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ABSTRACT

A new asynchronous cellular automata model is described.
The model provides an experimental and theoretical frame-
work to investigate quantitatively realistic simulations.
The parallel execution of such simulations introduces the
need of synchronisation of the asynchronous parallel
processes. Time Warp is proposed as a synchronisation
method for the parallel asynchronous cellular automata.
We introduce two new extensions to the Time Warp
method to make the method more effective for the appli-
cation to parallel simulation of asynchronous cellular
automata.

1 INTRODUCTION

The progress in information technology and the increasing
need for more and more detailed simulations of Dynamic
Complex Systems (DCS) has resulted in the exploitation
of parallelism. The modelling and simulation of dynamic
complex systems incorporate the abstraction and detailed
representation of basic mechanisms of real world systems.
In this respect, simulation allows for the understanding,
prediction and optimisation of real world systems. It is to
be expected, with the improving hardware and software
technology, that the degree of accuracy and realism of the
simulation of dynamic complex systems will grow vastly
beyond present day capabilities.

A distinguished computational solving method for a
large class of dynamic complex systems are Cellular
Automata or Synchronous Cellular Automata. The
method is in itself a set of dynamic systems where space,
time, and variables are discrete. Cellular Automata exhibit
remarkable self-organisation that can be used in models for
real world systems. For instance, the CA technique has
proven to be useful for direct simulation of fluid flow
experiments in both two and three dimensions. Another
application of CA can be found in lattice spin models
such as the Ising model. In biology, CA are used in, for
example, immune deficiency in cancer tissue simulations.

A less known computational solving method for com-
plex dynamic systems are Asynchronous Cellular Auto-
mata (Ingerson and Buvel 1984; Lubachevsky 1987;
Overeinder et al. 1992). Here, the commonly made pre-
assumption that all cell values are updated synchronously
is relaxed. In this paper we report on extension of the CA
model to incorporate asynchronous cell updates, and con-
sequences of the functional and implementational aspects
of the reformulation. This extended model allows for a
more general approach to CA and can result in efficient
parallel implementations for certain classes of long stand-
ing realistic problems.

2 THE ASYNCHRONOUS CELLULAR
AUTOMATA MODEL

2.1 Asynchronous State Changes

The cellular automata theory describes a universe consist-
ing of a homogeneous array of cells. Each cell is provided
with a finite number of states and evolves in time accord-
ing to well defined uniform local transition rules. The
Asynchronous Cellular Automata (ACA), like the Syn-
chronous Cellular Automata (SCA), is a set of dynamic
systems where space and variables are discrete. But unlike
the SCA, the ACA evolves not in discrete, but in contin-
uous time. In the ACA model the cellular automata theory
is extended to take the asynchronous state changes into
account. State changes are instantaneous and can occur
asynchronously and at unpredictable random times. State
changes with these characteristics are also called events.

A model that evolves in continuous time and has a
discrete state can be classified as a discrete event model
(Zeigler 1976). In a discrete event model, even though
time flows continuously, state changes can occur only at
countable points in time, i.e., time jumps form one event
to the next, and these events can occur arbitrarily separated
in time.

Homogeneous dynamic systems with asynchronous
updates, such as the proposed ACA model, can be forced
to behave in a highly inhomogeneous fashion. For



instance in a random iteration model it is assumed that
each cell has a certain probability of obtaining a new state
and that cells iterate independently. As an example one can
think of the continuous time probabilistic dynamic model
for an Ising system (Lubachevsky 1988). With indepen-
dent clocks, the most obvious model to use would be a
system where each cell takes a certain amount of time to
iterate but each has a slightly different environment with
its own specific iteration time. With asynchronous cellu-
lar automata we can solve more complicated problems,
closer to reality.

2.2 The Model

We define a deterministic asynchronous cellular automata
by Z=(19,N,V,v,, f,F,T), where:

1. 19 is the set of d-tuple integers, called an array of the
cellular space. An element of 19 represents the coordi-
nate of a cell or a cell at that coordinate. The positive
integer d is called the dimension of the cellular space.

2. Nis an n-tuple of different elements of 19, called the
neighbourhood index. With N =(n,,---,n,) and given
a cell a, an element of the set {(a+n;),---,(a+n,)}
is called a neighbourhood cell of a, and a is the centre
cell of those neighbourhood cells. The set consisting
of elements of N is simply called the neighbourhood.

