
Mermaid : Modelling and Evaluation Research in MIMD
ArchItecture Design

A.D. Pimentel J. van Brummen T. Papathanassiadis
P.M.A. Sloot L.O. Hertzberger

Dept. of Computer Systems, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam�

andy,brummen,theopapa � @fwi.uva.nl

Abstract. The Mermaid project focuses on the construction of simulation models
for MIMD multi-computers in order to evaluate them and to give estimates of the
system’s performance. A multi-layered approach was adopted in which three
levels can be distinguished. The application level describes application behaviour
in an abstract manner, unrelated to any hardware or architecture specifics. Sub-
sequently, the generation level translates these application descriptions to a hard-
ware dependent trace of operations that drives the simulators. And finally, the
architecture level consists of the trace-driven architecture simulation models.
Preliminary simulation results show that, despite the high abstraction level at
which is simulated, good accuracy can be obtained.

1 Introduction

With simulation, new computer architectures can be evaluated and tested long before the
actual hardware is built. Such evaluation can either focus on functional or performance
behaviour. In the scope of the Mermaid project MIMD multi-computer architectures are
simulated from a performance perspective [van Brummen94].

Two guiding principles were formulated at the beginning of the project. The level
of architecture abstraction should allow simulation within reasonable time, preferably
avoiding low-level (bus-cycle) emulation. And, architecture choices are important de-
sign options which must be simulated without too much remodelling effort.

The (distributed memory) MIMD architectures modelled within Mermaid are the
GCel and PowerStone architectures of Parsytec [Langhammer93].

As a starting point for our research we decided to restrict application modelling to
applications adhering to the SPMD (Single-Program, Multiple-Data) programming model
[Gupta91], which is considered to be a popular model when programming massively
parallel MIMD platforms.

The remainder of this article is structured in the following manner. In section 2, the
simulation environment of Mermaid is described. Section 3 briefly describes the archi-
tecture simulation models. In section 4, the different levels of application modelling are
described. In section 5 some preliminary simulation results are presented. Finally, in
section 6 conclusions are drawn.



2 The Mermaid simulation environment

To evaluate MIMD multi-computers, a parameterized algorithmic model was created. It is
capable of supplying the simulator with a trace of events, called operations, representing
processor activity, memory I/O, and communication message passing.

Annotated appl.

Annotation translatorStochastic generator

Simulation models

Stochastic appl. description

PowerStone1 params.

PowerStone.. params.

GCel parameters

Application level

Generation level

Architecture level

Fig. 1. Simulation scheme.

Simulation of an application load on an architecture takes place at three different
levels, as depicted in Figure 1. The application level contains application descriptions
used as input to our simulation models. This is done by either stochastically describing
the behaviour of programs using probabilities or by instrumenting real programs with
annotations representing the exact execution behaviour.

At the generation level a trace of operations is generated from the application
descriptions. This generation process exploits knowledge of the target architecture and
runtime model in order to tune these operation traces.

Finally, the architecture level consists of operation trace-driven simulation models.
Every model has a set of machine parameters that has been calibrated by either pub-
lished information or benchmarking. To allow simulation within reasonable time, these
simulation models do not fully emulate the hardware and keep limited state information
during simulation.

2.1 Computation versus communication

Simulation of application behaviour was split into two different models. This because
most SPMD applications exhibit a behaviour in which coarse-grained computations are
alternated with periods of communication and latencies of computation and communica-
tion are different in terms of architecture modelling. Both models define their own set of
operations and function at different abstraction levels. The first model is typical for the
application’s computational behaviour. It drives the second model by providing it with
information about computation at the level of computational tasks. Subsequently, the
second model is typical for the application’s communication behaviour. It implements
the computational tasks, derived from the computational model, as delays between
communication requests.



3 Architecture modelling

As application behaviour consists of computational and communication behaviour, two
different architecture models of the MIMD platform are required. The architecture model
for computation involves one single-node of the MIMD platform, whereas communica-
tion is modelled by a multi-node model. Both models, implemented in Pearl [Muller93],
are generic in the sense that both the GCel and the PowerStone architectures can be
represented by means of parameterization. The base computational architecture model
consists of the MIMD node’s processors, caches, bus and memory. These components
are fully parameterized to be able to evaluate design options at board-level.

