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Abstract
In this paper we discuss a new approach to dynamic load balan-
cing of parallel jobs in clusters of workstations and describe the
implementation into a Unix run-time environment. The efficiency
of the proposed methodology is shown by means of a number of
case studies.
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1 Introduction

With the advent of high-speed networks (most prominently FDDI and ATM),
clusters of workstations achieve the same scalable parallelism as the current
MPP architectures. However, software support for such parallel cluster sys-
tems still lags behind. These parallel cluster systems require new programming
paradigms and environments to provide the user with mechanisms and tools
to exploit the full potential of the available distributed resources. In these
systems changes such as variation in demand of processor power, variation in
number of processors, or dynamic changes in the run-time behaviour of the
application, hamper the efficient use of resources.

If we deal with load balancing on parallel cluster systems, we can identify
three levels that determine the efficient use and utilization of the distributed
resources, namely:

— domain decomposition, because workload should be evenly divided over a
set of tasks;
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— global scheduling, since the tasks must be mapped to distributed resources;
— local scheduling, for the fact that multiple tasks must be scheduled on one
Processor.

Next, we focus on the consequences with respect to load balancing in case the
amount of workload and available distributed resources are not static.

Consider, for example, an application that after a straightforward domain de-
composition, can be mapped onto the processors of a parallel architecture.
If the hardware system is homogeneous and allocated to only one applica-
tion program, then the execution will run balanced until completion: we have
mapped a static resource problem to a static resource system. However, if the
underlying hardware system is a cluster of multi-user workstations we run into
problems because the available processing capacity per node may change: in
this case the static resource problem is mapped to a system with dynamic re-
sources, resulting in a potentially unbalanced execution. Things can get even
more complicated if we consider the execution of an application with a dy-
namic run-time behaviour to a cluster of workstations, i.e., the mapping of a
dynamic resource problem onto a dynamic resource machine.

One way to deal with this dynamic changing resource requirement would be an
intelligent system that supports the migration of processes from overloaded
to under-loaded processors at run-time, without interference from the pro-
grammer. In addition, the resulting adaptive system hides the complexity of
the load balancing from the programmer/end-user. It implies the following
constraints:

— since we assume that the computational resource is a scalable cluster en-
vironment, the application programming model must be based on message
passing;

— it is essential we support a generic operating system, therefore the machine
platform operating system should be Unix;

— by hiding the complexity in libraries, the dynamic load balance run-time
support system must be incorporated at user level.

The first two constraints directly relate to the target hardware platform, i.e.,
a cluster of workstations interconnected by a network and providing de-facto
the Unix operating system. The third constraint stems from the fact that
dynamic load balance facility is supplied on top of Unix, and not by enhancing
the operating system. This facilitates the acceptance by individual users in
academia and industry.

To fully exploit the potential of clusters of workstations, a detailed comprehen-
sive understanding of the underlying mechanisms must be obtained. Therefore,
a good understanding of the interplay between the dynamic parallel applica-
tion systems and the adaptive computing systems is essential.



The work presented here reports on a pilot implementation of such an ex-
perimental adaptive system, for which we have tossed the name Dynamic-
PVM [4,15]. The paper is outlined as follows. In Section 2 we introduce in
general terms the necessary components for dynamic load balancing within the
context of the formulated constraints. Given the functional design outlined in
this section, the resulting implementation of the run-time support system is
described in Section 3. Experiments and results are presented in Section 4.
The results of the experiments are discussed and summarized in Section 5.
Section 6 concludes with future work.

2 Background and Design Aspects

Within the design of a self-contained experimental environment for dynamic
load balancing of parallel application systems, at least the following three
functionalities should be included: (i) parallel programming environment, (ii)
parallel run-time support system, and (iii) checkpoint/migration facility. The
parallel programming environment enables the programmer to decompose the
application problem into parallel subtasks. The parallel run-time support sys-
tem allows for the parallel execution of the parallel application system; and
the checkpoint/migration facility extends the run-time support system with
functionality necessary for dynamic load balancing.

The first two facilities are provided by the PVM system [12]. The PVM system
includes an application programming interface for parallel program develop-
ment and a run-time support system to allow for parallel execution of the
application. The task checkpoint/migration functionality extension must be
integrated with the PVM run-time support. The choice to use PVM as the
basic parallel programming environment is motivated by the free availability
of the source code and the extendibility of the run-time support. The applica-
tion programming interface incorporates the dynamic addition and deletion of
hosts (resources) and processes. Moreover, PVM is the most widely used mes-
sage passing environment to date. Therefore, we are able to test our system
for various existing PVM-based applications.

