Reference to this paper:
K.A. Iskra, F. van der Linden, Z.W. Hendrikse, B.J. Overeinder, G.D. van Albada, P.M.A. Sloot, “The
implementation of Dynamite — an environment for migrating PVM tasks,” Operating Systems Review, Vol.
34, No. 3, pp-40-55, (July 2000).
(Copyright Universiteit van Amsterdam).

The implementation of Dynamite — an environment
for migrating PVM tasks

K. A. Iskra, F. van der Linden, Z. W. Hendrikse, B. J. Overeinder,
G. D. van Albada, P. M. A. Sloot

Informatics Institute, Universiteit van Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
email: {kamil,frank,zegerh,bjo,dick,sloot }@science.uva.nl

Abstract: Parallel programming on clusters of
workstations is increasingly attractive, but dynamic
load balancing is needed to make efficient use of
the available resources. Dynamite provides dynamic
load balancing for PVM applications running under
Linux and Solaris. It supports migration of individual
tasks between nodes in a manner transparent both to
the application programmer and to the user, imple-
mented entirely in user space. Dynamically linked
executables are supported, as are tasks with open
files and with direct PVM connections. In this pa-
per, we describe the technical aspects of migrating
message-passing tasks.

Keywords: cluster computing, task migration,
message-passing, PVM

1 Introduction

As processors become more powerful and local area
networks become faster, and as the prices of both
decline, parallel computing on networked worksta-
tions becomes increasingly interesting and compet-
itive with dedicated parallel machines. PVM [1] and
MPI [2, 3] are two prominent examples of environ-
ments for parallel computing on clusters of worksta-
tions.

An important problem with using a cluster of work-
stations for parallel computing is that the available
capacity of individual nodes changes in time, as other
users execute their programs on the same nodes. The
resource requirements of the individual tasks of the
parallel application can also change in time. Due
to the time-varying performance requirements and
resources’ availability, the optimal task allocation

changes dynamically.

Building on earlier DPVM work by L. Dikken, F.
van der Linden, J.J.J. Vesseur, P.M.A. Sloot, R.N.
Heederik, and B.J. Overeinder [4, 5, 6], we have de-
veloped Dynamite! in the Esprit project 23499. Dy-
namite [7] attempts to maintain optimal task alloca-
tion for parallel jobs in dynamically changing envi-
ronments by migrating individual tasks between the
nodes. An additional advantage of task migration
is that it is possible to free individual nodes, should
they for example need to be serviced, without break-
ing the computations.

Dynamite supports applications written for PVM
3.3.x, running under Solaris/UltraSPARC 2.5.1 and
2.6 and Linux/i386 2.0 and 2.2 (libc5 and glibc 2.0
binaries are supported?). From the user’s perspec-
tive, all that is needed is to relink the application
with Dynamite’s version of the PVM libraries and
with the Dynamite dynamic loader. Moreover, the
checkpointing mechanism can be used for non-PVM
applications as well.

Essentially, Dynamite consists of three compo-
nents: migration, monitoring and scheduling. This
paper focuses on the first, on the technical aspects of
task migration in PVM.

The rest of this paper is organised as follows: Sec-
tion 2 presents an overview of the environment and of
issues associated with task migration. Section 3 de-
scribes the mechanisms of process checkpointing and
restarting. In Section 4, the modifications that had

IDynamite is a collaborative project between ESI, the
Paderborn Center for Parallel Computing, Genias Benelux and
the Universiteit van Amsterdam. Of the many people that have
contributed, we can mention only a few: J. Gehring, A. Streit,
J. Clinckemaillie, A.H.L. Emmen.

2glibc 2.1 is not supported at this point.

to be made to PVM itself in order to support task
migration are described. Section 5 describes the lim-
itations of the approach used, and Section 6 presents
an overview of Dynamite performance. Section 7
presents the related work, and Section 8 concludes
the paper with a summary and future work.

2 Migration overview

Parallel PVM applications consist of a number of pro-
cesses (also called tasks) running on interconnected
nodes forming a PVM wirtual machine. A PVM
daemon runs on every node and communicates with
other daemons using the UDP/IP protocol. PVM
tasks communicate with each other and with PVM
daemons using a message-passing protocol. PVM
message passing is reliable: no message can be lost,
corrupted or duplicated, messages between two indi-
vidual tasks arrive in the order sent.

In Dynamite, a monitor process is started on ev-
ery node of the PVM virtual machine. This moni-
tor communicates with the local PVM daemon and
collects information on the resource usage and avail-
ability, both for the node as a whole and individually
for every PV M task. The information is forwarded to
a central scheduler, which makes migration decisions
based on the data gathered. PVM daemons assist in
executing these decisions.

The term task migration is used to describe the
action of moving a running process from one node to
another.

First, the state of the running process must be con-
sistently captured on the source node. This opera-
tion is known as checkpointing. The process is sub-
sequently restored on the destination node, with its
state initialised from the checkpointed process. Thus,
its execution resumes from the point at which the
source process was checkpointed. Typically, the orig-
inal process on the source node is terminated.

An interface must be made available that allows
to trigger the checkpointing asynchronously from the
outside of the running process, for example from
within the local PVM daemon. Signals are typically
used for this purpose.

The items that contribute to the state of the run-
ning process include:

e memory segments: text (i.e. program code),
data, dynamically allocated data, shared li-
braries (text and data segments) and stack,

® processor registers,
o signal handlers and the signal mask,
e open files.

Capturing the shared libraries is in general problem-
atic, because no standardised interface is available
that would provide information on what shared li-
braries are in use and where they reside.

Open files pose another difficulty when migrating
tasks. Again, no standardised interface to get the list
of the currently open files is available. Moreover, the
open files might be local to the source machine, and
thus not readily available after the migration.