The base architecture model for communication implements the MIMD node in a very
abstract manner as a processor, a router and four communication links. The nodes are
linked together resulting in a multi-node model to reflect the platform’s interconnection
scheme. The routing strategy is parameterized allowing for performance evaluation of
a range of strategies.

The communication load of an SPMD application results in an operation trace for
each node in the multi-node model. This approach allows for all kinds of synchronization
and load balancing scenario’s.

4 Application modelling

At the current stage of the project trace generation is only possible through instru-
mentation of applications. Formalisms to stochastically describe application behaviour
are being devised. Therefore, this section describes the methods used for application
modelling by means of annotations. Additionally, the idea of an SPMD communication
model is presented.

4.1 Modelling computation

It was decided to restrict modelling of the computational behaviour of an application
to just those parts of the application being computationally intensive. These parts are
often referred to as the kernel functions of the application. They are the most important
ingredient to the overall performance estimate of the application.

At the application level, these kernel functions are instrumented with annotations
that follow the original control flow of the function and represent the function’s memory
and computational behaviour.

At the generation level, the annotations are translated to a representation of basic
operations. This translation is guided by a description of variables used in the kernel
function. Such a description provides information on the type and location of variables,
i.e. register based.

4.2 Modelling communication

Annotations representing message passing directly map onto the operations of the
communication model. Therefore, only communication defined on the physical topology
can be modelled. Support for modelling message passing within application-defined
interconnection structures, called virtual topologies [Rottger94], is not yet available.



4.3 The SPMD communication model

Modelling of communication that is strictly defined on the architecture’s physical com-
munication topology still reflects all of the underlying hardware characteristics. Ideally,
no architectural details are visible at the level of application modelling. By modelling
virtual communication topologies, such details can more or less be hidden. In this
section, we will go one step further and present an SPMD communication model that
abstracts from all kinds of explicit communication at the application level. This model
will be used as a basis for future development of formalisms expressing application’s
communication behaviour.

At application level, the SPMD communication model regards communication be-
haviour as an implicit result of accessing distributed data in one shared address space.
This approach is similar to that originally proposed by [Kennedy88] and later adopted
by the HPF-FORTRAN initiative [HPF-Forum93]. The SPMD processes share a single pro-
gram which must be accessible from every processor. The virtually shared data space
incorporates the SPMD application’s distributed data. Access to this distributed data
will result either in a memory request or in a communication request depending on its
distribution scheme.

This model requires the issue of synchronization to be carefully considered in order
to avoid data hazards. These hazards are similar to the data hazards with instruction
pipelining [Hennessy90].

At generation level, the model translates the SPMD data requests to communication
requests within a pre-established virtual communication topology. At the level of virtual
communication the connectivity of the unconstrained point-to-point SPMD data request is
reduced to just those connections available within the virtual topology. After generating
these virtual communication requests the generation level takes care of translating them
further to physical communication requests.

5 Experiments

This section describes the results of the initial validation of the separate architecture
models of the GCel platform. Simulation results of a number of computational and
communication benchmarks are compared with the results of real execution.

5.1 Computation

The computational benchmarks are described in Table 1. The ddot and daxpy bench-
marks have been executed several times, with each run working on a different data
size.

Table 1 also shows the average error, the standard deviation � of the average error
and the worst-case error of simulation compared to execution. As can be seen from
the results, the simulation model behaves reasonable well, even for the more complex
loop18 and dipole benchmarks. With a sufficiently low average error margin and a
worst-case error that is not exceeding the 7.9 percent, good accuracy is obtained.



Benchmark Description Av. Error % � Worst-case Error %

ddot A double precision innerproduct 4.4 1.9 6.7
daxpy A double precision vector update 5.2 2.2 7.9
loop18 Loop 18 of the Livermore Fortran 3.2 0.0 3.2

Kernels
dipole The kernel function of an elastic 3.8 0.0 3.8

light scattering simulation

Table 1. The computational benchmarks.