With respect to the checkpoint/migration facility, two operation levels are
distinguished: operating system level and user level. In operating system level
implementations the resource management facilities are supported by the OS
kernel. Examples of such systems are Mach [9], V-Kernel [14], Sprite [5], and
Charlotte [2]. User level designs and implementations of adaptive systems in-
clude dynamic resource management facilities by providing their own dynamic
load balancing run-time support. Examples of user level designs are Condor [8]
for sequential, and MPVM |[3] for parallel application systems. The research
presented here is a typical example of this last category.



Table 1 shows a comparison of the different aspects of granularity and load
managing required by the three systems under considerations: Condor, PVM,
and the adaptive system we discuss here: DynamicPVM. Condor is included
here as a representative example of a sequential job migration system. We
use the term job to indicate the largest entity of execution (the application)
consisting of one (viz., a sequential program) or more cooperating tasks (viz.,
a parallel program).

Condor PVM DynamicPVM

intended usage long running distributed parallel programs
background jobs

unit of execution | job task

load managing load distribution | load both

objective decomposition

schedule policy dynamic load round-robin dynamic load
balancing allocation balancing

schedule objective | resource application both
utilization turnaround time

performance efficiency effectiveness both

objective

Table 1

Granularity and workload management strategies for Condor, PVM, and Dynam-

icPVM.

This table indicates the basic design considerations given the constraints we
set out to met. The next subsections describe the essentials of the message
passing system and the checkpoint/migration facility required to implement
the functionalities outlined in Table 1.

2.1 The PVM System

The PVM (Parallel Virtual Machine) system presents an integrated environ-
ment for heterogeneous concurrent computing on a network of workstations.
The computational model is process-based, that is, the unit of parallelism in
PVM is an independent sequential thread of control, called a task. A collection
of tasks constituting the parallel application, cooperate by explicitly sending
and receiving messages to one another. The support for heterogeneity per-
mits the exchange of any data type between machines having different data
representations.

The PVM system consists of two parts: a daemon, called pvmd, and a library



of PVM interface routines, the pvmlib. The PVM daemon and library enables
a uniform view of the network of workstations, called hosts in PVM, as a
parallel virtual machine.

Each host in the virtual machine is represented by a daemon that takes care of
task creation and dynamic (re-)configuration of the parallel virtual machine.
PVM tasks are assigned to the available hosts using a round-robin allocation
scheme. Once a task is started, it runs on the assigned host until completion,
i.e., the task is statically allocated.

The PVM library implements the application programming interface that
includes primitives for process creation and termination, host addition and
deletion, coordinating tasks, and message-passing primitives. The underly-
ing communication model can be classified as asynchronous message-passing,
where the messages are buffered at the receiving end. An important aspect
of the communication model is that the message order from each sender to
each receiver in the system is preserved. The PVM message-passing interface
supplies both point-to-point communication primitives and global commu-
nication primitives based on dynamic process groups. To enable the use of
heterogeneous host pools, messages can be encoded using an external data
representation (XDR [11]).

A relevant issue in the context of the forthcoming discussion, is message rout-
ing. PVM supports two routing mechanism for messages, namely indirect and
direct routing. By default, the messages exchanged between tasks are indir-
ectly routed via the PVM daemon. With indirect routing, a task sends the
messages first to the local PVM daemon. The local daemon determines the
host on which the destination task resides, and sends the message over the
User Datagram Protocol (UDP) transport-layer to the responsible daemon.
This daemon eventually delivers the message to the destination task. For ex-
ample in Fig. 1, an indirect path from task al to b2 goes via pvmd A and pvmd
B. Direct message routing allows a task to send messages to another task dir-
ectly over a Transmission Control Protocol (TCP) link, without interference
of the PVM daemons and thereby enhancing communication performance (see
for example TCP connection between tasks al and cl in Fig. 1).

2.2  Aspects of Checkpoint and Migration

Systems supporting dynamic load balancing, such as Charlotte [2], Condor [8],
or V-System [14], stem from the observation that many of the—constantly
increasing number of—workstations in academic and industrial institutions
are lightly loaded on the average. In general, workstations are intended for
personal usage, which has a typical activity pattern that machines are only



task bl

task al

pvmd A pvmd B

task b2

task cl

Fig. 1. The PVM system composed of daemons and tasks.

used for a small part of the day. Typical figures of large pools of workstations
have a mean idle time of 80% [8]. Thus, there is an opportunity to use these
idle workstations as computation servers to increase the processing power
available to active users and such to improve the utilization of the hardware.
The problem however, is the complexity involved to make efficient use this
idle time.