Processes that are part of the parallel PVM ap-
plication present additional difficulties. Every PVM
task has a socket connection (typically, TCP/IP)
with the local PVM daemon. This connection is used
for the indirect routing, i.e. when messages between
tasks are routed through the PVM daemons. PVM
tasks can also establish point-to-point direct TCP/IP
communication channels with each other, to improve
the performance. Extra care must be taken when mi-
grating PV M tasks to ensure that they do not perma-
nently lose the connection with the rest of the parallel
application, and that the PVM message protocol as
outlined above is not violated.

3 Preserving the memory image

Preserving the memory image of a process boils
down to writing the process’s address space to a file
(checkpointing) and retrieving its contents afterwards
(restoring it to memory). This includes the memory
segments of the process itself and those of the shared
libraries used by the process, to make the checkpoint
file self-contained. In addition, the contents of pro-
cessor registers have to be taken care of, such as
the program-counter and the stack pointer. More-
over, a comprehensive implementation should also
consider communication channels such as open files
and TCP/IP sockets.

The Dynamite checkpointing support has been im-
plemented directly in the dynamic loader: the Linux
ELF dynamic loader version 1.9.9 has been modi-
fied to provide the necessary functionality under both
Linux and Solaris. The ELF dynamic loader is a
low-level user-space component of a running UNIX
process: this is where the checkpointing can be im-
plemented most efficiently and transparently. The

00010000 8K r/x
00020000 8K r/w/x

dev:176,4341 ino:259415
dev:176,4341 ino:259415

00022000 232K r/w/x [heap]
EF680000 592K r/x /usr/1lib/libc.so.1
EF714000 56K - [anon]
EF722000 32K r/w/x /usr/lib/libc.so.1l
EF72A000 8K r/w/x [anon]
EF780000 8K r/x /usr/1ib/1libdl.so.1
EF790000 8K r/w [anon]

EF7A0000 80K r/x dev:176,4341 ino:651982
EF7C2000 16K r/w/x dev:176,4341 ino:651982
EF7C6000 208K r/w/x [anon]
EFFFAQQ0 24K r/w/x [stack]
a
Figure 1:

advantages of implementing checkpointing support in
the dynamic loader include:

e the ability to run arbitrary code before the ap-
plication starts running, like installation of the
checkpoint signal handler: there is no need to
modify the startup code in the crt *.o files nor
to change the name of the main function in the
application source code,

e the ability to wrap any dynamically-bound func-
tion calls, like file manipulation or memory man-
agement calls: there is no need for additional li-
braries when linking the application, the original
library functions are invoked by the wrappers,

o straightforward support for shared libraries: the
dynamic loader has full control over where to
map them and can record this information for
later retrieval.

When the application starts, the dynamic loader
records the locations of all the memory segments:
text, data and stack; it loads requested shared li-
braries into memory, also recording their locations,
and performs dynamic linking. Afterwards, the han-
dler for the checkpoint signal (currently SIGUSR1) is
installed, and the user code starts executing.

Figure 1 (a) presents an example memory map of a
running process, obtained with the /usr/proc/bin/-
pmap command under Solaris 2.6 (and minimally
hand-edited to fit on the page). The first three lines
denote the text, data and heap (i.e. dynamically al-
located memory) segments (the dev entries indicate
that the mmapped file resides on a remote NFS server).
There is a large space afterwards (please compare
the addresses), since the heap can grow upwards.

00010000 8K r/x dev:176,4341 ino:487872
00020000 8K r/w/x dev:176,4341 ino:487872
00022000 232K r/w/x [heap]
EF680000 592K r/x dev:176,4341 ino:487872
EF722000 40K r/w/x dev:176,4341 ino:487872
EF780000 8K r/x dev:176,4341 ino:487872
EF790000 8K r/w [anon]
EF7A0000 80K r/x dev:176,4341 ino:651982
EF7C2000 16K r/w/x dev:176,4341 ino:651982
EF7C6000 208K r/w/x [anon]
EFFFC000 16K r/w/x [stack]

b

Process memory map before (a) and after (b) the migration.

The next four lines are the entries of the dynami-
cally linked 1libc library: text, an unused memory
hole, data and uninitialised data (anon entries indi-
cate zero-initialised segments), followed by the text
segment of the 1ibd1 library. The next four entries
belong to the dynamic loader itself: there is a page
used as a pool for dynamic memory allocations early
in the dynamic loader’s startup procedure, followed
by text, data and uninitialised data segments of the
dynamic loader. Finally, there is the stack segment,
which grows downwards, so there is some space left
for it between the last two segments (again, please
compare the addresses).

3.1 Checkpointing

Checkpointing takes place when the checkpoint sig-
nal is delivered (in case of DPVM applications, this is
done by the local PVM daemon). Before the ckpt_-
handler signal handler starts executing, the operat-
ing system preserves the contents of all the CPU reg-
isters on the stack. This simplifies the checkpointing
procedure.

The signal handler calls sigsetjmp in order to save
the signal mask and essential registers, in particular
the stack pointer, in a buffer — these will be used
when restoring.

Next the location of the checkpoint file is deter-
mined. This depends on environment variables such
as DPVM_CKPTDIR and HOME. For DPVM applications,
the dpvm_usersave?® procedure is invoked to prepare

3The dpvm_usersave function and its companion dpvm_-
userrestore are hooks for the user to provide code to be ex-
ecuted during checkpointing and restoration. We use these
functions to preserve PVM communication status across a mi-
gration.

for the checkpointing, see Section 4.3 for details.

The state of open files is saved subsequently. For
every open file, a position of the file pointer is ob-
tained with the 1seek call. Next, the state of sig-
nal handlers is obtained and saved using sigaction.
Other relevant file status information is captured dur-
ing program execution by the wrappers for functions
like open and chdir.

