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Permeability of Three-Dimensional Random Fiber Webs
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We report the results of essentially ab initio simulations of creeping flow through large three-
dimensional random fiber webs that closely resemble fibrous sheets such as paper and nonwoven
fabrics. The computational scheme used in this Letter is that of the lattice-Boltzmann method and
contains no free parameters concerning the properties of the porous medium or the dynamics of the
flow. The computed permeability of the web is found to be in good agreement with experimental
data, and confirms that permeability depends exponentially on porosity over a large range of porosity.
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Fluid flow in porous media plays an important role in
a wide variety of technical and environmental processes
such as oil recovery, paper manufacturing, and spread of
hazardous wastes in soils. The single-phase creeping flow
through a porous substance in a gravitational field g is
well described by Darcy’s law [1,2] which, in this case,
can be written in a form
k
q=—g, (H
14
where q is the fluid flux through the medium, v is the
kinematic viscosity of the fluid, and k is the permeability
coefficient that is a measure of the fluid conductivity

~through the porous medium.

Determination of coefficient k& for each particular
substance has been a long-standing problem. The ex-
perimental methods that have been used to this end vary
from rather straightforward measurements [3-5] to more
sophisticated approaches, which utilize, e.g., mercury
porosimetry, electrical conductivity, nuclear magnetic
resonance, or acoustic properties of the medium [6].
Theoretical methods typically rely on analytical models
based on simplified pore geometries, which allow solution
of the microscopic flow: patterns [1], or on more advanced
methods that statistically take into account the structural
complexity of the medium [1,2].

Numerical simulations are often used to connect the-
ory with experiments. Realistic three-dimensional flow
simulations in complex geometries are, however, very de-
manding in terms of computing power. Until recently
this approach has thus been hampered by the necessity
of major simplifications in the pore structure or flow
dynamics. New techniques based on massively parallel
computers and increased single processor capabilities
have now made 3D ab initio simulations of realistic
flow problems feasible. This development is further aug-
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" mented by the recent introduction of new flow-simulation

algorithms that are particularly suited for parallel com-
puting. Among these are the lattice-gas-automaton [7,8}
and lattice-Boltzmann method [9-11], which have al-
ready been applied to a wide class of fluid-flow problems.
These methods are particularly useful in complex and ir-
regular geometries [12-16].

Despite the numerous experimental and theoretical stud-
ies (see, e.g., [5] for a comprehensive review), permeabil-
ity characteristics of disordered fibrous porous media are
still poorly understood. The existing numerical studies

include those on fluid flow through random arrays of par-

allel cylinders, suspension of prolate spheroids, and three-
dimensional regular fiber networks, which all neglect the
disorder typical of real 3D fiber webs [17-19].

In this Letter we report the results of three-dimensional
lattice-Boltzmann simulations of creeping flow through
large random fiber webs, and compare these results with
previous experimental, analytical, and numerical results
for various fibrous materials.

The model web structures were constructed in dis-
cretized space using a recently introduced growth algo-
rithm [20]. Within this algorithm, fiber webs are grown
by sequential random deposition of flexible fibers of rect-
angular cross section on top of a flat substrate (the xy
plane). Each fiber was randomly oriented either in the x
or y direction, and was then let to fall in the negative z
direction until it made its first contact with the underlying
structure. After this it was bent downwards without de-
structing the structure, and subject to the constraint

lz - 4l < F. 2

Here z; and z; are the elevations of the fiber surface above
two nearest-neighbor cells / and j, and F is an effective
fiber flexibility. Notice that for long fibers, the resulting
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web structure. porosity, and contact area of hibers depend  grid resolution.  Resolution sensitivity is gayhed oy
only on £ [21]. A large F produces a dense web while a bounce-back boundary condition applied to w WERETIY
smatl £ leads to a more porous structure. interface. and by Knudsen effects in small pared [ 1{l.|!

In order to construct structures that are homogeneous in These effects are viscosity dependent. and they determ
the © direction, the samples used in the simulations were the minimum size of obstacles and pores that fjan e
extracted from inside of thicker webs. Ten grid layers of  in simulations.
void space were then added on the top of samples. and In order to find an acceptable grid resolutigni i tit”:r.
the system was made periodic in all directions. In Fig. | porosity regions. we first made a series of test|mins|us
we show a sample created by this algorithm. It is evident fibers of aspect ratio {0, i.e.. of size we X |Wig || RO
that the produced structures closely resemble those of . e.g..  with wre = 5. 10, and 20 grid units.  In these||les
paper {22] and nonwoven fabrics (restriction to the v and size of the simulation sample was L, X |{l IS
v directions can be relaxed and does not play an important ~ 20wp X 20wz X 10w, The relaxation panaineter||
role here), the LBGK collision operator was varied fram||(].068) 1«

