimizations.

The measurements of the other three benchmarks are
shown in Figure 10 for all-to-all communication, in Fig-
ure 11 for equal-distance point-to-point communication,
and in Figure 12 for unequal-distance point-to-point
communication. Each figure contains measurements of
the same benchmark for three different grid sizes. Mea-
surements for a specific grid combine the results for GCel
execution and simulation in one graph. The decreasing
execution (and simulation) time for increasing message
sizes is caused by the down-scaling, as mentioned earlier.
The fourth graph shows the error margin of simulation
compared to execution.

Communication performed by these three benchmarks
are examples of extreme cases, resulting in higher error
margins compared to the simple single-message bench-
mark. However, it remains the question whether real
SPMD applications exhibit such extreme communication
behaviour.

Figure 10 shows that simulation of the all-to-all
communication benchmark is reasonable accurate. The
smooth paths of the error margin curves emphasize the
regular routing load this benchmark produces.

The error margin graphs of the equal and unequal-
distance point-to-point benchmarks (Figures 11 and 12)
show a much more whimsical behaviour. This can be
explained by the more non-uniform routing loads these
two benchmarks produce. From Figure 11 can also be

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

32 64 128 256 512 1024 2048 4096 8192

E
r
r
o
r

%

Message size (bytes)

1 hop
2 hops
4 hops
7 hops

10 hops
14 hops

Figure 9: Ping-pong benchmark.

11

0

0.06

0.12

0.18

0.24

0.3

0.36

0.42

0.48

0.54

0.6

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 2x2
sim 2x2

0

1

2

3

4

5

6

7

8

9

10

11

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 4x4
sim 4x4

0

20

40

60

80

100

120

140

160

180

200

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 8x8
sim 8x8

-6

-4.5

-3

-1.5

0

1.5

3

4.5

6

7.5

9

10.5

64 128 256 512 1024 2048 4096 8192

E
r
r
o
r

%

Message size (bytes)

2x2
4x2
4x4
8x4
8x8

Figure 10: All-to-all communication.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 2x2
sim 2x2

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 4x4
sim 4x4

0

3

6

9

12

15

18

21

24

27

30

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 8x8
sim 8x8

-20

-15

-10

-5

0

5

10

15

20

25

30

64 128 256 512 1024 2048 4096 8192

E
r
r
o
r

%

Message size (bytes)

2x2
4x2
4x4
8x4
8x8

Figure 11: Equal-distance point-to-point communica-
tion.

12

0

0.08

0.16

0.24

0.32

0.4

0.48

0.56

0.64

0.72

0.8

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 2x2
sim 2x2

0

0.75

1.5

2.25

3

3.75

4.5

5.25

6

6.75

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 4x4
sim 4x4

0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

64 128 256 512 1024 2048 4096 8192

T
i
m
e

(
s
e
c
o
n
d
s
)

Message size (bytes)

real 8x8
sim 8x8

-13

-8.5

-4

0.5

5

9.5

14

18.5

23

27.5

32

64 128 256 512 1024 2048 4096 8192

E
r
r
o
r

%

Message size (bytes)

2x2
4x2
4x4
8x4
8x8

Figure 12: Unequal-distance point-to-point communica-
tion.

seen that the equal-distance benchmark only depends on
the used Y-dimension of the communication network.
This is because the communication in this benchmark is
only performed along the Y-axis.

6 Conclusions

Within the Mermaid project, a frame-work for MIMD ar-
chitecture modelling and simulation with the purpose of
performance evaluation has been developed. The off-line
generated operation traces that drive the simulators were
kept as abstract as possible to allow simulation within
reasonable time. Additionally, there has been strived for
high quality operation traces, since representative appli-
cation loads are paramount for architecture simulation
and successive evaluation of results.

The validation of the computational and communica-
tion architecture models by means of benchmarks demon-
strated that

� careful annotation of computational kernel func-
tions can produce representative application loads
that lead to accurate simulation.

� implementation issues cannot be ignored. An illus-
tration for this is the inefficient memory behaviour
imposed by the T805 transputer runtime model.

� the multi-node simulations at the level of packet
transmission for communication enable evaluation
of different message passing and routing strategies.

Validation of the architecture models is a continuous ef-
fort. The multi-node communication experiments gen-
erating more complex loads show a greater diversity of
error margins. During the project, results have improved
considerably and the project is currently in a state where
more random and irregular behaviour can be validated.

6.1 Future work

The work in the Mermaid project can proceed in many
ways. A description of future research and related devel-
opment is given at the application level, generation level
and architecture level of the project.

At the application level, a formalization must be con-
structed to stochastically describe application behaviour.
For communication, this formalism should be based upon
the SPMD communication model with its abstract data re-
quests.

Further, research can be performed on different strate-
gies for data replication and data migration that can be
expressed by an extension of the SPMD communication

13

model. These strategies might have an interesting impact
on the simulation of the generated multi-node architec-
ture load. This work requires that the formalisms and
associated tools of the SPMD communication model are
available, and that the generation level contains the fur-
ther translation to physical communication requests.