Finally, the ckpt_create procedure writes the
checkpoint file to disk. All the data segments must
be stored, since the process has very likely modified
them. This applies both to initialised and originally
uninitialised segments, which are merged when check-
pointing. The dynamically allocated heap segment,
the top of which is obtained using the sbrk call, is
also stored. Both the application data segments and
those of the shared libraries are stored, as is the CPU
stack segment. The text segments of the process itself
and those of the dynamically linked shared libraries
are also stored. While this is not strictly required,
it makes the whole migration operation more robust,
since it eliminates the danger of using a wrong ver-
sion of some library when restoring, should the two
machines be not strictly identical, as often is the case.
Essentially, all of the process’s address space is writ-
ten to the file.

Certain low-level data is needed by the dynamic
loader when restoring, most importantly the precise
locations of all the memory segments and information
on the state of open files. All such cross-checkpoint
data is stored in the privdata structure, which is
part of the data section, and is thus stored in the
checkpoint file. A pointer to this data is stored sep-
arately, in a place easily accessible to the dynamic
loader when restoring.

Once the checkpoint file is written, the task termi-
nates.

3.2 Restoring

The checkpoint file is actually a complete ELF ex-
ecutable. The original executable file is not needed
when restoring. Instead, the checkpoint file should
be executed using standard UNIX exec call.

Just as with standard dynamically linked executa-
bles, the execution of the checkpoint file begins in the
dynamic loader. The checkpoint file differs substan-
tially from a standard executable, for example it has
additional sections. This allows the dynamic loader
to recognise that it is dealing with a checkpoint file
and to invoke the restoring procedure ckpt_restore.

At this point, the text and data sections — the first
two lines in Figure 1 (b) — are already loaded into
memory by the operating system, while the rest is
not. This is because these two sections are marked in
the executable checkpoint file as PT_LOAD, the rest as
PT_NOTE. The ELF specification requires that the op-
erating system automatically loads the former before
invoking the dynamic loader, but not the latter.

The dynamic loader finds the section that contains
the address of the cross-checkpoint data structure,
and goes on to restore the heap segment. A brk
call is used to allocate the memory for the heap and
its contents are initialised with a simple read from
the checkpoint file. Subsequently, all the shared li-
brary segments are restored by mmapping them from
the checkpoint file to memory.

Restoring stack is more complicated, since there is
a considerable danger of overwriting the frame and
return address of the currently executing function.
To prevent this from happening, the restoring routine
calls itself recursively until its stack frame is safely
beyond the dangerous area, at which point the stack
can be restored with a simple read call.

Experiments with different approaches to restor-
ing have been conducted, such as letting the dynamic
loader “manually” load all of the sections, including
the text and data sections, or letting the operating
system do all the loading by marking all the sections
as PT_LOAD. The heap segment turns out to be par-
ticularly sensitive to such changes: if shared libraries
are loaded by the kernel, the heap is assumed to be-
gin where they end, i.e., several GB from where it
should. Similarly, if the heap segment is merged with
the data segment and is mmapped into memory, it is
impossible to decrease it with sbrk, because for the
UNIX kernel it is not a heap segment. The current
behaviour most closely resembles that of the stan-
dard executables: text and data segments are loaded
by the kernel, heap is allocated using brk and shared
libraries are mmapped. It is thus expected to be the
most portable approach.

The address space of the process is basically re-
stored at this point. The following differences be-
tween Figures 1 (a) and (b) can be observed:

e since the memory hole in the middle of libc is
unused, it is “missing” in Figure 1 (b),

e initialised data / uninitialised data segments are
merged, which results in the second “missing” en-
try — comparing the sizes proves that nothing
is actually lost,

e shared libraries are mmapped from the checkpoint
file,

o stack usage is smaller — apparently, the process
in question needs a lot of stack when initialis-
ing, but since that initialisation is skipped when
restoring from the checkpoint, the stack usage is
now smaller.

A siglongjmp call is made to jump back to the check-
point signal handler and to restore the signal mask.

The state of the signal handlers is restored using
sigaction, and the previously open files are restored
using open and lseek. For DPVM applications, the
dpvm_userrestore procedure is invoked to recover
from the checkpointing, see Section 4.2 for details.

When the signal handler returns, the operating sys-
tem restores all the CPU registers and the applica-
tion resumes its execution, unaware of anything that
happened.

3.3 Call wrapping

As has been mentioned at the beginning of Section 3,
one of the advantages of adding checkpointing sup-
port to the dynamic loader is the ability to wrap
function calls. This is done at the application start-
time, without doing any modifications to the shared
libraries or to the object code of the application.

In the dynamic loader, the _d1_find_hash func-
tion is used to resolve unbound external references.
This function gets the symbol name (a character
string) as a parameter, and returns the address of
the symbol: this address is stored in the text or data
segment of the process. It is straightforward to mod-
ify this function to return faked addresses for certain
symbol names — the addresses of wrapper functions
in the dynamic loader. The wrappers can do their
job, and call the actual function, the address of which
is stored in a private variable of the dynamic loader.

The following functions are wrapped:

o file manipulation functions: open, close, creat,
dup, chdir, fchdir,

e memory mapping functions:
mremap?.

mmap, munmap,

The file manipulation functions must be wrapped in
order to have the names of the open files: they are
stored outside of the process’s address space, so they
can only be obtained when the file is being opened.
4

mremap is Linux specific.

The need to wrap memory management functions
became apparent when doing the port to Linux.
Linux libc library uses mmap intensively as an efficient
memory allocator. For example, malloc calls mmap
when asked for large memory blocks (where “large” is
defined to be more than or equal to 128 KB by de-
fault), for smaller blocks it allocates on the heap via
sbrk. Therefore, the mmapped memory regions must
be written to the checkpoint file and restored as well,
just like shared libraries.

4 Preserving communication

Checkpointing and restoring of the process’s address
space as described in Section 3 does not preserve com-
munication. Extra precautions that need to be taken
to preserve communication include:

o flushing and closing direct connections,

o disconnecting from the PVM daemon before
checkpointing,

o reconnecting to the PVM daemon after restoring.

The protocol used for the above steps must meet basic
correctness requirements with respect to the messages
exchanged between the tasks, namely:

e no messages are allowed to be lost,
e message data received must be the same as sent,

e messages must be delivered in the right order.