5.2 Communication

The communication benchmarks are described in Table 2. The ping-pong benchmark
is used for fine-grain validation of the communication model, whereas the other three
benchmarks are used for stress-testing. The communication behaviour of these bench-
marks is extreme, and is not likely to be found in real SPMD applications.

Benchmark Description Average � Worst-case
Error % Error %

ping-pong A single message is sent to a node after which 1.8 1.7 6.9
it is returned

all-to-all A synchronized all-to-all communication load 4.2 2.9 10.3
in which every node communicates with all
other nodes

equal-dist A synchronized point-to-point communication 9.7 10.4 32.8
load in which every node communicates with
one fixed partner, resulting in approximately
equal-distanced routing paths

unequal-dist A synchronized point-to-point communication 9.1 7.9 31.9
load in which every node communicates with
one fixed partner, resulting in a large variety
of routing paths

Table 2. The communication benchmarks.

The benchmarks have been executed for a range of message sizes and a number of
participating nodes. The average error, the standard deviation and the worst-case error
of the communication benchmarks are also shown in Table 2. These results show that
simulation of both single-message transmissions and stress-testing communication loads
gives proper estimations. Some instances of the equal-dist and unequal-dist benchmarks
produce complex and heavy routing loads, which results in a worst-case error of nearly



33 percent. But considering the excessive communication load that is generated and the
abstraction level at which is simulated, this worst-case behaviour is tolerable. From the
standard deviation can be seen that simulation of these benchmarks in the general case
behaves reasonable.

6 Conclusions

Within the Mermaid project, a frame-work for MIMD architecture modelling and simu-
lation with the purpose of performance evaluation has been developed.

Initial validation of the computational and communication architecture models
demonstrated that good simulation results can be obtained. The simulation of compu-
tational benchmarks showed average errors up to 5.2 percent and worst-case errors up
to 7.9 percent. Results of simulated communication benchmarks demonstrated slightly
greater errors due to the higher abstraction level at which is modelled. Nevertheless, the
average errors up to 9.1 percent and worst-case errors up to 32.8 percent that were mea-
sured for some instances of heavy stress-testing communication loads are reasonable.

Acknowledgments

We would like to thank Marcel Beemster for his comments on draft versions of this article
and Alfons Hoekstra for his contributions with respect to the Elastic Light Scattering
benchmark. We also want to express our gratitude to Parsytec for their support.

References

[van Brummen94] J. van Brummen, A. D. Pimentel, T. Papathanassiadis, P. M. A. Sloot, and
L. O. Hertzberger. MERMAID: Modelling and Evaluation Research in MIMD ArchItecture
Design, TR-94-26. Technical report, Dept. of Computer Systems, University of Amsterdam,
1994.

[Gupta91] R. Gupta. SPMD Execution of Programs with Dynamic Data Structures on Dis-
tributed Memory Machines. Technical report, Department of Computer Science, University of
Pittsburgh, 1991.

[Hennessy90] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitive Ap-
proach. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.

[HPF-Forum93] HPF-Forum. High Performance Fortran Language Specification, version 1.0
CRPC-TR92225. Technical report, Center for Research on Parallel Computation, Rice Univer-
sity, Houston, TX, 1992 (revised May 1993).

[Kennedy88] K. Kennedy and D. Callahan. Compiling Programs for Distributed-Memory Mul-
tiprocessors. The Journal of Supercomputing, vol. 2, pp. 151-169, 1988.

[Langhammer93] F. Langhammer. The PowerStone Project, Version 1.2. Technical report,
PowerStone Parallelrechner GmbH, Herzogenrath, Germany, 1993.

[Muller93] H. L. Muller. Simulating computer architectures. PhD thesis, Dept. of Comp. Sys,
Univ. of Amsterdam, 1993.

[Rottger94] M. Rottger, U.-P. Schroeder, and J. Simon. Virtual Topology Library for PARIX.
Technical report, Paderborn Center for Parallel Computing (

��� 2), Department of Mathematics
and Computer Science, University of Paderborn, Germany, 1994.