Simulations of fluid flow through the web in the =  corresponding to the dynamic viscosity » =|[Bm ||t
direction were done using the !9-link LBGK (lattice- [9] ranging from 0.056 to 0.5 (in grid units),
Bhatnagar-Gross-Krook) model [9]. Flow was induced In Fig. 3 we show the computed permgaibity||as
by applying a “gravitational” body force on the fluid [14]. function of viscosity » for two test systems| gl |differ
This was accomplished simply by adding at each time step porosities. The nearly linear dependence on [#| 0f]

a fixed amount of momentum in the negative z direction ability [14] is clearly seen in this figure. Haf|¢) ||
to all “particles” within the pore space. In Fig. 2 we  [Fig. 3(a)]. the result is already almost indepg Eert ]
show the simulated stationary velocity field for a low in grid resolution for the smallest value of v sﬂ sty || B
the : direction through the highly inhomogeneous sample  high porosities ¢ (with v = 0.056). resolutign | i f||+
shown in Fig. 1. can thus be used. For a smaller ¢ finite-size|gffects b

It is evident that there are large fluctuations in the come more pronounced. Comparing the simu|alg jp"ﬂ{E
velocity field reflecting the variations in the local porosity abilities for & = 0.39 [Fig. 3(b)] at » = (086, we| i
of the sample. The average velocity {v.) shown in Fig. 2 conclude that we = 10 is satisfactory for loy| parasities|
ts (v.) = 0.001 42 (in grid units), with a standard deviation In the actual permeability simulations fibgry off |3spect
of Av. = 0.001 28. These fluctuations, which are inherent ratio 20, i.e., of size wrg X wp X 20wg, and| d sampie
in random porous structures, will affect the permeability.  of dimensions 80wg X 80w X [Owe were|||used jr
except at very high porosities, such that it is expected to  Fig. | we show an example of the webs |for| |whigh
become higher than that for regular arrays of pores [5]. simulations were performed.) The flexibility| parameiten|IF
This effect will be seen in the results given below. was varied from 0 to 3 which corresponds 9 pcIJ( ijl £ 5

In a stationary state the body force applied to the fluid  ranging from 0.95 10 0.42. In the simulations||r| &/ D66
is completely canceled by viscous friction forces due to (v = 0.056) and two different values for wig |fere (U3
fibers. Once the total flux of flutd through the sample  For & > 0.6. wr = 5 was used, and the| |4(Zs JW the
and the viscosity of the fluid are known, the permeability  simulation lattice was 400 X 400 X 60 grid pojnts)|| For
of the sample can then be determined from Darcy’s law ¢ < 0.6, we =10 and a lattice of 800 X| BN M| 1|10
Eq. (1). 1tis well known that the permeability of a porous grid points were used. For these discrefigationsl| |the
medium determined by the present method depends on

FIG. 2(colory.  The velocity field of Auid No ' ‘l Il‘ .lll iy
FIG. lteolor). A fiber-web sample constructed with the depo- tiber web shown in Fig. 1. Bright colors indigiy ||k
siion model.  The porosity of the web s (0L.83. velocity.




VOLUME 80, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JANUARY 1998

porosity ¢=0.67 porosity ¢=0.39

0.5 0.05
NO "O "r=5
X 0.4 =5 L 3 0.04- 8
2 2
= 0.31 -2 0.031 w=10 |
=) (o)
L1 [
E 0.2- w=0 E 0.02- -
Q (1]
(=8 a

0.1 - . 0.01 -
£ w| $ " (b)

a
0.0 T T 00 T T
00 02 0.4 08 00 02 04 08
viscosity v viscosity v

FIG. 3. Calculated dimensionless permeability k/a”> as a
function of viscosity » for two test samples with porosities
{a) ¢ =067 and (b) ¢ = 0.39. Here a = wg/2 is the hy-
draulic radius of the fibers. The fiber widths {grid resolutions)
ﬁrc wp = 5 (squares), 10 (circles), and 20 (star).

estimated finite-size errors of the simulated permeabilities
were less than 15%.

Simple dimensional analysis suggests that, for a constant
body force, the saturation time for reaching the steady state
is proportional to Rgm /v, where Ry is the characteristic
size of pores. For systems with high porosity, saturation
time thus tends to become very long. This time can,
however, be essentially reduced by using an iterative
momentum relaxation (IMR) method in which the applied
body force is changed during simulation depending on
the value of the friction force. A thorough description
of the IMR method and a detailed benchmark analysis
of our parallel lattice-Boltzmann code will be published
separately [23,24]. In the IMR method the number of time
steps required for saturation {with 1% accuracy) varied
between 1000 to 8000 depending on porosity, and was
typically less than half of that needed in the constani-

dy-force method. When 32-bit floating point numbers
were used, the larger simulation lattice required 5.4 Gbyte
of core memory. The simulations were therefore carried
out using 64 nodes (300 MHz CPUs with 128 Mbyte of
memory) on a Cray T3E system. The required CPU time
was typically between | and 4 hours.

In Fig. 4 we show the simulated permeability of the
random fiber web as a function of its porosity. In this
figure solid triangles denote the simulated values: the
related porosities were given by the flexibility parameter
(F) used. It is evident that there are two distinct features
in the simulated k{¢) curve. First, it seems to diverge
as expected when ¢ — 1, and, second, k seems to be an
exponential function of ¢ for a rather wide range of ¢:
042 < ¢ < 0.85.