3. The cellular space is homogeneous. Thus for all cells,
V is a nonempty finite set, called a state set.

4. The state set V has an element Vv,, in which the cell is
at rest, called the quiescent state.

5 The local function f is a mapping from V" to V and
satisfies the specific property f(Vy,---,Vy) =V,.

6. The next state of a is given by s(a) = F(a,N, f,1),
where f is instantaneous applied to the neighbourhood
N of a at time t.

7. The time of the next state change evaluation of a is
described by t' =T(a, N,t), where t' >t.

A nondeterministic asynchronous cellular automata can be
obtained by introducing a random experiment and defining
a random variable on the sample space of the experiment.
The nondeterministic local function f is augmented with
&, which is a realisation of the random variable. The local
function can be written as fE, where one can think of f
as a tabulated function depending on &, or if the random
variable is discrete, § can be considered as an argument to
the function.

In the same way the time increment function can be
written as T., where T. can be a tabulated function
depending on &, or, for both continuous or discrete random
variables, § can be considered as an argument to function
Tg. The use of & for continuous random variables is valid
since time is continuous in asynchronous cellular auto-
mata.

3 THE SIMULATION ENVIRONMENT

To provide a platform for experimentation with dynamic
complex systems that can be modelled with ACA, a simu-
lation environment has been developed on a parallel archi-
tecture.

A SCA evolves in discrete time where the simulated
time advances in fixed increments, called ticks. During
each clock tick all cells undergo simultaneous state
changes: state of a cell at t+ At is calculated from the
state of the cell and its neighbours at time t. All cells
must finish their state transition before any can start sim-
ulating the next tick.

The parallelisation of the discrete time simulation is
achieved by imitating the synchronous behaviour of the
simulation. The simulation is arranged into a sequence of
rounds with one round corresponding to one clock tick.
Between each round a global synchronisation of all cells
indicates that the cells have finished their state change at
time step t and the new time step t + At can be started.
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Figure 1: The simulation environment (T.W. is the
Time Warp synchronisation method, and P.P. is a
parallel platform).

The ACA described in section[J2 is formulated as an
asynchronous discrete event model. An efficient execution
mechanism for this class of models is discrete event simu-
lation, where periods of inactivity are skipped by the sim-
ulation process. The asynchronous execution mechanism
complicates the parallelisation of the simulation through
the need of explicit synchronisation of the distributed cells
(see section 4.1 for more detailed explanation). In our
implementation on a parallel machine we incorporate the
so-called Time Warp method (Jefferson 1985; Overeinder



et al. 1991; Overeinder et al. 1992) to account for this
explicit synchronisation.

In addition to the modelling and parallel simulation of
ACA, we are also interested in the performance prediction
and evaluation of the simulation environment. Therefore
an analytical performance model has to be constructed, and
within the simulation environment a parallelism analyser
and a performance measurement tool must be incorporated.

The analytical performance model of the ACA and the
Time Warp method is constructed for the prediction of the
parallel performance of the ACA with the Time Warp
method. We describe the stochastic characteristics of the
components of the system with use of Markov modelling
and measure their response to well defined stimuli.

The use of the parallelism analyser is twofold. First, it
can be used within the validation/verification of the stand-
alone ACA performance model. The ACA performance
model gives a prediction about the parallel performance,
and the parallelism analyser actually measures the poten-
tial parallelism, i.e., the parallelism inherent to the appli-
cation. Second, this measured inherent parallelism is used
in the evaluation of the efficiency and effectiveness of the
parallel simulation method. The performance metrics
measured after execution of the ACA with Time Warp can
be compared with the results of the parallelism analyser.
In this way it is possible to see how much of the poten-
tial parallelism in the application is actually realised. This
allows for fine tuning of the simulation environment to
the parallel platform.

The analytical model of the ACA and the Time Warp
method can than be verified by performance measurements
extracted from the execution of the simulation system.
This will result in a better understanding whether an
application can be effectively solved by an ACA in com-
bination with the Time Warp mechanism.

In this paper we concentrate on the ACA model and
the Time Warp method (the grey area in Fig. 1).