To address this problem, global scheduling based on dynamic load balancing
by process migration is implemented. In order to make scheduling decisions,
the dynamic load sharing system monitors the workstations in the network by
keeping track of their load parameters. Workload is balanced over the network
by placing new jobs on lightly loaded nodes and migrate jobs from heavily
loaded machines to less loaded ones. To guarantee unobtrusiveness, access to
idle workstations and retain the sympathy of the workstation’s owner, the
system can detect interactive usage of a workstation and evacuate all jobs
from such a workstation.

Process migration is realized by the movement of an active process from one
machine to another in a parallel or distributed computing system. The process
is suspended and detached from its environment, its state and data (the check-
point) transfered to the destination host, where it is restarted and attached to
the destination environment. The major requirement for providing a migra-
tion facility is transparency: the execution of a process should proceed as if the
migration never took place. In parallel application systems, this transparency
should hold also for the migrated process’s communication partners. The ap-
plication programs then do not to have take account for possible complications
of checkpointing and migration. Migration is mainly applied to long running
jobs to counterbalance better load balance for suspend, migration, and restart
overhead.



The effective global scheduling of application programs on a cluster of work-
stations is essential to efficiently use the potential of the system: it should
achieve an efficient mapping between an application program and the parallel
cluster. In general, global scheduling consists of three components: load data
acquisition and distribution, and a load balance algorithm. For example, the
Condor scheduler consists of both a centralized and a distributed part. Each
node in the pool runs a small daemon that gathers statistics about the node
and forwards this information to the central scheduler. This information is
used to maximize the exploitation of the available processing power.

The problem at hand is an experimental adaptive system, where we concen-
trate on the integration of a checkpoint/migration facility within PVM to
enable global scheduling of parallel tasks. Global scheduling itself is a vast
area of research, but will not be discussed in this paper.

3 Implementation Aspects of the Extensions in the DynamicPVM
Experimental System

This section describes the extensions to PVM that are necessary to support
dynamic load balancing within the run-time support system. In order to im-
plement task migration, as eluded in Section 2.2, functionalities in the pvmd
and pvmlib need to be enhanced with checkpoint/migration mechanisms.

It is essential to note that the intertask communication, viz., message routing
by the pvmd, is strongly affected by the added functionality of task migration.
Therefore, we need to develop a methodology to guarantee the transparency
and correctness of this intertask communication.

The extensions to the pvmd and pvmlib must not change the PVM program-
ming interface and semantics, such that source code portability is guaranteed.
The packet routing by the pvmd ensures migration transparency. With this
approach, any standard PVM application can be linked and executed with
the DynamicPVM system without a modification to the source code of this
application, thus hiding the complexity for the end-user.

8.1 The Scheduler

Although the scheduler as such is not considered in the experimental Dy-
namicPVM system, its role and interface is mentioned here. The scheduler
in DynamicPVM is the initiating process of all load balancing activities. The
scheduler acts as a resource manager of the distributed system, that is, it de-



cides when to migrate a task and to which host it is moved. In this respect,
the scheduler largely determines the effectivity of the DynamicPVM system
in its aim for load sharing. The development of good algorithms or heuristics
for load sharing is a study on itself and is beyond the scope of this article.
The current simple scheduler decides on (re-)allocation of processors for tasks,
based on gathered load information of the workstation pool.

The scheduler is implemented as a normal PVM task. This approach makes the
incorporation of new scheduling strategies flexible and provides for a flexible
experimental platform for studying the effectivity of the different load balan-
cing disciplines. A consequence of implementing the scheduler as a PVM task,
is that an additional interface must be provided to enable the scheduler to in-
teract with the DynamicPVM system, in particular with the PVM daemons.
To this end, the pvmlib is extended with an interface routine, pvm_move(tid,
host), that initiates the migration of task tid to the specified host.

From an operational point of view, the activities of the scheduler consist of
gathering distributed load data of the hosts in the pool, and decide on initial
task placement and task migration. Initial task placement is the allocation of
newly created tasks to hosts. The actual creation of tasks is the responsibility
of the pvmds. If the scheduler decides to migrate a task to another host, it
issues the library function pvm_move () to activate the migration of a task to
a selected host. Section 3.3 describes the migration protocol in more detail.

The implementation of the DynamicPVM scheduler, discussed here, collects
load information from the hosts in the host list. From the load information
and the list of tasks, it selects candidates for migration and decides on the
destination hosts. In this ranking process the task/processor workload is taken
into account to strive for load sharing. Initial placement of tasks is still carried
out in a round-robin assignment by the pvmd at which the task is spawned.