4.1 PVM task identifier

In PVM, every task of the parallel application has
a unique task identifier. Part of the task identifier
denotes the node on which the task is running, and
part denotes the task number within that node. The
PVM daemons need to know which node the task
runs on when routing a message to it.

It is essential that the task remain accessible
through its old identifier after it is migrated to a
different host, otherwise the messages sent by other
tasks will not reach it. In DPVM, the identifier of
the task never changes: it remains the same no mat-
ter how many migrations are made.

As a consequence, the node identifier encoded in
the task identifier cannot be trusted. DPVM solves
this problem by maintaining in the PV M daemons the
routing database for migrated tasks, which contains
the current locations of migrated tasks.

4.2 Migration protocol

The migration protocol of DPVM consists of 4 main
stages, as shown in Figure 2, in which task I is mi-
grated from node 1 to node 3. The nodes that are

active at a particular stage are marked gray.

a. create context

node 1 node 2 node 3
pvmd pvmd pvmd
routing: routing: routing:

task 1—node 3
TC_M@UED
‘taskl‘ ‘taskz‘ ‘task3‘ Vtask 1!
b. broadcast routing
node 1 node 2 node 3
pvmd pvmd pvmd
routing: routing: routing:
task 1—=node 3 task 1—=node 3
TC_M/éOED
‘taskl‘ ‘taskz‘ ‘task3‘ task 4 | Itask 1!
c. checkpoint
node 1 node 2 node 3
pvmd pvmd pvmd
routing: routing: routing:
task 1—=node 3 task 1—-node 3 task 1—node 3
ssu%{ TC_Q‘RVED
ok 1| |task2| | | [tax3] task 4| 'task 1|
d. restart
node 1 node 2 node 3
pvmd pvmd pvmd
routing: routing: routing:
task 1—=node 3 task 1—=node 3 task 1—=node 3
task 2 task 3 task 4 | |task 1

Figure 2: DPVM migration protocol. task I is mi-
grated from node 1 to node 3. Gray nodes are active.

The 4 stages are executed in sequence, as requested
by the PVM task that calls the migration function
pvm_move. This is typically the interactive PV M con-
sole or an external scheduler.

In stage (a), a new task context for the migrat-
ing task is created on the destination node (node
3). The routing table on that node is updated to
indicate that the task to be migrated is running on

this node. While this is not really the case (no pro-
cess was started, only control structures in the PVM
daemon were allocated), the daemon will accept and
temporarily store any messages it receives that are
addressed to the migrating task. Along with updat-
ing the routing table, all tasks running on the node
are notified of the approaching migration using the
TC_MOVED message — the purpose of this will be ex-
plained in Section 4.3.

At this point, there are actually two nodes that
claim to have the migrating task running on them,
and are willing to accept messages for it. Messages
from all the nodes but the destination node are still
routed to the source node, where the migrating task
is still running, completely unaware that it is soon to
be migrated.

In stage (b), the new routing information is broad-
cast throughout the PVM virtual machine: all the
nodes but the source node update their routing ta-
bles (node 2).

Stage (c) actually consists of two different opera-
tions executed on the source node (node 1). First,
the routing table is updated. Once this is done, all
new messages addressed to the migrating task are
expected to go to the destination node. Next, the
checkpointing signal is sent to the task. The task ter-
minates its PVM connections (this will be described
in detail in Section 4.3), creates the checkpoint file as
described in Section 3.1 and terminates.

In stage (d) the checkpointed task is restored on
the destination node, as described in Section 3.2.
The dynamic loader invokes the dpvm_userrestore
routine, which in turn calls pvmbeatask, a standard
PVM startup function. This function reconnects the
task to the destination PVM daemon using a some-
what modified connection protocol (there is no need
to allocate a new task identifier, so parts of the ini-
tialisation can be skipped). Control is passed back to
the application code, and the PVM daemon on the
destination node can finally deliver all the messages
addressed to the migrating task which it had to store
during the migration.

4.3 Connection flushing

When the migrating task receives the checkpoint sig-
nal and before it terminates, it must flush all open
connections to ensure that no messages are lost dur-
ing the migration. Figure 3 presents the connection
flushing protocol used by DPVM, both for the di-
rect task-task connections and the connection to the

PVM daemon. Two application tasks are presented in
the figure — the migrating task and one remote task.
The remote task represents every task of the parallel
application but the migrating one: all the tasks per-
form the actions of the remote task when flushing the
connections.

source migrating remote remote
PVMd task task PVMd
GUR
enter dpvm| oobhandler
TC_MOVED
GUSR1
= enter ckpt_handler
3 invoke dpvm_usersave
® | —TCEoc| TC EFoc
T(;_EOC
M MG clgee)- - _EOF
e | clase()
clogse() leavedpvm usersave |gave dgvm oobhandler
checkpoint

Figure 3: DPVM connection flushing protocol.

In Figure 2 (a) through (c), one could observe
the TC_MOVED messages sent to all the tasks. These
messages initiate the flushing protocol. Before the
message is sent to the remote task, however, the
PVM daemon local to the task signals the task us-
ing the SIGURG signal, and that task enters the
dpvm_oobhandler function. The sole purpose of this
is to assure a timely response from the task; other-
wise, it could take arbitrarily long before the message
was received, should the task be busy with computa-
tions at that time.

The remote task extracts the migrating task’s iden-
tifier from the TC_MOVED message and checks if it has
an established direct connection with the migrating
task. If there is no direct connection, the remote task
returns immediately from the signal handler. If the
connection is only partially established, it is aban-
doned and the task returns immediately, too. There-
fore, the rest of the protocol is only performed for
tasks with fully established direct connections.

Once the TC_MOVED notification is sent to all the re-
mote tasks, the migrating task receives the SIGUSR1
migration signal. The ckpt_handler function from
the dynamic loader invokes the dpvm_usersave rou-
tine, which is responsible for performing the migrat-

ing task’s part of the flushing protocol.