4 THE SIMULATION ENGINE: TIME
WARP WITH EXTENSIONS

4.1 Time Warp

The parallel discrete event simulation method described
here is based on a process-oriented view of simulation.
The system being modelled is viewed as being composed
of some number of physical processes that interact at
various points in simulated time. The simulation is con-
structed as a set of logical processes, LPg, LP4,..., one
per physical process. All interactions between physical
processes are modelled by time stamped messages sent
between the corresponding logical processes. Each logical
process contains a portion of the state corresponding to

the physical process it models, as well as a local clock
that denotes the progress of the process.

In parallel discrete event simulation, the fundamental
problem is the local causality constraint. A simulation is
locally causal if and only if each process in the simulation
executes events in non-decreasing time stamp order.
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Figure 2: Causality error.

In Fig. 2 the possible appearance of a causality error is
depicted. In Fig.O2(a) two events are scheduled, E, at logi-
cal process LP; with time stamp 10, and E, at LP, with
time stamp 20. If the execution of E; schedules a new
event E3 for LP, containing a time stamp less than 20
(Fig. 2(b)), then Ej could affect E,, necessitating sequen-
tial execution of all three events. As a consequence a syn-
chronisation method is needed to deal with the possible
appearance of causality errors in the parallel discrete event
simulation.

In Time Warp the basic synchronisation mechanism is
process roll back. Basically, the parallel execution of a
simulation with use of Time Warp can be characterised by
three phases.

* Process executes until causality error occurs.
* Process rolls back in simulated time.

* Recovery by undoing the effects of all events exe-
cuted prematurely.

Recovery from the premature execution of an event
results in two things that have to be rolled back: the state
of the logical process and the event messages sent to other
processes. Rolling back the state is accomplished by peri-
odically saving the process state and restoring a state
vector valid for the current (rolled back) simulation time.
“Unsending” a previously sent message (event) is accom-
plished by sending an anti-message that annihilates the
original when it reaches its destination. These anti-
messages are negative copies of the messages sent during
normal simulation and are saved in a data structure. The
messages that are sent while the process propagates in
simulated time are called positive messages.

If a process receives an anti-message that corresponds
to an unprocessed positive message, then the two will



annihilate each other and the process will proceed. If an
anti-message arrives that corresponds to a positive
message that is already processed, then the process has
made a error and must also roll back. A consequence of the
roll back mechanism is that more anti-messages may be
sent to other processes recursively.

Although the Time Warp method is a solid general
simulation methodology in itself, several extensions need
to be included to make the application of the method to
ACA efficient and effective. The first problem is the size
of the state vector. Many asynchronous cellular automaton
are aggregated in one process to have control over the
grain size of the process and match this to the parallel
machine. As a consequence the state vector can be quite
large, while the changes to the state vector are minimal.
We developed a new method that, instead of saving the
whole state vector, only saves the changes to the state
vector. This method is called incremental state saving.
Another problem encountered is the need to cancel future
events. In the simulation of the ACA, the execution of an
event can make another event (scheduled or already exe-
cuted) obsolete. We have introduced primitives that enable
the simulation to undo the generation or execution of an
event.

4.2 Incremental State Saving

A serious problem in Time Warp is the need to
periodically save the state of each process. Normally, state
saving is based on a method called check pointing, which
periodically copies the whole state of a process into a state
queue. The related overhead limits the effectiveness of the
Time Warp mechanism, especially when the state consists
of large dynamic data structures, which is the case with
ACA.

But not only time considerations are important.
Memory size limits the number of copies of the state
vector that can be saved. Due to large state vectors, the
limited number of saved state vectors can implicate that
upon a causality error the process must roll back further in
time than strictly necessary for correct simulation. This
also degrades the effectiveness of the Time Warp mecha-
nism.

We developed and implemented a new incremental state
saving strategy, by exploiting the Markovian behaviour of
the state evolution. This is accomplished by saving the
processed event together with the side effects it is respon-
sible for. Since one Time Warp process consists of a large
number of cellular automata, the state is actually a vector
of states of all the cellular automata it contains. The state
of the process can be written as S= (S(a,-]),...,s(ain)),
where i,...,i, €19,

The execution of event efj o €19, only changes the
state of a cellular automaton &, at simulation time t.

Thus the new state is §' =(s(a]),...,s’(aij),...,s(an)).
Instead of saving the complete state vector, the old state
s(aij) is sufficient to be saved. In incremental state saving
is s(a,-j) now associated with event (—:‘,tJ .