At the generation level, the stochastic generator must
be designed using the formalisms constructed at the ap-
plication level as guideline. This work would also require
the specification of a number of input samples, and the
validation of their resulted generated stochastic operation
stream.

Concerning the SPMD communication model, the
translation of SPMD implicit data requests to explicit com-
munication requests, and from virtual communication re-
quests to physical communication requests requires the
research of formalisms in which these behaviours can be
expressed. The translation should also handle synchro-
nization requests.

The work at architecture level can proceed along one
of more of the following routes. The single-node archi-
tecture models could be extended to include more com-
ponents to simulate the implementation choices for com-
munication request processing. Besides this, extensions
could also be made to improve the support for design
option evaluation of memory hierarchies.

Finally, overall system performance evaluation of the
future PowerStone architectures will be an important in-
gredient for future research. This work extends in a
general sense on the PowerStone One simulations, and
takes the current PowerStone Two and PowerStone Three
designs as input.

Acknowledgements

We would like to thank Marcel Beemster for his com-
ments on draft versions of the article and Alfons Hoekstra
for his contributions with respect to the Elastic Light Scat-
tering benchmark. We also want to express our gratitude
to Parsytec for their support.

References

[Annot87] J. K. Annot and R. A. H. van Twist. A Novel
Deadlock Free and Starvation Free Packet switching
Communication Processor. Proceedings PARLE 87,
1,2, 1987.

[Badouel91] D. Badouel, C. A. Wüthrich, and E. L. Fi-
ume. Routing Strategies and Message Contention on
Low-dimensional Interconnection Networks. Techni-

cal report, Comp. System Research Institute, Univer-
sity of Toronto, 1991.

[Birrell89] A. D. Birrell. An Introduction to Program-
ming with Threads. Technical report, Digital Systems
Research Center, 1989.

[Gupta91] R. Gupta. SPMD Execution of Programs with
Dynamic Data Structures on Distributed Memory Ma-
chines. Technical report, Department of Computer
Science, University of Pittsburgh, 1991.

[Hartel93] P. Hartel, R. F. Hofman, K. G. Langendoen,
H. L. Muller, W. G. Vree, and L. Hertzberger. A toolkit
for parallel functional programming. Technical report,
Dept. of Comp. Sys, Univ. of Amsterdam, 1993.

[Hennessy90] J. L. Hennessy and D. A. Patterson. Com-
puter Architecture A Quantitive Approach. Morgan
Kaufmann Publishers, Inc., San Mateo, California,
1990.

[Hoekstra94] A. G. Hoekstra. Computer Simulations of
Elastic Light Scattering. PhD thesis, Dept. of Comp.
Sys, Univ. of Amsterdam, 1994.

[HPF-Forum93] HPF-Forum. High Performance For-
tran Language Specification, version 1.0 CRPC-
TR92225. Technical report, Center for Research on
Parallel Computation, Rice University, Houston, TX,
1992 (revised May 1993).

[Kennedy88] K. Kennedy and D. Callahan. Compiling
Programs for Distributed-Memory Multiprocessors.
The Journal of Supercomputing, vol. 2, pp. 151-169,
1988.

[Langhammer93] F. Langhammer. The PowerStone
Project, Version 1.2. Technical report, Power-
Stone Parallelrechner GmbH, Herzogenrath, Ger-
many, 1993.

[MacroTek93] MacroTek. High Bandwith Resource In-
terface Controller Chip Set for ‘601 Based Systems.
Technical report, MacroTek GmbH, Dortmund, Ger-
many, 1993.

[Mooij89] W. G. P. Mooij. Packet Switched Communi-
cation Networks for Multi-Processor Systems. PhD
thesis, Dept. of Comp. Sys, Univ. of Amsterdam,
1989.

[Muller93] H. L. Muller. Simulating computer archi-
tectures. PhD thesis, Dept. of Comp. Sys, Univ. of
Amsterdam, 1993.

14

[Ni91] L. M. Ni and P. K. McKinley. A Survey of
Routing Techniques in Wormhole Networks. Tech-
nical report MSU-CPS-ACS-46, Dept. of Comp. Sc.,
Michigan State University, 1991.

[Parsytec92] Parsytec. PARIX Documentation for Re-
lease 1.1. Technical report, Parsytec Computers
GmbH, Aachen, Germany, 1992.

[Rottger94] M. Rottger, U.-P. Schroeder, and J. Simon.
Virtual Topology Library for PARIX. Technical re-
port, Paderborn Center for Parallel Computing (� � 2),
Department of Mathematics and Computer Science,
University of Paderborn, Germany, 1994.

[Schwiebert93] L. Schwiebert and D. N. Jayasimha. Op-
timal Fully Adaptive Wormhole Routing for Meshes.
Technical report, Dept. of Comp. and Inf. Sc., Ohio
State University, 1993.

[Simon93] J. Simon. Benutzung virtueller Topologien
unter PARIX, TR-006-93. Technical report, Pader-
born Center for Parallel Computing (� � 2), Depart-
ment of Mathematics and Computer Science, Univer-
sity of Paderborn, Germany, 1993.

15