The migrating task begins by sending a TC_EOC
message via every fully established direct connection.
The connections that were not fully established are
abandoned.

Meanwhile, the remote task waits and reads all the
messages from the direct connection to the migrating
task. Once it gets the TC_EOC message, it stops, be-
cause this message is guaranteed to be the last mes-
sage sent by the migrating task. The remote task
replies with an identical TC_EOC message.

The migrating task reads the data available from
all direct connections. Once it gets the TC_EOC mes-
sage, it closes the connection. As a result of the close
on the migrating side, the remote task gets an EOF
when trying to read from the socket, and can close
the connection from the other side, too, and, finally,
return from the signal handler.

Thanks to this protocol it is guaranteed that, once
the TC_EOC messages are exchanged, all the messages
have been read: there are no more messages on the
wire or in the kernel buffers.

Similar actions are performed for the connection
to the source PVM daemon. After sending the mi-
gration signal, the source PVM daemon sends the
TC_EOC message to the migrating task, as the end-of-
connection marker. Once the migrating task closes
all the direct connections and receives the TC_EOC
message from the PVM daemon, it sends back the
TM_MIG message to the daemon, which then closes
its connection to the migrating task. The flushing is
completed, and the migrating task can safely check-
point itself and terminate.

4.4 Critical sections

The SIGUSR1 or SIGURG signals can be sent by the
PVM daemon at any time. However, there are situ-
ations in which the application task is not prepared
to handle the signal immediately, for example in the
middle of sending a message fragment.

DPVM acts conservatively in this respect. Most
PVM function calls are protected against signals us-
ing sigprocmask system calls, which block the sig-
nals on the function entry and unblock them on exit.
There are of course functions that clearly do not need
to be protected, and are not, like the data pack-
ing/unpacking routines, which do not perform any
communication at all.

However, some communication functions can block
for an arbitrarily long amount of time. pvm_recv is

a classic example of such a call. But even pvm_send
can block when direct communication is used. Di-
rect communication requires active participation on
the receiver side, both when establishing a connec-
tion and when sending large messages that do not fit
in the kernel buffers.

In DPVM, the problem has been solved by modify-
ing the lowest-level functions of the PVM library, in
particular mxfer. This function handles all the com-
munication, both when sending and receiving mes-
sages, and it is this function that the PVM applica-
tion blocks in when communicating. The potentially
infinitely blocking select call has been replaced by
one that blocks for no more than a second. On re-
turn from select, the signal state is checked using
the sigpending system call. Should there be a signal
pending, it is unblocked and delivered. The advan-
tage of this approach is that there is just a single,
carefully chosen place inside communication func-
tions where the signal can be delivered. This makes
it simpler to resume the interrupted communication
gracefully, once the signal handler returns, which will
often be on a different machine, after migration.

Thanks to the modifications made to these low-
level functions, it is safe to call the communication
functions from within the signal handlers, i.e. the
communication functions have been made partially
reentrant.

An issue worth considering at this point is what
happens to messages that were only partially sent or
received when the migration took place?

Indirect communication does not need any special
treatment. The beginning of the message can be sent
from/received on one node, and the end of the mes-
sage on another, without any complications.

Direct communication is more difficult to handle.
Because of the way PVM is designed, it is not possi-
ble to receive a single message through two different
communication channels. For indirect communica-
tion this is not a problem, because from the point
of view of the PVM library there is just one indirect
communication channel, the same before and after
the migration. Direct connections are closed during
the migration, so messages partially sent or received
are discarded. However, after restoration the mes-
sages are fully resent using the indirect communi-
cation, so no data is lost. The direct connection is
reestablished as soon as there are new messages to
send.

4.5 Message forwarding

PVM daemons use the UDP/IP protocol to exchange
messages. This is an unreliable protocol, so the mes-
sage fragments sent can get lost or arrive out of se-
quence. While the PVM daemons can handle such
problems under normal circumstances, task migra-
tion presents an additional burden.

Before going any further, the concept of message
fragments must be explained. Large PVM messages
are sent in smaller packets called fragments, typically
no larger than 4KB. Every fragment is preceded by
a fragment header, and the first fragment is also pre-
ceded by a message header. Fragment headers con-
tain information such as the source and destination
task identifiers and flags to identify the first and the
last message fragment, while message header con-
tains, among others, the message code value.

Going back to Figure 2: it could for example hap-
pen that a message fragment sent from task 3 to the
migrating task 1 in stage (a) arrives at the PVM dae-
mon of node 1 after task I begins checkpointing, i.e.
in stage (c), improbable though it may be.

In DPVM, such a fragment is forwarded by the dae-
mon to the new destination node. However, task 3
might have sent other messages to task I in the mean
time, and if they went directly to the new destina-
tion node, they might have arrived there earlier than
the forwarded message, although they were sent later.
This is a violation of the PVM protocol [1].

To fix this problem, DPVM must put additional
information in the message and fragment headers.

First, it puts the total length of the message in
the message header — in standard PVM this infor-
mation is not needed, since the end of the message is
marked by a special flag in the last fragment’s header.
Because fragments (including the last fragment) can
arrive in wrong order in DPVM, this would not be
sufficient.

Then, every fragment is uniquely identified using
the message identifier and fragment sequence identi-
fier. This way fragments, or even whole messages,
that arrive out of order can properly be taken care
of. This feature is also needed to support reentrance
in communication functions (see Section 4.4), since
it allows a task to send a new message before it is
finished with the previous one — something that the
standard PV M communication protocol could not do,
because it would interpret the new message as part
of the previous one.

