
A Communication Kernel for Parallel Programming
Support on a Massively Parallel Processor System

B. J. Overeinder J. J. J Vesseur F. v/d Linden P. M. A. Sloot
Parallel Scientific Computing & Simulation Group

University of Amsterdam, The Netherlands
e-mail: bjo@fwi.uva.nl

URL: http://www.fwi.uva.nl/fwi/research/vg4/pwrs/

Abstract

Portable parallel programming environments, such as PVM, MPI, and Ex-
press, offer a message passing interface that significantly differs in functionality
provided by native parallel operating systems such as PARIX. The implementa-
tion of such a portable programming environment on top of the native operating
system requires a considerable effort. To ease the porting effort, we have designed
a Communication Kernel that offers a common base for the implementation of
these environments.

The functionality of the Communication Kernel is close to the portable pro-
gramming environments, and it is optimized to work efficiently with the under-
lying PARIX operating system. The current implementation of PVM profits from
the efficient Communication Kernel as may future implementations of MPI and
Express.

1 Introduction

The programming interface offered by portable parallel programming environments,
such as PVM, MPI, or Express, creates a gap between the offered functionality in
the parallel programming environment and the native parallel operating systems
running on massively parallel processors (MPPs). This functionality includes for ex-
ample various modes of point-to-point communication, collective communication, pro-
cess groups, and process topologies. And although native operating systems support
some of these features, higher level functionalities are often absent.

Because the required functionality is of generic interest to multiple programming
environments, we have designed and implemented a generic programming interface,
the Communication Kernel, that efficiently supports well-known portable parallel
programming environments. The Communication Kernel provides a common basis
for the design and implementation of the message passing interface, where the im-
plementation intrinsics are clearly separated from the operating system dependent
characteristics. This improves both maintainability and portability to, for example,
newer versions.

In this paper we describe how the generic programming interface bridges the gap
between PARIX functionalities and message passing interfaces. As a case study, we
validated this Communication Kernel by implementing PVM on top of it. This PVM

implementation is called PowerPVM to distinguish it from the public domain PVM
version. In Section 2 the differences in functionality between PVM and PARIX are
identified. Section 3 describes the Communication Kernel, and in Section 4 some per-
formance results are presented.

2 Generic PVM versus Native PARIX

Different concepts and approaches to message passing has resulted in a multitude of
message passing interfaces. In this section we identify the differences in functional-
ity of the Parallel Virtual Machine system (PVM) [2] and the PARIX (PARallel exten-
sions to UnIX) operating system [4]. These differences stem, among other things, from
the fact that the PVM system was developed as a software framework for heterogen-
eous parallel computing in networked environments whereas PARIX was designed for
tightly coupled parallel architectures.

2.1 Process Management

In PVM applications are viewed as comprising several sub-algorithms, each of which
is potentially different in terms of it most appropriate programming model. Basically
the Multiple Program – Multiple Data (MPMD) programming model applies to PVM.
PARIX however, primarily supports the Single Program – Multiple Data (SPMD) pro-
gramming model, although facilities are available for the MPMD paradigm.

The creation of a PVM task is accomplished with the pvm spawn call. The spawned
process starts an executable specified as an argument to the call. The node on which
the task is started is specified by the user or is left to the PVM system for heuristic
load balancing.

In the PARIX programming environment, program startup loads the same execut-
able on all the nodes in the allocated partition of the MPP architecture. On the nodes
itself, threads are the only active objects of an application. The only way of executing
any processes in parallel on one processor is by means of threads.

2.2 Basic Message Passing

The PVM model assumes that any task can send a message to any other PVM task.
The PVM inter-processor communication provides typed, asynchronous buffered com-
munication primitives. These primitives are asynchronous blocking send, asynchron-
ous blocking receive, and non-blocking receive varieties. In the PVM terminology, a
blocking send returns as soon as the send buffer is free for reuse regardless of the state
of the receiver. A non-blocking receive immediately returns with either the data or a
flag indicating that the data has not arrived, while a blocking receive returns only
when the data is in the receive buffer.

A great part of PVM’s popularity is due to its support to receive unsolicited mes-
sages. That is, with a wildcard for sender and/or message type it is possible to receive
any message, any message from a particular task, or any message of a particular type
(does not care from which task). On the other hand, by specifying sender and message
type one can receive a unique message. This strong typing enhances the correctness
of the application.

The basic communication primitive in PARIX is synchronous non-buffered com-
munication based on the virtual link concept. A virtual link provides a bidirectional,
point-to-point connection between arbitrary threads within the parallel machine. On
top of this basic communication layer, PARIX provides asynchronous non-buffered
communication and mailbox based communication (close to the PVM communication
model).

