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Abstract: The total computing capacity of the work-
stations that are present in many organisations today is
often under-utilised, as the performance for parallel pro-
grams ts unpredictable. These computing resources can
be harnessed more efficiently by using a dynamic task
allocation system. The Esprit project Dynamite pro-
vides such an automated load balancing system, through
the migration of tasks. These tasks are part of a par-
allel program wusing a message passing library such as
PVM or MPI. Currently Dynamite supports the PVM
library only, but it can be extended to support the MPI
library. The Dynamite package is completely transpar-
ent, i.e. neither system (kernel) nor application source
code need to be modified. Dynamite supports migration
of tasks using dynamically linked libraries, open files and
both direct and indirect PVM-connections.

1 Introduction

With the introduction of more powerful processors
every year, and network connections becoming both
faster and cheaper, distributed computing on stan-
dard PCs and workstations of an organisation be-
comes more attractive and feasible. Consequently,
the interest in special purpose parallel machines is
declining in favour of the clusters of workstations.
Dynamite [1] provides a dynamic load balancing
system for parallel jobs running under PVM [2]
when run on the aforementioned clusters of work-
stations. The load balancing is realised through the
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TDynamite is a collaborative project, funded by the Euro-
pean Union as Esprit project 23499. Of the many people that
have contributed, we can mention only a few: J. Gehring,
A. Streit, F. van der Linden, J. Clinckemaillie, A. H. L. Em-
men.

migration of tasks. For technical reasons which be-
come clear later on, the (processor) architecture and
the operating system version need to be the same.

Dynamite is currently operational under SunOS
5.5.1, SunOS 5.6 and Linux 2.2.x!. It aims to pro-
vide a complete solution for dynamic load balanc-
ing, see Section 6.

Dynamite is an acronym for DYNAMIc¢ Task mi-
gration Environment and is also known as DPVM
[3] (Dynamic-PVM), since it is based on PVM, ver-
sion 3.3.11. Although Dynamite currently supports
PVM-based programs only, the principles of Dyna-
mite should be easily portable to MPI [4]. The mod-
ular design of Dynamite supports this portability
as well. For MPI, task migration has already been
studied in Hector [5]. Various PVM variants sup-
porting task migration have been reported, such as
tmPVM [6], ChaRM [7], DAMPVM [8] and MPVM
[9]. Systems that migrate sequential jobs have also
been studied, e.g. Codine [10] and Condor [11, 12].

The motivation for a continuous optimal task al-
location is three-fold:

e overall performance is determined by the slow-
est task,

e dynamic run-time behaviour of both task (the
amount of computational resources needed by
a task) and node (computational resources of-
fered by a node) may vary in time,

e computational resources used by long-running
programs might be reclaimed on demand.

The Dynamite architecture (see Figure 1) is built
up from three separate parts:

1. The load-monitoring subsystem. The load-
monitor should leave the computation (almost)
undisturbed.

2. The scheduler, which tries to make an optimal
allocation.

1Only libc5 and glibc2.0 libraries are currently supported,
glibc2.1 is expected to be supported soon.
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Figure 1: Dynamite run-time system. An application is decomposed into several subtasks first. An initial
placement is determined by the scheduler, one that needs not be optimal yet. When the application is run, the
monitor checks the capacity per node. If it is decided that the load is unbalanced (above a certain threshold),
one or more task migrations might be necessary to establish a new and more optimal load distribution.

3. The task migration software, which allows a
process to checkpoint itself and to be restarted
on a different host. Basically, the checkpoint
software makes the state of a process persistent
at a certain stage. The following items which
make up the state of a process are preserved:

e direct and indirect PVM connections,
e handling of shared libraries,

e open files.

In this article we will focus on the latter, technically
most challenging part of this system.

From the beginning, Dynamite was required to
be as transparent to the user as possible. This im-
plies a.o. that the checkpoint/migration mechanism
must be implemented completely in user-space and
no additional changes to the code of the program
may be required. Indeed, the user only has to link to
the Dynamite dynamic loader? (which contains the
checkpoint/restart mechanism and is a shared li-
brary itself; it is based on the Linux dynamic loader
1.9.9) and the DPVM library. From then on, the
complete Dynamite functionality is available. It
is also necessary to use Dynamite’s infrastructure
(daemons, group server, console and such) as func-
tionality has been added and protocols have been
adapted.