A fit to the last five points with highest porosities of the
form k/a*> = const X (1 — ¢)™# gives p = 1.92. This
result shows that even for these rather high porosities
¢ = 0.96, the system is not in the true asymptotic region
for which & = 1 [25]. The reason for this is that the
fibers of the web are still close enough to each other
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FIG. 4. The calculated dimensionless permeability k/a® as
a function of porosity (black triangles). Open squares and
circles show the experimental results for fibrous filters [5] and
compressed fiber mats [3.5), respectively. Curve (1) i5 the
analytical result for cubic latice given in Ref. [5], curve (2)
is the numerical result for an fce lavice from Ref. [19], and
curve (3) shows the result of a fit with the Kozeny-Carman
relation, Eq. (3).

so that there are significant hydrodynamic interactions
between them. On the other hand, the simple capillary-
tube model by Kozeny and Carman [1] gives k/a’ «
@3(1 — ¢)72 in this limit so that, as expected, the
simulated behavior of k(¢) is rather in good agreement
with this model when ¢ =< 1.

A fit of the form In(k/a?) = 4 + B¢ to the rest of
the simulated points gives A = —8.53, B = 10.4, with a
very high correlation between the simulated peints and the
fitted curve. So far there have been no analytical results
which would have produced this kind of exponential
behavior at intermediate porosities. It will not hold near
the percolation threshold at which permeability vanishes.
This critical region is, however, beyond the present
computational capabilities.

Experimental results [3,5], shown in Fig. 4 as open
circles and squares, conforrn well with the simulated
points. Notice that there is no free parameter in the
present mode! as permeability is scaled by the square of
the hydraulic radius of the fibers, and the relaxation pa-
rameter r is used only to fix the necessary grid resolution.
The level of agreement is therefore astonishingly high. It
also shows that the model web used here captures the es-
sential features of the fibrous filters and compressed fiber
mats used in the experiments.

Also shown in Fig. 4 are three curves which are re-
sults of previous analytical [5] [curve (1)], numerical
[19] [curve (2)], and semiempirical [},3,4] [curve (3)]
considerations. Curve (1) is given by k/a® = —In(l -
é) — 0.931 [with O(1/In(l — ¢))], an expression ob-
tained [5] for a cubic lattice model, and curve (2) results
from a numerical solution [19] for the Stokes flow in a
face-centered-cubic (fcc) array of fibers. Both these
curves are below the simulated points, especially for de-
creasing porosity. Notice that the fcc result also fol-
lows an exponential law at intermed:iate porosities. [t is
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30%-40% below the random fber-web result for these
porosities, but approaches the latter for small porosities
since the percolation threshold of the fce lattice [19] is at
a much lower porosity.

Curve (3) is the Kozeny-Carman expression {1]

k= ¢'/cs? (3)

where § is the specific surface area of the web, and ¢ is a
constant in capillary-tube models but is known to depend
on porosity in fibrous materials [4]. An empirical fit to
measured porosities of these materials gives [3.4] ¢ =
3.5¢°[1 + 571 — $))/(1 — $), and we have used
this expression to get the curve (3) from Eg. (3). The
specific surface area § was determined from the surface
area of the (straight) fibers used to construct the web by
subtracting the area of the interfiber contacts. Because
of bending of the fibers this expression gives a lower
bound for §, and curve (3) is expected to overestimate the
permeability. This ts indeed what happens (cf. Fig. 4).

Encouraged by the exponential behavior at intermediate
porosities of k(¢ ), we have made an interpolation formula
that connects this behavior with the right asymptotics in
the limit ¢ — 1. We find that the expression k/a® =
AleB17¢) — 117! with A = 5.55, B = 10.1 fits all the
simuiated points very well. So far we have no theoretical
arguments to support this very simple form for the
permeabulity.

In conclusion, we used the lattice-Boltzmann method
on a massively parallel computer (0 solve ab initio the
permeability of a large random 3D fiber web as a function
of its porosity in a large porosity range. An iterative
momentum relaxation method was used to considerably
reduce the computing time needed for reaching stationary
flows. The web samples used were constructed by a
growth algorithm [20] that produces random structures
of flexible fibers, closely resembling those of, e.g., paper
sheets and nonwoven fabrics. The simulated results were
found to be in exceilent agreement with experiments
on the materials mentioned above. There were no free
parameters in the simulations which would have been
used for fitting with the experimental results, and also in
this sense the results reported are ab inirio. We found that
the exponential dependence on porosity of permeability in
a wide range of porosities is a generic feature of fibrous
porous materials, independent of whether they are random
or not. So far there is no theoretical explanation for
this phenomenon, but a simple interpolation expression
for k(¢p) was formulated which seems o give the correct
behavior in the whole range of porosities above the critical
region near the percolation threshold. The results reported
here clearly demonstrate that ab initio simulations of
flow in complicated structures are possible (see ulso
Refs. [14,15]), and many open problems in this area can
and will now be addressed.

We thank the Center for Scientific Computing in
Finland (Sami Sauarinen and Tomi Salminen in particular)
for providing computational resources, technical support,
and expertise on visualization.
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