2.3 Group Communication

The programmability of massively parallel computations strongly depends on global
communication and synchronization primitives such as broadcast and barrier syn-
chronization, respectively.

PVM supports the concept of user named groups, where a task can dynamically
join or leave a group at any time. Various collective communication primitives are
defined on groups such as broadcast, barrier, or the reduce operation.

No similar group constructs are available in PARIX, although collective commu-
nication primitives are provided by a public domain library. These primitives work
with index vectors containing the participating node numbers.

3 The Communication Kernel

The Communication Kernel (CK) levels the functionality gap between portable, paral-
lel programming environments such as PVM and MPI, and PARIX. It provides generic
communication and process management primitives found in parallel programming
environments, but is still highly efficient implemented on the native PARIX operating
system. In Fig. 1 a global overview of the layered design is shown.

MPP (GC, Xplorer, ...)

PARIX

Communication Kernel

PVM / MPI / Express / ...

Figure 1: The Communication Kernel design overview.

With the design of the CK layer, the effort to efficiently implement the required
functionality is invested only once. The contemplated portable message passing in-
terfaces are implemented in terms of the CK primitives, resulting in a design with
a clear abstraction from the operating system dependent characteristics of PARIX.
Also, the advantage of this approach is that a performance enhancement in the CK
layer directly translates in performance improvement of the portable programming
environments.

In this section we will describe how the most conspicuous PVM characteristics are
supported by the CK layer.

3.1 Process Management

The PVM run-time support is composed of a set of system processes called pvm dae-
mons (pvmd). A pvmd is installed on each node in the parallel virtual machine.

In the CK, the run-time support resides at each node in the MPP architecture and
is composed of one run server at the “master node” and spawn servers at each node.
The run server coordinates the process creation requests in a similar way as the pvmd
does. It allows user processes to create (spawn) processes at specific nodes in the par-
allel system, or on a suitable node determined by a round-robin scheduling algorithm
augmented with load information.

The task of the spawn server at each node is the actual creation of a new process
(thread). After a request for process creation from the run server, a new thread is
created that starts the requested executable.

3.2 Message Passing

One of the key issues to level the gap between the two environments is the efficient
support of inter-process communication facility characterized by typed, buffered asyn-
chronous communication. The most obvious alternative would be the use of mailbox
based communication supported by PARIX. One serious disadvantage however is the
communication performance.

Therefore, we have designed and incorporated a new generic asynchronous buf-
fered communication in the CK. It uses the synchronous non-buffered communication
primitives of PARIX as its transport layer, and implements both blocking and non-
blocking communication for user-level processes.

Messages can be accessed in three ways in the CK layer: any message, on sender,
and on message type. The any message access corresponds with a PVM receive with
a wildcard for the sender and message type, and will result in the first message in the
receive queue, i.e., message delivery is fair. The message selection on sender identity
is efficiently implemented by a hash table and a linked list for each sender in the re-
ceive queue. Upon a receive request for a particular sender, the first message in the
linked list is retrieved and delivered. Message selection on message type cannot be
implemented with hash tables easily, because the number of message types used is
not known before hand, and therefore a proper hash function cannot be selected. De-
pending on the specification of the sender, the search for a message of a particular type
starts at the beginning of the message queue (sender is wildcard), or at the beginning
of the linked list of the specified sender.

3.3 Group Communication

In PVM a single task, the group server, is responsible for the dynamic group adminis-
tration and for the coordination of barrier synchronizations. In the PVM design, the
group server is a PVM task, using PVM communication primitives just like any other
task. In our implementation, the group server is also a task but as part of the run-
time support system. This design allows a more efficient implementation of the group
server that directly interacts with the Communication Kernel.

For collective communication we have implemented an optimized multicast with
hypercube routing over the processor grid.

Consider an
�

-node partition in the parallel machine, and that the addresses of
the nodes can be coded in � -bits. In the first step, node 0 communicates with the node
which differs in the most significant bit ��� . In the second step, both node 0 and node� ���	� possesses the information and communicate this with the nodes which differ in
the second most significant bit �����	� , etc., etc. In this ways, the multicast messages
are propagated to all the nodes in
������� ���

steps, see Fig. 2.

Figure 2: Hypercube routing by most significant bit over a mesh.

Another advantage of this approach is that with each step, the process grid is seg-
mented in partitions that localizes the communication within the partition. This elim-
inates the problem of contention in the last steps of the multicast where all the nodes
are actually communicating with each other.

4 Results

The well-known “ping-pong” experiment is performed to measure the communication
performance of the CK layer and the PowerPVM implementation on top of it. In Fig. 3
the performance of the three message passing layer are depicted in a log-log plot. One
can see that the PowerPVM performance is close to the performance of the CK layer.
However, the difference in performance between the CK layer and PARIX is promin-
ent: the loss is due to the functionality offered by CK.