Users of sequential programs that do not use
PVM can merely link their applications using the
Dynamite dynamic loader, thus taking advantage of
the checkpoint facility.

First we will pay some attention to the architec-
ture of Dynamite in Sections 2 and 3. Thereafter
quantitative results will be presented, which have

2The dynamic loader can be specified by using the appro-
priate compiler option.

been obtained with Dynamite running on a small
Linux cluster. These data will be compared to stan-
dard PVM runs.

2 Checkpointing mechanism

The checkpointing of a process basically boils down
to writing the address space of a process to a file and
retrieving its contents afterwards (mmapping it to
memory). This includes the shared libraries, which
may be used by the process. In addition, the con-
tents of (some of the) processor registers have to be
taken care of, such as the program-counter and the
stack pointer. Moreover, a proper implementation
should also consider communication channels such
as open files and TCP/IP sockets.

The checkpointing functionality was imple-
mented in the dynamic loader, to which the fol-
lowing changes have been made:

1. it can handle a checkpoint signal (SIGUSR1),
see Section 2.1,

2. it can treat a checkpoint file just like any other
executable, see Section 2.2,

3. it wraps certain system and library calls, see
Section 2.3:
e for open files (a.0. open, write, creat),
e for memory allocation (mmap, munmap,

mremap®),

4. cross-checkpoint data is stored separately, see
Section 2.4.

3Linux specific.



2.1 Checkpoint signal

When a checkpoint signal is sent to the process,
control is passed to the checkpoint handler.

First of all a sigsetjmp call is made in order to
save the current signal status and the contents of
the processor registers (on Linux this is a setjmp
call). The return value of sigsetjmp (zero if it is
called for the first time) distinguishes between the
checkpoint and restart procedure.

Next the name and location of the checkpoint-file
is determined. If the application has been linked
against the DPVM library, this name is determined
by the dpvm_usersave routine in the DPVM library.
The checkpoint file is placed in a directory which
must be accessible from all the nodes in the cluster
(indicated by the DPVM_CKPTDIR environment vari-
able).

After saving the signal mask and the status of
the open files, the checkpoint itself is created in the
routine ckpt_create. Basically, this routine saves
the address space of the process:

o the .txt-segment,

e the .bss-segment,

the stack used by the process,

the dynamically allocated pages,

shared libraries used.

In addition, some extra sections are stored as
well, such as the section containing the check-
point filename and the section containing the cross-
checkpoint data pointer, see Section 2.4.

2.2 Restoring from the checkpoint

When a binary is run, the dynamic loader is exe-
cuted first. As soon as the dynamic loader has fin-
ished, control is passed to the actual program. Of
course, this holds also for the Dynamite dynamic
loader. One of the first things this loader tries to
locate is the special section containing the name of
the checkpoint file. If such a section is present, it
knows that it is restoring from a checkpoint, and
specialised subroutines take care of a proper han-
dling of the process’ segments.

Eventually, signal status and processor registers
are restored, after which the process returns from
sigsetjmp taking the appropriate branch for re-
stored programs.

Finally, the process resumes its execution at the
point where it left off.

2.3 Wrapped system calls

The reason for wrapping certains system- and li-
brary-calls is that the checkpointing/restart (i.e.
migration) facility should be able to deal with open
files. Basically, these wrapper routines invoke the
original C-library calls, doing some extra adminis-
tration, which allows the open file connections to
be restored properly.

The reason for implementing the syscall-wrapper
mmap is different, however. Of course, the memory
allocated by this syscall must be restored too, when
restarting a checkpointed process. This implies that
all the memory allocations done by mmap have to be
monitored as well*. This holds also for the mapping
of the shared libraries by the process.