Upon roll back of event q‘j the state vector can be
reconstructed by processing the event-state collection in
reverse order, i.e. restoring state s(aij), until the last
event with a time stamp before the event that caused the
roll back. As a consequence, the correct state has been
reconstructed and simulation can proceed. Incremental state
saving requires less state saving time and memory, at the
cost of state reconstruction. The efficiency of the incre-
mental state saving method compared to the check point-
ing method depends on the frequency at which roll backs
occurs. If during simulation many roll backs arise, the
overhead of state reconstruction in incremental state
saving can dominate over the state copying in check
pointing. On the other hand if roll backs are infrequent,
incremental state saving will be more time and space effi-
cient than check pointing.

4.3 Direct Event Cancellation

Depending on the model being simulated with an Asyn-
chronous Cellular Automata, it is possible that an event
will be scheduled that, by the execution of subsequent
events, will be incorrect. Consider for example a physical
model where different particles can annihilate or be
combined into new particles. If at two neighbouring cells
one particle and one anti-particle resides, it is possible that
the execution of an event for the anti-particle results in the
annihilation of the anti-particle with the particle. The next
scheduled event for the particle at the neighbouring cell is
now obsolete and should be retracted.

For these situations it is of great importance to have a
means of retracting scheduled events. The proposed cancel
primitive retracts previous scheduled events by cancelling
the respective send operation (events are modelled by time
stamped messages). The annihilation mechanism in the
Time Warp method is transparent to the application
program and is used to recover from synchronisation
errors. It can therefore not be efficiently used for our
purpose. The new cancel primitive on the other hand is
invoked by the application itself for the retraction of
previously scheduled events.

To cancel a previous send operation it is necessary to
identify the message that has to be cancelled. For this
reason, the send primitive returns a message descriptor for
later use: mess_id = tw_send(LP, ts, M). The primitive
tw_cancel (mess _id) cancels a previously sent message and
retracts the scheduled event. The simulation time at which
the cancel primitive is invoked must be less then the
schedule time of the event cancelled.



The cancel operation is inverse to the send operation in
that it sends an anti-message and saves a copy of the
corresponding positive message in a data structure. The
anti-message annihilates with the original positive mes-
sage according to the annihilation mechanism described in
section 4.1. The cancel operation can also be rolled back
in the same way as the send operation can be rolled back.
If a cancel operation is rolled back, the original positive
message is re-sent as if the event message was never
cancelled.

The cancel primitive introduced here has similarities to
the one described in (Lomow et al. 1991), in that it is a
natural extension of the annihilation mechanism available
in the Time Warp method. Another approach to direct
event cancellation is described in (Agre and Tinker 1991).
Agre and Tinker consider the cancel operation as a non-
retractable event, i.e., an event that can not be rolled back.
This means that it is not executed until the cancel event is
the unprocessed event with the smallest time stamp of the
whole simulation system. This avoids having to deal with
roll back of a cancellation, but significantly reduces the
parallelism in the simulation system.

S THE IMPLEMENTATION OF AN
ACA: WA-TOR

To validate our ACA model and the application of the
Time Warp synchronisation method to the parallel ACA,
we have implemented a well-defined test problem Wa-Tor.
The original problem description of Wa-Tor is changed to
obtain a typical irregular distributed simulation problem,
suited to test the ACA and the introduced extensions to
Time Warp.

5.1 The Problem: Wa-Tor

The Wa-Tor algorithm consists of a set of simple rules
that describe the behaviour of sharks and fish in a torus
shaped ocean. In the original presentation of Wa-Tor
(Dewdney 1984), time passes in discrete steps (discrete
time simulation), during which a fish or shark may move
north, east, south, or west to an adjacent point. As time is
discrete and space is discrete and homogeneous, Wa-Tor
can be considered as a two dimensional CA. By introduc-
ing independent continuous time clocks for each shark and
fish, and a “time to activate” parameter, Wa-Tor can be
forced to behave in an asynchronous way. The resulting
asynchronous Wa-Tor problem is well suited for imple-
mentation as an ACA and incorporation of the extensions
to Time Warp.

The dynamics of the fish and sharks are given by a set of
rules working on a rectangular ocean grid with periodic
boundary conditions of a torus.