4.6 Establishing direct connections

Figure 4 presents the direct connection establishment
protocol used by DPVM, which is a slightly modi-
fied version of the standard PVM protocol. Regions
marked gray indicate places in which the given task
can be migrated — in other places signals are blocked,
see Section 4.4.

requesting requesting granting granting
PvMd t task PVMd
socket(), bind()
create control block
I TC con
TM_NOTIFY ‘%
= | —
= socket(), bind(), listen()
3 CONWAIT create control block
@
| TC_CONACK -
— || GRNWAIT
>connect()‘ -
soC accept()
OPEN OPEN

Figure 4: DPVM direct connection establishment
protocol. In gray regions tasks can be migrated.

The connection establishment protocol is initiated
by a task that wants to send a message to an-
other task, if the user requested direct routing us-
ing pvm_setopt. The requesting task creates a port
and a task-task communication control block that de-
scribes the connection. The connection, according to
PVM nomenclature, is in CONWAIT state (waiting to
connect). The task then sends TC_CONREQ connec-
tion request message to the other task (called from
now on granting task) via the indirect route, and also
requests the PVM daemon to notify it (TM_NOTIFY)
when the granting task exits (at which point the con-
nection should be closed).

When the granting task receives the connection re-
quest, it creates a listening port and the communica-
tion control block. The connection on this side is in
GRNWAIT state (granted, waiting). The granting task
replies via the indirect route with TC_CONACK message
that contains the location of the created port.

The requesting task can now connect to the grant-
ing task and change the connection state to OPEN, i.e.
fully established. At some later time, the granting
task accepts the connection and changes the con-

nection state to OPEN, too. That is the end of the
standard PVM direct connection establishment pro-
tocol.

As shown in Figure 4, either of the two tasks can
be migrated at practically any time while establish-
ing the connection. Migrating a task can cause the
protocol to fail. For example, if the granting task is
migrated right after it sends the TC_CONACK message,
the port location provided in that message might no
longer be valid by the time the requesting task gets
the message, so the subsequent connect will fail. An-
other example would be if the requesting task was
migrated at that point: when it is restored and wants
to send a new message, it will restart the protocol,
sending another TC_CONACK message when the grant-
ing task already handled one. Modifications made in
DPVM included making the code robust enough to
recover gracefully from any such error conditions and
protocol violations.

It was found that the most reliable way to do this is
to immediately abandon partially established direct
connections both on the migrating side and on the
other side. Thanks to the fact that in DPVM all the
tasks are notified about the migration, this is easily
done.

One case has to be handled separately, though. In
the standard PV M protocol, after the requesting task
successfully connected to the granting task, it changes
the connection state to OPEN and starts sending data
via this channel. The connection on the granting
task’s side, however, is still in the GRNWAIT state,
i.e. it is only partially established. Should the mi-
gration happen at this point, the connection will be
abandoned and the data in the channel will be lost.
DPVM prevents this by adding additional synchroni-
sation step between the two tasks (marked in boldface
in Figure 4). The requesting task does not send data
via the channel immediately after connecting to the
granting task — it waits. When the granting task ac-
cepts the connection, it sends the start-of-connection
S0C message through it, which is read by the request-
ing task. This way, there is a guarantee that if a
migration signal is delivered to a task and the di-
rect connection is not fully established, no data will
be lost if the connection is abandoned. Similarly, if
a signal is delivered and the direct connection is in
OPEN state, it is in the OPEN state on the other side,
too (see Figure 4).

Another remark that can be made at this point is
that establishing a direct connection requires active
participation on both sides. The requesting task re-

acts in a timely manner (it has nothing else to do),
but for the granting task this can take arbitrarily
long, since it can execute application code both be-
fore it handles TC_CONREQ and before it calls accept.
Therefore, even for a very small message a call like
pvm_send can block, provided that it is the first call
after direct routing has been requested.

4.7 Multicasts

The protocol used by PVM when sending multicast
messages, i.e. by pvm_mcast, but also by pvm_bcast
(which calls pvm_mcast internally) is significantly dif-
ferent from that used when sending standard point-
to-point messages.

First, direct communication is never used in this
case: messages are always routed through PVM dae-
mons.

More importantly, sending the message itself is pre-
ceded by an initialisation step. First, the task sends
the list of the destination task identifiers to the lo-
cal PVM daemon. The daemon sorts the list by the
nodes the destination tasks run on and sends parts
of the list to the PVM daemons on the concerned
nodes. Finally, it sends back a multicast address to
the source task. The task then sends the real mes-
sage, with the multicast address as its destination
identifier, and the daemon forwards the message to
other daemons, which in turn forward it to the des-
tination tasks.

This presents various difficulties if the task is mi-
grated in the middle of this protocol: the multicast
address is only valid on one particular node, for ex-
ample.

The easiest way to solve the problem is to disallow
migrations while pvm_mcast is running, and that is
what DPVM does. This is not a problem, since in-
direct communication is practically non-blocking, so
the pending migration signal will be handled quickly.

5 Limitations

The mechanism of preserving memory image has con-
siderable, although understandable, limitations. It is
designed to preserve the memory image of the pro-
cess and its open files, but nothing more than that.
It is unable to preserve resources that are outside of
the process’s address space (in the kernel) or that are
shared with other processes.

For example, processes that use any of the follow-
ing features will not be migrated properly:

® pipes,

e sockets,

e System V IPC, like shared memory,

e kernel supported threads,

o file status as modified by e.g. ioctl and fentl,

e mmapping / opening of special files (/dev/...,
/proc/..., etc.).

Some of these, like sockets, might eventually be sup-
ported, but it is practically impossible to support mi-
grating a process that communicates with other local
processes via shared memory, for example®.

Support for open files is limited to files residing on
shared filesystems: the files must be available under
the same pathname on the destination node as on the
source node.

Also, the ability to migrate PVM tasks started
from the terminal window, which is common for mas-
ter tasks, is limited. While it is possible to migrate
such tasks, this is probably not what the user wants,
since the output of the task will from then on go to
the PVM log files, instead of the terminal window.
Shell output redirections cannot be preserved, either.

6 Performance evaluation

In a system like Dynamite, there are two easily mea-
surable performance factors:

e how long it takes to migrate a task of a given
size,

e what is the difference in communication perfor-
mance compared to the standard PVM.