2.4 Cross-checkpoint storage

A data structure is defined as a container for those
objects which need to be preserved across a check-
point /restart, such as the mapping of the shared
libraries used by the process or the status of the
open files. This data structure is also part of the
checkpoint file.

3 The DPVM library

PVM tasks communicate with each other. During
the migration process, care must be taken to en-
sure that the communication is retained and that
no messages are lost.

3.1 PVM migration overview

The network of PVM daemons plays a central role
in initiating and co-ordinating the migration of
tasks. On reception of the move command, con-
trol is passed to the pvm_move function, which steps
through the following stages successively:

1. PvmMoveCreateContext
2. PvmMoveRouteBroadcast
3. PvmMoveCheckpoint

4. PvmMoveRestart

The PvmMoveCreateContext stage is executed on
the destination node, i.e. the node where the task
is to be migrated to. A new PVM task context
is created, so that the PVM daemon can accept

4 Although under Solaris these mmap-calls are merely in-
voked by the locale/nls-related libraries, it is used frequently
by the standard Linux C-library. Therefore it was and is
important that these memory regions are taken care of prop-
erly.



any messages addressed to the migrating task and
temporarily store them.

In the PvmMoveRouteBroadcast stage, all PVM
daemons but the source and destination one are no-
tified that a migration is about to take place. The
daemons update their routing information, so that
messages sent via the daemons to the migrating task
are sent to the destination node.

The PvmMoveCheckpoint stage is executed on the
source node, i.e. the node the task runs on be-
fore the migration takes place. First, routing in-
formation is updated, so that any messages sent to
the migrating task via the PVM daemon are for-
warded to the destination node instead of being
delivered locally. Finally, the task finds out that
it is to be migrated. A SIGUSR1 signal is sent to
the task by the PVM daemon, along with the end-
of-connection TC_EOC message. Control is passed
to the checkpoint signal handler in the Dynamite
dynamic loader. However, before the actual check-
pointing takes place, the signal handler invokes the
DPVM function dpvm_usersave, which reads all
the available data from all connections, closes the
task connections and sends the final TM MIG migra-
tion message to the local PVM daemon. Subse-
quently, the checkpoint handler creates the check-
point file and terminates the process.

In the final PvmMoveRestart stage, executed on
the destination node, the task is restarted at the
new location using the spawn_task function. In
the process of restarting the task from the check-
point file, the dynamic loader invokes the DPVM
function dpvm userrestore, which reconnects the
restored task to the PVM daemon on the destina-
tion node. Control is passed back to the application
code, and the PVM daemon can finally deliver all
messages addressed to the migrating task which it
had to store during the migration.

3.2 Direct connections

By default, PVM tasks use indirect connections to
communicate with each other. In this mode, mes-
sages between tasks are routed through two PVM
daemons, local to the source and destination tasks.
As a consequence, PVM application tasks do not
have any remote network connections open, their
only communication channel is with the daemon.

To improve efficiency, an alternative direct com-
munication mode is available on application re-
quest. In this mode, tasks that wish to communi-
cate with each other can establish a direct TCP /IP
network connection between themselves.

Special care must be taken when migrating a task
that has direct connections with other tasks, or mes-
sages that are being processed or are cached in the
kernel buffers will be lost during the migration.

In stages PvmMoveCreateContext to PvmMove-
Checkpoint, along with updating the routing infor-
mation, DPVM notifies all PVM tasks that a migra-
tion is about to take place. This is done by sending
special TC_MOVED control messages to all tasks. Be-
cause it is important that the tasks reply in a timely
manner, PVM daemons also send a SIGURG signal
along with the TC_MOVED messages. It is the respon-
sibility of the asynchronously invoked signal handler
function dpvm oobhandler to get the message.

In PvmMoveCheckpoint stage, in the dpvm_user-
save function, the migrating task sends the TC_EOC
message via all open direct connections. The peer
tasks read all data from the connection until they
receive TC_EOC, at which point they send the TC_EOC
message back. The migrating task reads all data on
its side of the connection, and closes the connection
upon reception of TC_EOC. The peer tasks receive
EOF at this point, and can close the connection on
the other side.