The behaviour of fish is described by the following
rules. Each fish selects an unoccupied neighbouring loca-
tion and moves to there. If no empty location is found,
the fish does not move. In either case, the “time to acti-
vate” parameter takes a new value, and the fish is put to
sleep. After the fixed period of time the fish is activated
and the age is accordingly incremented. If the age has
reached a value at which fish breed and the fish has actu-
ally moved, a new fish is placed at the old location.

The behaviour of sharks is similar to fish, except
hunting for fish takes priority over mere movement.
Sharks search for fish at their neighbouring locations,
select one at random, and eat the fish. If no fish are in the
neighbourhood, the sharks move just as fish do. The shark
is put to sleep for some period of time, after which it is
re-activated and its age increments accordingly. As with
the fish, the sharks breed if their age have reached some
value. If a shark swims for a certain amount of time
without eating, it dies.

5.2 The Implementation

The Wa-Tor problem is directly mapped to an ACA by
considering each ocean grid point as an asynchronous
cellular automaton. Each ocean grid point (asynchronous
cellular automaton) behaves according to the dynamic
rules described in section 5.1 and depends on the state of
the automaton and its neighbours.

The decomposition of the ocean into subdomains
preserves the local characteristics of the Wa-Tor problem
in the parallel simulation. Each subdomain send messages
to other subdomains, embodying the movements of
creatures from one subdomain to another. The synchroni-
sation between the subdomains is provided by the Time
Warp method.

The cancel operation finds its use when a shark eats a
fish. At the moment a shark has selected a neighbouring
location containing a fish, the shark moves to the new
location and eats the fish. The scheduled activation event
for the non-existent fish must be cancelled now, since the
execution of the event is incorrect.

The implementation of the Time Warp synchronisa-
tion method includes the incremental state saving method.
The state change of each ocean grid point is registered
independently of the other ocean grid points in the sub-
domain. Every fish or shark move, birth, and death is
saved per ocean grid point and all the partial state changes
describe the state evolution of the complete subdomain.



5.3 Results

The first test implementation of Wa-Tor (as an ACA with
Time Warp synchronisation method) was performed on a
64-node Meiko Computing Surface, written in C with use
of CSTools CSN communication primitives. Recently,
the Wa-Tor implementation has been migrated to a
Parsytec GCel-3/512, a 512-node distributed T805 trans-
puter machine. This implementation is written in C with
use of the Parix parallel programming environment. The
implementation on the Parsytec GCel implies the avail-
ability of a new generation parallel architecture and paral-
lel programming environment, but more important, it
enables a seamless transmigration to the Parsytec GC, a
T9000 transputer parallel architecture. With the T9000,
virtual processors and virtual communication channels
will be available that facilitate the efficient implementa-
tion of dynamic loadbalancing and irregular communica-
tion patterns, which will be important to achieve signifi-
cant performance.

The parallelism analyser is completed and is available
as a stand-alone tool. It analyses the event trace of the
parallel simulation execution generated by the Time Warp
run-time system. The output of the parallelism analyser is
among other things the average parallelism, the minimum
and maximum parallelism, and a parallelism profile.
These are characteristics of the application itself, i.e. the
Wa-Tor problem, and not of the typical execution on a
specific parallel machine with use of Time Warp.

The Wa-Tor (ACA with Time Warp) implementation
is completed on the Parsytec GCel. Performance
measurements will be made and compared with the results
of the parallelism analyser to assert the efficiency and
effectiveness of the Time Warp method. Also the trade-off
between incremental state saving and the check point
method will be studied.

6 CONCLUSIONS AND FUTURE
RESEARCH

The described ACA model is a generalisation of the SCA
model in that it relaxes the synchronous cell update and
evolves in continuous time. By this generalisation
problems solved with use of ACA can be modelled closer
to reality. The parallel implementation of ACA incorpo-
rates the Time Warp method with some extensions to
synchronise the simulation time of the asynchronous
processes. These extensions are incremental state saving
and direct event cancellation. The proposed ACA model
and the Time Warp method with the introduced extensions
are validated and verified by an implementation of the
adapted Wa-Tor problem.

Future research is directed to the formal symbolic
description of ACA and Time Warp. The stochastic
characteristics of the ACA and Time Warp will be
described by Markov modelling. With the resulting model
a characterisation is obtained of the applications that can
be successfully solved with ACA and Time Warp.
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