3.2  Consistent Checkpointing Through Critical Sections

To implement dynamic load balancing by task migration, the run-time support
system must be able to create an image of the running process, the so-called
checkpoint. A checkpoint of an active process consists of the state and data of
the process, together with some additional information to recreate the process.
To incorporate file I/O migration, the state vector also includes information
about open files together with their modes, file descriptors, etc. The text
segment of the active process is taken from the executable file, and is therefore
not part of the checkpoint.

A complication with checkpointing communicating PVM tasks, is that the
state of the process also includes the communication status of the socket con-



nections. Thus, to save the state of the process, the interprocess communic-
ation must also be in a well-defined state. Since suspension of the related
communicating task is not desirable, the task should not be communicating
with another task at the moment a checkpoint is created. To prohibit the
creation of process checkpoints during communication, we apply the notion of
critical sections and embed all interprocess communication operations in such
sections. Checkpointing can only take place outside a critical section. When a
checkpoint signal arrives during the execution of a critical section, the check-
pointing is deferred till the end. We have implemented the checkpoint facility
with two different strategies for storing the process’s state and data: direct
and indirect.

With direct checkpointing, the destination host opens a TCP connection to the
host where the checkpoint is migrated from, and reads the process’s state and
data. Indirect checkpointing on the other hand, creates a dump of the process’s
state and data to a file on a shared (e.g., NFS-mounted) file system. With the
current network bandwidth limitation, the direct checkpointing strategy is
twice as fast as the indirect checkpoint strategy, because it involves only one
transfer of the migrating process, compared to two transfers (write/read) when
using a file system checkpoint (see also Section 4.3). The advantage of using
a checkpoint to a file system is that the process can be restarted on another
host at a later stage.

3.8 The Migration Protocol

The main objective of the DynamicPVM migration facility is transparency of
the migration protocol, i.e., to allow for the movement of tasks without affect-
ing the operation of other tasks in the system. With respect to the individual
task selected for migration this implies transparent suspension and resump-
tion of execution: the task has no notion that it is migrated to another host,
and the communication can be delayed without failure triggered by migration
of one of the tasks.

In the task migration protocol we distinguish five phases:

(i)

(ii) disconnect task from its local pvmd;

(i) checkpoint task;
)
)

create new process context at destination host;

(iv) move task to its new host;

(v) restart and reconnect the task to its new puvmd.

The first step in the migration protocol is the creation of a new process con-
text at the destination host by sending a message to the pvmd representing
that host. Next, the master pvmd updates its routing table to reflect the new



location of the task, see also Section 3.4. Before the task selected for migration
is suspended, the communication between this task and its pvmd has to be
flushed. Then the task is disconnected from its local pvmd and messages ar-
riving for that task are refused by the task’s original pvmd. The master pvmd
will now broadcast the new location to all other pvmds, so that any subsequent
message is directed to the task’s new location.

The next phase is the actual migration of the process. As stated in the pre-
vious section, there are two checkpoint strategies to experiment with: direct
and indirect. The newly created process on the destination host is requested to
restart the checkpoint. If direct checkpointing is used, it opens a TCP socket
and waits for the original task to begin transmission of the checkpoint. Us-
ing indirect checkpointing, the task opens the checkpoint file and reads the
checkpoint from disk.

Finally, after the checkpoint is read, the original state of the task (among which
data, stack, signal mask, and registers) is restored and the task is restarted
with a longjmp. Any message that arrived during the checkpoint/migration
phase is then delivered to the restarted task.

3.4  Packet Routing

In PVM the task identifier, task id for short, is a unique identifier which serves
as the task’s address and therefore may be distributed to other PVM tasks for
communication purposes. For this reason the task id must remain unchanged
during the lifetime of a task, even when the task is migrated.

This has implications for the packet routing of messages. The task 1d contains
the host identifier at which the task is enrolled and a task sequence number.
This information is used by the pvmd to route packets to their destination,
i.e., to the appropriate pvmd and task. When a task is migrated to another
host, this routing information is not correct anymore. Therefore, an additional
routing functionality must be incorporated in the pvmd routing software in
order to support the migration of tasks. An important design constraint is that
the routing facility must be highly efficient and should not impose additional
limitations on the scalability.