Experiments have been performed to measure the two
factors, both under Linux and Solaris. In case of
Linux, reserved nodes of a cluster have been used,
equipped with PentiumPro 200 MHz CPU and 128
MB RAM, running kernel version 2.2.12. In case of
Solaris, idle UltraSparc 5/10 workstations have been
used, equipped with 128 MB RAM and running ker-
nel version 5.6. In both cases, switched 100 Mbps
Ethernet was used as the communication medium.
However, it must be pointed out that in both cases
the NF'S servers used for checkpoint files were shared
with other users, which could affect the performance

5Unless embedded within a protocol like PVM or MPI.

Total
Checkpoint
Restore e

32 r

Migration time [s]

025 b

0125 ‘ ‘ L
2 4 8 16 32 64

Process size [MB]
a

64 -
Total I
32 r Checkpoint ~ — o
Restore e
/)(
E *
(0]
£
s
g
K=y
=
05 F x
025 F
0.125 . . ‘ ‘ ‘
2 4 8 16 32 64
Process size [MB]
b

Figure 5: Migration performance of DPVM for (a) Linux and (b) Solaris.

DPVM indirect
PVM indirect
DPVM direct ek
PVM direct a

100 ¢

Communication time [ms]

100 1000
Message size [bytes]
a

DPVM indirect _—
100 ¢ PVM indirect =~ e
ko) DPVM direct x
g PVM direct
Iy
E
= 10t
S
=
8
s
g ’’’’ *
e o1 i
(@]
0.1 ‘ ‘ ‘ ‘ |
! 10 100 1000 10000 100000
Message size [bytes]
b

Figure 6: Communication performance in DPVM and PVM for (a) Linux and (b) Solaris.

to some extent.

Figure 5 presents the performance of migration in
DPVM for various process sizes. A simple ping-pong
type program communicating once a few seconds via
direct connection was used, process size was set with
a single large malloc call. Execution time of each
of the four migrations stages (see Section 4.2) was
measured. In general, it was found that the major
part of the migration time is spent on checkpointing
and restarting, the migration protocol and connection
flushing amount to approximately 0.01 — 0.03s, and
hence are not shown. The speed of checkpointing and
restarting is limited by the speed of the shared filesys-
tem. On our systems this limit lies at 4-5 MB/sec
for NFS running over the 100Mbps network. It can
be observed, however, that the restoring phase un-

der Linux takes an approximately constant amount
of time, while it grows with process size under So-
laris, resulting in twice as large migration times for
large processes. This is a side effect of differences in
the implementation of malloc between the two sys-
tems. For large allocations, Linux creates new mem-
ory segment (separate from the heap) using mmap,
whereas Solaris always allocates from the heap with
sbrk. When restoring, the heap and stack are re-
stored with read (see Section 3.2), which forces an
immediate data transfer. However, for the other seg-
ments our implementation takes advantage of mmap,
which uses more advanced page on demand technique,
delaying network transfer until the data is actually
needed. Since the allocated memory region is not
needed to reconnect the task to the PVM daemon,

the time it takes to restart the task is constant under
Linux. Clearly, delays may be incurred later, when
the mmapped memory is accessed and loaded.

In Figure 6, comparison of communication per-
formance between DPVM and PVM is presented.
Both indirect and direct communication performance
has been measured. A ping-pong type program was
used, which exchanged messages between 1 byte and
100KB in size. With DPVM, a slowdown is visible in
all the cases. It stems from two factors:

e signal blocking/unblocking on entry and exit
from PVM functions (function call overhead),

e extra header in message fragments (communica-
tion overhead).

The first factor adds a fixed amount of time for every
PVM communication function call, whereas the sec-
ond one increases the communication time by a con-
stant percentage. For small messages the first factor
dominates, since there is little communication. An
overhead from 25% for direct communication under
Linux to 4% for indirect communication under Solaris
can be observed. While particularly the first differ-
ence in speed is significant, it must be pointed out
that it represents a pathological, worst case scenario.
The difference is due to the fact that the overhead
percentage is larger for direct communication, since
the communication is faster while the overhead from
signal blocking/unblocking stays the same.

As the messages get larger, the overhead of signal
handling becomes less significant, and the slowdown
goes down to 2-4% for 100KB messages.

Tests have been made to compare the communica-
tion speed in DPVM before and after the migration,
but no noticeable difference was observed (£1%).

7 Related work

Throughout the years, since the original publication
on DPVM by Dikken et al. [4], a significant number
of solutions for load balancing parallel jobs on net-
works of workstations by migrating individual tasks
has been proposed. For PVM applications, this in-
cludes MPVM [8] (also known as MIST), CoCheck
[9], tmPVM [10], ChaRM [11] and DAMPVM [12].
There are also similar solutions for MPI, including
the already mentioned CoCheck [13] and Hector [14].
Systems that migrate sequential jobs have also been
studied, e.g. Codine [15] and Condor [16] (the original
DPVM was based on Condor).

7.1 Preserving memory image

Source code modifications. All of the above
listed systems implement user-level checkpointing,
i.e. no kernel modifications are needed. The user
must link the application with additional or replace-
ment checkpointing-aware libraries/startup files. Of-
ten, the source code must be modified by changing
the name of the main function (MPVM, libckpt [17]
(used by ChaRM)), or by adding a checkpoint initial-
isation function invocation at the start of main (tm-
PVM, DAMPVM). Contrast this with the dynamic
loader approach used in Dynamite, where relinking
with custom dynamic loader is all that is needed.