The performance loss between PowerPVM and CK is mainly a result of the mul-
tiple send/receive buffer management in PVM. Every message sent and received must
be copied to and fro. In order to compare the PowerPVM send and receive primit-
ives with the underlying CK send and receive primitives, we have implemented a
second PVM version of the ping-pong experiment similar to the CK version. By call-
ing pvm setsbuf the receive buffer becomes the new send buffer which is sent back
immediately. Thus, the measurements do not include the unpacking and packing of
data.

1 10 100 1000 10000 100000
number of bytes

10

100

1000

10000

100000

µs
ec

Parsytec PowerXplorer

PARIX
CK
PVM

Figure 3: Communication performance of PARIX, CK, and PowerPVM on Parsytec
PowerXplorer.

For clarity, Fig. 4(a) shows the performance of short messages (� 1024 bytes), and
Fig. 4(b) of long messages. For very short messages, the performance of PowerPVM
without pack/unpack is even better than the CK layer. This is caused by a conveni-
ent delay introduced by PowerPVM such that the message arrives just in time at the
receiver, saving the buffering in the CK layer.

1 10 100 1000
number of bytes

100

1000

µs
ec

Parsytec PowerXplorer

CK
PVM
PVM (no pk/upk)

(a) Small messages.

1000 10000 100000
number of bytes

1000

10000

100000

µs
ec

Parsytec PowerXplorer

CK
PVM
PVM (no pk/upk)

(b) Large messages.

Figure 4: Performance comparison of CK and PowerPVM.

The overhead for PowerPVM measured on the Parsytec PowerXplorer is shown in
Table 1, which shows latencies for PARIX 1.2, the CK layer, and the two PowerPVM
versions, as well as the achieved throughput of the systems.

The broadcast benchmark (see Fig. 5(a)) shows the gain of hypercube routing over
star routing (i.e., one task sending all the messages) in global communication. From
the figure one can see that with star routing the broadcast completion time grows lin-
early with the number of tasks, while the hypercube routing obeys the
��� ��� ���

time
complexity.

Latency Throughput
� sec (Kb/sec)

PARIX 91 1038
CK 164 1036
PowerPVM 167 940
PowerPVM � 155 1033

Table 1: Communication latency and throughput measured on the PowerXplorer. � is
version with no pack/unpack.

Within the barrier benchmark (Fig. 5(b)) the performance gain is less explicit. The
advantage of concurrency in the hypercube routing scheme is reduced by the forced
synchronization within the barrier primitive, but it performs still significant better
than the star routing alternative.

0 10 20 30 40
number of processors

0

1000

2000

3000

µs
ec

Parsytec PowerXplorer

Sequential Broadcast
Hypercube Broadcast

(a) Broadcast communication.

0 10 20 30 40
number of processors

0

2000

4000

6000

8000

µs
ec

Parsytec PowerXplorer

Barrier
Hyper-barrier

(b) Barrier synchronization.

Figure 5: Performance of global communication primitives: sequential versus hyper-
cube routing.

A more elaborate performance comparison between PVM and PARIX from an ap-
plication perspective can be found in the paper by Hoekstra et al. [3].

5 Conclusion

We have developed a generic Communication Kernel that supports popular portable
parallel programming environments such as PVM, MPI, and Express, where our aim
was to integrate the best of both worlds: the full functionality of portable program-
ming environments and the speed of native environments such as PARIX. The results
clearly indicate the feasibility of our approach.

In the near future we will complete a full implementation of MPI [5] and Ex-
press [1] on top of the CK layer. The design of these environments will be in the same
way as with the PowerPVM implementation. Enhancement and extension to the CK
layer will continue.

References

[1] J. Flower and A. Kolawa, “Express is not just a message passing system: Current
and future directions in Express,” Parallel Computing, vol. 20, no. 4, pp. 597–614,
Apr. 1994.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, “PVM
3 user’s guide and reference manual,” Tech. Rep. ORNL/TM-12187, Oak Ridge Na-
tional Laboratory, Oak Ridge, Tennessee, May 1994.

[3] A. G. Hoekstra, P. M. A. Sloot, F. van der Linden, M. van Muiswinkel, J. J. J. Ves-
seur, and L. O. Hertzberger, “Native and generic parallel programming environ-
ments on a Transputer and PowerPC platform,” Accepted for publication in Con-
currency: Practice and Experience.

[4] PARIX 1.2 Documentation. Parsytec GmbH.

[5] D. W. Walker, “The design of a standard message passing interface for distributed
memory concurrent computers,” Parallel Computing, vol. 20, no. 4, pp. 657–673,
Apr. 1994.