To provide transparent and correct message routing with migrating tasks, the
task i1ds must be made location independent, thus by virtualizing the task ids.
This is accomplished by maintaining additional routing information tables
contained by all pvmds (see Fig. 2). These routing tables are consulted for all
inter-task communication. Upon migration of a task, first the routing table of
the master pvmd is updated to reflect the change in location of the migrated
task. Next, the master pvmd broadcasts the routing table change to all other
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pvmds, such that each routing table reflects the actual location of all migrated
tasks in the system. Figure 2 depicts the migration of a task attached to pvmd
B and the subsequent routing table update.

pvmd A pvmd B

Routing table
bl->cl

pvmd C

Fig. 2. Routing tables keep track of the migrated tasks.

4 Experiments and Results

DynamicPVM is currently implemented for networks of IBM AIX/32 ma-
chines [4], Sun workstations operating under SunOS4 and Solaris [15], and
PC’s running Linux. It supports only homogeneous checkpointing and migra-
tion, because the formats of the checkpoints (the “layout” of the processes)
for AIX/32, SunOS4, Solaris, and Linux can not be interchanged. As a res-
ult, a task running on a Sun workstation operating under Solaris can only
be migrated to another Sun workstation operating under Solaris. Migration

between a Solaris workstation and a SunOS4 workstation is not supported
(neither between Solaris and AIX/32).

4.1 The One-Factor Experiment

One-factor designs are used to compare two systems that differ one categor-
ical variable, here the standard PVM system and the DynamicPVM system.
Techniques to analyze this one-factor experiments, in order to decide whether
the observed difference is due to induced differences among the systems or due
to experimental errors, are presented in this section.
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The model used for single-factor design is [6],

Yij = P+ + €5 (1)

Here y;; is the ¢th response of design j, p is the mean response, «; is the effect
of design j, and e;; is the experimental error.

The model enables analysis of the origin of the variance, whether it stems from
a; or e;;. The total variation of y in a one-factor design accumulates in the
effect factor a; and the error term e;;. If we square both sides of the model
equation, the sum of squares can be written as,

SSY = S50 + SSA + SSE

where SSY =3, yfj, S50 =32, p?, SSA = 2ij a?, and SSE =3, ; e?j. If we
design our experiment such that the effects of o; and e;; add up to zero, then

the cross-product terms of Eq. (1) are also equal to zero.

Now we define the quantity total sum of squares (SST) by:
SST = Z(y,-j — p)* =SSY — SS0 = SSA + SSE (2)

i,J

Although SST is different from the variance of y, it is a measure of y’s variabil-
ity and is called the variation of y. Equation (2) shows that the total variation
is determined by two parts: SSA representing the known part (due to different
systems) and SSE representing the unknown part (due to experimental errors)
of the variation.

The significance of the known part of the variation is determined by comparing
its contribution to the total variation with that contributed by the errors. The
F-test is applied to check if SSA is significant larger than SSE and to derive
whether the observed difference is due to significant differences among the
systems rather than experimental errors.

In the example of our two system experiment, described in the next subsection,
we have the following instantiation of Eq. (1):

7 = 1 indicates the PVM system;

7 = 2 indicates the DynamicPVM system;

7 indicates one experiment, consisting of 1000 observations;

the values of e;; follow a normal distribution with mean &;; = 0 and standard
deviation o,;; 0., is tested in the F-test;

— «; indicates the difference between the 7 = 1 and the 7 = 2 experiment,
and the p; therefore 3, ; a; = 0.
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4.2 Measuring DynamicPVM Communication Qverhead

A well-known method to measure the basic communication properties of a
message-passing systems is the ping-pong experiment. With the ping-pong
experiment, series of messages of different sizes are sent between two tasks:
one master and one slave. The master sends the message to the slave, the slave
receives the message into a buffer, and immediately returns it to the master.
Half the time of this message ping-pong is recorded as the time ¢ to send a
message of length n.

In this sense, the ping-pong experiment is a suitable benchmark to deter-
mine the overhead introduced by the DynamicPVM implementation. A seri-
ous problem in benchmarking systems in dynamically changing environments
such as a network of workstations, is that one does not have control over all
the factors influencing the measurements, for example network and processor
load. Here however, we can design the experiment such that it circumvents
this problem by performing the measurements in series of equally loaded work-
station environments. In addition, detailed analysis of the results is necessary
to preclude experimental errors.

The ping-pong experiment was performed for both the public domain PVM
implementation as well as the DynamicPVM implementation. The experi-
ments were executed on a lightly loaded system of SparcStation4 workstations
connected by a 10Mb/s Ethernet. The data were analyzed according to the
techniques described in Section 4.1. All reported experiments passed the null
hypothesis of the F'-test.