Any messages that were only partially sent by
the migrating task are fully resent after the task is
restarted. Any messages that were partially sent by
the peers of the migrating task are fully resent via
PVM daemons, i.e. indirectly. The direct connec-
tion is reestablished as soon as the migrating task
restarts and there are new messages to be sent.

4 Limitations

The Dynamite system has a number of limitations,
most of which are the limitations of the checkpoint-
ing mechanism itself. The checkpointer is designed
to preserve the memory image of the process and its
open files, but nothing more than that. For exam-
ple, processes that use any of the following features
will not be migrated properly:

e pipes,

e sockets,

System V IPC, like shared memory,
e kernel supported threads,

e mmapping/opening of special files, like /dev/...,
/proc/..., etc.

Some of these, like sockets, might eventually be
supported, but supporting shared memory, e.g., is
practically unsolvable.

Another limitation, specific to the DPVM sub-
system, is an inability to migrate the master PVM
task if it is started from the terminal window. Such
a task checkpoints correctly, but in order to restart
properly, it would have to be restarted manually
from a terminal window, whereas it is started by



the PVM daemon on the destination host, without
standard input and with redirected standard out-
put/error streams. Because of these limitations, the
restarted process hangs.

5 Performance measurements

In order to prove that Dynamite delivers what it
promises, a number of tests have been conducted.

Some stability testing has been done. Under So-
laris, Dynamite was able to make over 2500 suc-
cessful migrations of large processes (over 20 MB of
memory image size) of a commercial PVM applica-
tion Pam-Crash [16] using direct connections, after
which the application finished normally. Similar re-
sults have been obtained under Linux.

A series of performance measurements was made
on the selected nodes of the DAS cluster [13], which
run Linux kernel 2.0 and 2.2 on PentiumPro 200
MHz CPUs. The scientific application Grail [14,
15], a FEM simulation program, has been used as
the test application.

Parallel Decomposition

‘ environment sparse | redund. ‘
1| PVM 1854 2360
2 | DPVM 1880 2468
3 | DPVM + sched. 1914 2520
4 | DPVM + load 3286 2947
5 | DPVM + sched. + load 2564 3085

Table 1: Execution time of the Grail application, in
seconds.

Table 1 presents the results of these tests, ob-
tained using the internal timing routines of Grail.
Fach test has been performed a number of times
and an average of the wall clock execution times of
the master process (in seconds) has been taken. The
tests can be grouped into two categories, depending
on the decomposition used:

e sparse — the parallel application consisted of
3 tasks (1 master and 2 slaves) running on 4

nodes,

e redundant — the parallel application con-
sisted of 9 tasks (1 master and 8 slaves) running
on 3 nodes.

To obtain the best performance, it would be typical
to use the number of nodes equal to the number
of processes of the parallel application. Neither of
the above decompositions does that. In case of the
sparse decomposition, one node is left idle (PVM
chooses to put the group server there, but this one
uses only a minimal fraction of CPU time). Such a
decomposition would be wasteful for the standard
PVM. In the redundant case, each node runs 3 tasks

of the application (one of the nodes also runs the
group server). Although the number of nodes used
when running the two decompositions is different,
comparing the timings makes sense, because for the
sparse decomposition only 3 nodes at a time are
used, just like for the redundant one.

In the first set of tests presented in Table 1, stan-
dard PVM 3.3.11 has been used as the parallel en-
vironment. Not surprisingly, the sparse decomposi-
tion wins over the redundant one, since it has lower
communication overhead.

In the second row, PVM has been replaced by
DPVM. A slight deterioration in performance (1.5-
4.5%) can be observed. This is mostly the result of
the fact that migration is not allowed while execut-
ing some parts of the DPVM code. These critical
sections must be protected, and the overhead stems
from the locking used. Moreover, all messages ex-
changed by the application processes have an addi-
tional, short (8 byte) DPVM fragment header.

In the test presented in the third row, the
complete Dynamite environment has been started:
in addition to using DPVM, the monitoring and
scheduling subsystem is running. Because in this
case the initial mapping of the application processes
onto the nodes is optimal, and no external load
is applied, no migrations are actually performed.
Therefore, all of the observed slowdown (approx.
2%) can be interpreted as the monitoring overhead.