For each message size, 30 observation were collected for both PVM and Dy-
namicPVM. Each individual observation consists of 1000 ping-pong measure-
ments during “low” network load. The ratio behind this is that the network
load qualification of “low” is not well defined. One series of 1000 ping-pong
measurements with low network load, results in a observation for message size
n for one specific low network load. By repeated series over different low net-
work loads, we obtain different observations with some variation. The results
of the ping-pong experiments shown in Table 2 are the grand mean of these
observations.

The same experiments were performed for “medium” network load. Again for
each message size, 30 observations for both PVM and DynamicPVM were
collected; the resulting grand means are shown Table 3.

In Fig. 3 we show the as values for DynamicPVM obtained from the one-factor
experiment. The data used in the model are obtained from the low network
load ping-pong experiment (see Table 2). The figure depicts the categorical
difference in ping-pong results between PVM and DynamicPVM for increasing
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Size PVM DynamicPVM Size PVM  DynamicPVM

(bytes) (psec) (usec) | (bytes) (usec) (psec)

1 7268 7619 (4.8%) 2048 9853 10594 (7.5%)

4 7170 7568 (5.6%) 4096 14904 15856 (6.4%)

8 7196 7680 (6.7%) 8192 22091 23248 (5.2%)

16 7170 7626 (6.4%) 16384 36980 38437 (3.9%)

32 7172 7794 (8.7%) 32768 65150 67808 (4.1%)

64 7236 7723 (6.7%) 65536 120756 126199 (4.5%)

128 7288 7913 (8.6%) | 131072 232304 242082 (4.2%)

256 7676 8137 (6.0%) | 262144 453843 475323 (4.7%)

512 7844 8454 (7.8%) | 524288 900094 937909 (4.2%)

1024 8482 9048 (6.7%) | 1048576 1785052 1854352 (3.9%)
Table 2

PVM and DynamicPVM ping-pong results for low network load. The percentages
are the overhead induced by DynamicPVM.

Size PVM DynamicPVM Size PVM DynamicPVM
(bytes) (usec) (usec) | (bytes) (usec) (usec)
1 7425 7612 (2.5% 256 7817 8017 (2.6%)

4 7372 7660 (3.9% 512 8311 8519 (2.5%)

8 7367 7635 (3.6% 1024 9232 9426 (2.1%)

16 7402 7588 (2.5% 2048 11151 11322 (1.5%)

32 7432 7611 (2.4% 4096 17081 17398 (1.8%)

64 7489 7652 (2.2% 8192 25623 26149 (2.0%)

128 7570 7806 (3.1% 16384 43328 43689 (0.8%)

Table 3
PVM versus DynamicPVM ping-pong results for medium network load. The per-
centages are the overhead induced by DynamicPVM

message length. Due to the definition of o; with respect to p, we have oy
— Q9.
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Fig. 3. The ag values for DynamicPVM from the one-factor ping-pong experiment.

4.3 Checkpoint Overhead

Figure 4 shows some results obtained by migrating a 75 Kbyte process with
data segments of various sizes in both direct and indirect checkpointing mode.
As can be seen in the figure, the time needed for the migration is linear to the
size of the program.

8 O T T T

Checkpoint over NFS——
70 Checkpoint over TGP+ |

60 r

50 |

40

time (seconds)

30

20 r

10

0 5 10 15 20 25 30 35
checkpoint size (Mbytes)

Fig. 4. Migration times (in seconds) for checkpointing using NFS and direct TCP.
The systems used in these tests had enough free physical memory to restart the

checkpoint without swapping pages to disk. If a process needs to swap pages
to secondary storage, performance drops dramatically (data not shown).
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4.4 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) is a suite of applications used by the
Numerical Aerodynamic Simulation (NAS) Program at NASA for the per-
formance analysis of parallel computers. The benchmark suite consists of five
“kernels” and three simulated applications which mimic the computational
behaviour of large scale computational fluid dynamics applications. A unique
property of the NPB is that the applications are specified algorithmically. The
implementation of the NPB kernels used in the experiments with Dynamic-
PVM are described in [18].

The specific NBP kernels used in the performance analysis of PVM and Dy-
namicPVM are:

EP The Embarrassingly Parallel kernel is based on a trivial partitionable
problem requiring little or no communication between processors.

MG The 3-D Multigrid Solver is characterized by highly structured short-
and long-distance communication patterns.

CG The communication patterns in the Conjugate Gradient kernel are long-
distance and unstructured.

FT In the 3-D Fast Fourier Transformation, the communication patters are
structured and long distance.

The experiments were performed on two sets of eight “approximate equally
loaded” Sparc Classic’s during daytime. One set was reserved for PVM meas-
urements and one set was reserved for DynamicPVM. The DynamicPVM tasks
are migrated to lightly loaded workstations, if available. The checkpoints are
made to disk, thus two times slower than the TCP checkpoint.

Benchmark | PVM DynamicPVM Speedup
time | time | migrations | chkp. size

EP 19:11 | 16:51 4 100 KB 1.14

FT 57:27 | 52:09 1 25 MB 1.10

MG 48:01 | 42:40 2 2.5 MB 1.13

CG 21:26 | 19:37 5 9 MB 1.09

Table 4
Execution times of PVM versus DynamicPVM.
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4.5 A Case Study: Systolic Simulated Annealing

Simulated Annealing (SA) is a technique for optimization problems of very
large scale. In many typical optimization problems one wants to find among
many configurations one configuration which minimizes or maximizes a cer-
tain cost function. In our application problem we study the crystallization of
N randomly placed particles on a virtual supporting sphere. The particles
interact with each other according the Lennard-Jones potential [16].

Sequential Simulated Annealing The annealing process begins by cre-
ating a Markov chain, of given length, at a certain temperature. The Markov
chain grows by randomly displacing particles and calculating the correspond-
ing change in energy of the system and deciding on acceptance of the displace-
ment.

After a chain has ended, the temperature is lowered by multiplying the tem-
perature with the cool-rate, which is a number slightly less than 1 (typically
0.9) after which a new chain is started. This process continues until a stop
criterion is met. The stop criterion in our implementation is met when the
standard deviation in the final energies of the last ten chains falls below a
certain value (typically 107°).

Systolic Simulated Annealing A synchronous algorithm that does not
mimic sequential SA is systolic SA [1,13,17]. In systolic SA a Markov chain is
assigned to each of the available processors. All chains have equal length. The
chains are executed in parallel and during execution information is transferred
from a given chain to its successor. Each Markov chain is divided into a number
of subchains equal to the number of available processors. The execution of
chain k£ + 1 is started as soon as the first subchain of chain k is generated.
Equilibrium is not yet established by then. Quasi-equilibrium of the system is
preserved by adopting intermediate results of previous Markov chains.

The experiments with the systolic SA application were executed on two pools
of Sun SparcStation LX workstations. The PVM pool consisted of three work-
stations, and the DynamicPVM pool of six workstations. Table 5 shows the
turn-around times of the systolic SA algorithm for PVM and DynamicPVM.
The systolic SA problem size is determined by the number of particles, NV,
and the number of iterations.

The progress of the systolic SA algorithm for PVM and DynamicPVM is
depicted in Fig. 5. Progress is defined in terms of the number of temperature
cooling steps, i.e., when a new Markov chain is started.
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N | iterations PVM | DynamicPVM | Migrations | Speedup
20 5| 0:14:14 0:13:11 1 1.08
20 10 | 0:31:20 0:28:29 3 1.10
20 25| 1:23:42 1:17:02 3 1.09
40 5| 1:34:19 1:24:50 2 1.11
40 10 | 3:21:55 2:28:49 1 1.36
40 25 | 7:49:28 7:02:03 4 1.11
60 5 3:38:20 3:07:23 2 1.17
60 10 | 7:22:00 6:36:14 2 1.12
60 25 | 17:31:46 16:12:44 3 1.08
Table 5

Turn-around times of the systolic SA algorithm for different problem sizes.

Fig. 5. Progress in time of the systolic SA application for and PVM and Dynamic-
PVM. Problem size is N = 40 and iterations = 25.

The mean CPU load for the PVM and DynamicPVM clusters are shown in
Fig. 6. For the PVM cluster, the mean CPU load is calculated by taking the
mean of the CPU load of the three workstations. The mean CPU load for the
DynamicPVM cluster is computed by taking the mean of the CPU load of the
three workstations currently executing a DynamicPVM task.
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Fig. 6. Mean CPU load factors of PVM and DynamicPVM clusters.

5 Discussion and Conclusions

The results of the ping-pong experiment shown in Table 2 and Table 3 indicate
that the percentage overhead of DynamicPVM is almost constant (about 5%
for low network load and 2.5% for medium network load). The difference
in overhead between low and medium network load can be explained since
the overhead we measure is the accumulated effect of network overhead and
DynamicPVM overhead. The relative DynamicPVM overhead becomes more
predominant for low network load.