In the fourth set of tests an artificial, external
load has been applied. This has been achieved by
running a single, CPU-intensive process for 600 sec-
onds on each node in turn, in a cycle. Since the
monitoring and scheduling subsystem was not run-
ning, no migrations could take place. A consider-
able slowdown can be observed, although it is far
larger for the sparse decomposition (75%) than for
the redundant one (19%), actually making the lat-
ter faster. This is a result of the UNIX process
scheduling policies: for sparse decomposition, the
external load can lengthen the application runtime
by a factor of 2, while for the redundant decompo-
sition by no more than 33%, since there are already
3 CPU-intensive processes running on each node,
so the kernel is unlikely to grant more than 25% of
CPU time for the external load process. This shows
that sparse decomposition, although faster in a sit-
uation close to ideal, performs rather badly when
the conditions deteriorate. The redundant decom-
position is far less sensitive in this regard.

The final, fifth set of tests is the combination of
the two previous tests: the complete Dynamite en-
vironment is running, and the external load is ap-
plied. Dynamite clearly shows its value in case of
the sparse decomposition, where, by migrating the
application tasks away from the overloaded nodes,
it manages to reduce the slowdown from 75% to



34%. The following factors contribute to the re-
maining slowdown:

e it takes some time for the monitor to notice
that the load on the node has increased and to
make the migration decision,

o the cost of the migration itself,

o the master task, which is started directly from
the shell, cannot be migrated; when the exter-
nal load procedure was modified to skip the
node with the master task, the slowdown de-
creased by a further 10%.

Turning to the redundant decomposition, it can
be observed that the Dynamite scheduler actually
made the matters worse, increasing the slowdown
from 19% to 25%. This result, although unwel-
come, can easily be explained. The situation was
already rather bad even without the external load:
not only were all the nodes overloaded, they were
also overloaded by the same factor (3). Therefore,
the migrator had virtually no space for improve-
ment, and its desperate attempts to migrate the
tasks actually exacerbated the situation, due to the
lack of nodes with significantly lower load. It can
be argued that the migrator should have refrained
from making any migrations in this case, though.
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Figure 2: Execution progress of Grail for sparse de-
composition. Note that the PVM run was done without
any external load on the system. Allowing Dynamite to
migrate tasks results in a clear performance gain, when
there is a time-varying external load (see text).

Figure 2 presents the execution progress of Grail
for sparse decomposition. For the standard PVM
with no load applied this is a straight, steep line.
The other two lines denote DPVM with load ap-
plied, with and without the monitoring subsystem
running. Initially, they both progress much slower
than PVM : because the load is initially applied to
the node with the master task, no migrations take

place. After approximately 600 seconds the load
moves on to another node. Subsequently, in the case
with the monitoring subsystem running, the migra-
tor moves the application task out of the overloaded
node, and the progress improves significantly, com-
ing close to the one of the standard PVM. In the
case with no monitoring subsystem running, there
is no observable change at this point. However, it
does improve between 1800 and 2400 seconds from
the start: that is when the idle node is overloaded.
After 2400 seconds from the start, the node with the
master task is overloaded again, so the performance
deteriorates in both DPVM cases.

6 Conclusions and future

prospects

Concluding, the concept of load balancing by task
migration has been shown to work. Moreover, we
have succeeded in implementing such a system com-
pletely in user space. Since the system is stable now,
further study on the scheduler can be carried out.

It has also been demonstrated that Dynamite
takes care of an optimal utilisation of system re-
sources for long-running jobs (a couple of hours and
more).

Dynamite aims to provide a complete integrated
solution for dynamic load balancing. In order to
accomplish this, the following challenges are still to
be solved:

e support for MPI,

e generic support for the migration of the
TCP/IP sockets,

e support for Linux GNU libc 2 library,

Meanwhile, Dynamite will be used as a research
tool, in order to do experiments on dynamic task
scheduling, which is an area of active research.
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