Figure 3 depicts how the absolute a-values increase with increasing message
size. The increase in absolute overhead is due to the routing table lookup
for each packet sent between two pvmds in DynamicPVM. As the number of
bytes increases, the number of packets sent also increases (see Section 3.4).
The overhead can be tuned by changing the DynamicPVM message fragment
size. By increasing the packet size, a smaller number of routing table lookup
operations are necessary per message sent. However, the overhead for small
messages increases, as the packets sent between pvmds will be largely empty.

Another overhead factor introduced by DynamicPVM, is task migration. This
effect is studied in the checkpoint overhead experiment. The results for indi-
rect (NFS) and direct (TCP) checkpointing are shown in Fig. 4. The migration
times for indirect and direct checkpointing are linear with respect to the size
of the checkpoint. The migration using NFS takes about twice as long as
the migration over TCP, which is due to the fact that migration over NFS re-
quires a separate write and read cycle, while in direct mode the write and read
are overlapped. Nonetheless, both migration modes can be efficiently imple-
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mented given the underlying protocol. For direct checkpointing, the measured

throughput is almost 1 MB/s, while the bandwidth of Ethernet is 1 MB/s.
With indirect checkpointing a throughput of about 450 KB/s is measured.

The computational kernels from NAS Parallel Benchmark suite represent dif-
ferent application behaviour in terms of computational and communication
behaviour. Although the execution behaviour of the kernels are different, the
advantage (speedup) gained with DynamicPVM is within the same range, see
Table 4. This indicates that the experimental DynamicPVM vehicle is able to
use the potential of idle workstations as computational resources, independ-
ently of the static or dynamic execution behaviour of the application. Even
a memory intensive application, such as the FT kernel (25 MB checkpoint),
profits from one task migration to an idle workstation.

An interesting case study is the systolic simulated annealing algorithm. In
Fig. 5 the progress of the simulated annealing process is displayed in time,
for both PVM and DynamicPVM. The corresponding mean CPU load of the
workstations is depicted in Fig. 6. Noticeable is the correspondence between
the application activity and the mean CPU load. The test runs consisted of
25 iterations that are coordinated by one task. This can be found in Fig. 5,
where progress retards for a period after an iteration. Figure 6 displays this
by a drop in the measured mean CPU load. The same figure shows that the
mean CPU load for DynamicPVM is lower than for PVM. The net effect is a

smaller turn-around time.

We conclude therefore:

— The communication and checkpoint overhead experiments show that the ex-
perimental DynamicPVM system provides efficient task migration support.

— The results of the NAS Parallel Benchmarks and the systolic SA case study
show that the DynamicPVM system is able to exploit the potential of idle
workstations, by (re-)mapping of a dynamic resource application onto a
dynamic resource machine, irrespective of the behaviour of the kernels.

— The DynamicPVM functionalities are provided through libraries, thus hid-
ing the complexity of the load balancing process from the end-user. The res-
ulting transparent appearance of adaptive systems such as DynamicPVM,
lowers the barrier to cluster computing.

This pilot study indicates that dynamic resource management on task level
for parallel jobs is a promising approach to efficiently balance load in clusters
of workstations.
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6 Future Work

The research presented here indicate that DynamicPVM is an adequate re-
search vehicle to study different approaches to dynamic resource management
of parallel jobs in cluster environments. One of the open issues is the develop-
ment of true heterogeneous DynamicPVM: tasks moving from one architecture
to another. This heterogeneous task migration is a difficult problem to solve
at operating system level [5]. At user level, we can take an object-oriented ap-
proach, and implement process/object migration functionalities into the libc.
The advantage of incorporating the generic process/object migration into the
libe, is that other message passing interfaces, such as MPI, can make use of
the offered facilities.

In addition, the DynamicPVM vehicle allows for experimental research in ex-
ploring various scheduling mechanisms: the DynamicPVM system offers effi-
ctent support for task migration, but the effective use of the dynamic resources
depends on an intelligent scheduler.

The experiments described in the paper can be characterized as loosely syn-
chronous computations. For DynamicPVM (loosely) synchronous behaviour
is a worst case scenario, because the overall computation stalls during the
migration of one of the tasks. In the future we will explore the potentials of
the experimental DynamicPVM system by a more general study with fully
asynchronous massively parallel applications. Particularly, current research is
directed to optimistic parallel discrete event simulation methods, such as the
Time Warp protocol [7,10]. It is identified that a serious limitation in the suc-
cessful application of the Time Warp protocol are the extreme computation
requirements. The complete non-deterministic asynchronous execution beha-
viour of the Time Warp protocol makes it a highly dynamic resource problem.
The load balancing of this type of asynchronous systems is a specific merit of
the experimental DynamicPVM system.
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