Shared libraries. Also, all of the above systems
use the original executable file when restoring from
the checkpoint, started using standard operating sys-
tem exec call, only with special command-line argu-
ments to force the process to read checkpoint data
available in a file on a shared filesystem or via a TCP
stream to the original process. The weak point here is
the assumption that the new process’s memory map
will be the same as the old one. This is not guar-
anteed with ELF binaries — for example, in recent
releases of Solaris, this assumption fails in case of
shared libraries, which can be mapped into different
memory regions, rendering the restored process un-
usable. While giving up shared libraries in favour
of the static ones would solve the problem (and, in-
deed, MPVM requires static linking), static libraries
are considered to be an obsolete concept. For exam-
ple, Solaris 7 does not contain static versions of the
64-bit (sparcv9) libraries at all.

Condor checkpointing [18], as used in CoCheck,
seems to be the only one attempting to tackle the
problem with shared libraries. Like in other solu-
tions, the original executable file is used when restor-
ing, but the checkpoint file also contains the text and
data segments of shared libraries. Condor’s recovery
code essentially performs the function of the dynamic
loader on its own, by undoing the job done by the sys-
tem dynamic loader and mapping the segments into
appropriate memory regions.

Using the dynamic loader in Dynamite avoids the
problem completely, since the restoring code has full
control over where shared libraries are mapped.

Checkpoint file transfer. In general, two differ-
ent methods of transferring checkpoint state are avail-

able: direct TCP stream transfer and a shared filesys-
tem. MPVM and ChaRM use the former, while tm-
PVM, CoCheck and Dynamite use the latter. Unless
checkpoint and restore are overlapped, a checkpoint-
restart mechanism using a shared filesystem will incur
a delay corresponding to at least two network trans-
fers (from source to server and from server to target).
The shared filesystem may add additional overhead,
so that the direct TCP transfer can be faster by a
factor of two or more. On the other hand, the solu-
tions relying on shared filesystem are more modular,
and thus more general and reusable. The checkpoint-
ing/restarting mechanisms of Condor and Dynamite
are thus not limited to PVM applications.

Other approaches. An entirely different approach
is used in DAMPVM. This system supports hetero-
geneous checkpointing, but the users pay a high price
for that. Memory checkpointing/restoring is entirely
directed by the user, who must create memory pack-
ing / unpacking routines. The restored process is
restarted from the beginning of main, and it is the
user’s responsibility to recover gracefully and restart
the computation at the point were it was left. The
stack is not preserved, so local variables practically
cannot be used, and mechanisms like recursive func-
tion calls are not practical, either. These limitations
are not really surprising for heterogeneous check-
pointing, but in practice they make the whole concept
unusable for any larger applications.

MOSIX [19] uses yet another approach: kernel-level
checkpointing. The solution, of course, is inherently
unportable, but once implemented, the results can be
impressive. The approach is geared for high perfor-
mance and transparency, and completely unmodified
binaries can be migrated at any time. Only the user-
level part of the process is migrated, the kernel-level
part, called deputy, stays on the old node and com-
municates with user-level part via a network socket.
When the user code invokes a non-local system call,
like signal delivery or an I/O operation, it is actually
executed on the old node, the request and result are
forwarded via the socket. Only lowest-level direct I/O
device manipulation is not supported, and neither is
writable shared memory. On the other hand, leav-
ing the kernel-level part on the old node means that
that machine cannot be rebooted, and many trivial
non-local system calls, like gettimeofday, become
extremely expensive due to network communication.

Portability. One drawback of the dynamic loader
approach as used in Dynamite is its limited porta-
bility: it can only support operating systems that
use ELF executable format, since that is what the
dynamic loader has been designed for, and extend-
ing it is impractical. However, given the problems
with shared libraries discussed above, any checkpoint-
ing system that attempts to be usable on concurrent
operating systems must get very low-level and thus
poorly portable at some point. While the checkpoint-
ing mechanism of Condor is more general, it only sup-
ports shared libraries if /proc filesystem is available,
and the other user-level checkpointers (MPVM, tm-
PVM, libckpt) do not provide satisfactory support for
shared libraries. The approach used in DAMPVM
is the most portable, just opposite to the one in
MOSIX.

7.2 Preserving communication

Moving on to the communication aspect of process
migration, the solutions available use different mech-
anisms here, as well.

In tmPVM, a task to be migrated creates a check-
point file (actually, it spawns an external extractor to
do that), but does not exit immediately. It waits until
the task is restarted on the destination node, and in
the mean time forwards any messages that it receives
to the destination (new) instance. The destination
instance has a new PVM task identifier after the mi-
gration, so a special TID alias directory is maintained
in the PVM daemons to translate between the origi-
nal and current task identifier. Only indirect routing
is supported. Moreover, message forwarding is not
accompanied by sequencing, so messages can be re-
ceived out of order.

A different protocol is used in CoCheck and
ChaRM. The protocol is implemented outside of
PVM, so it is a version-independent add-on. All PVM
functions are wrapped, and the migration signal is
blocked while they are executing. When a migration
is about to happen, every task receives a signal and
a message. This way, if a task is performing compu-
tations, a signal handler is invoked, which can safely
call non-reentrant PVM functions. If, on the other
hand, a task is blocked inside a PVM communica-
tion function, the message sent together with the sig-
nal can cause the PVM function to return, and the
signal can be unblocked. However, this raises con-
cerns about the transparency of such a solution: es-
sentially, extra messages are sent to application tasks,

and care must be taken to ensure that these messages
are never seen by the application code. This is easy
in a Dynamite-like approach, which uses a modified
PVM library, but is definitely much more difficult in
a system based solely on wrappers.

In CoCheck, once a task receives information
about the migration, it performs message flushing
protocol: it sends ready messages to all the other tasks
of the application, and then waits for such messages
from all the other tasks. When a task receives mes-
sages from all the other tasks, it assumes that no
other messages are pending, and the connections can
be broken. A disadvantage of CoCheck is that all
the tasks break their connections, even if only one
is to be migrated, which is clearly suboptimal. The
tasks then reconnect to the PVM daemons. Like in
tmPVM, tasks get new task identifiers, so a map-
ping table must be maintained. Unlike in tmPVM
or Dynamite, the table is maintained in every task
of the application, and any wrapper for a PVM call
that uses task identifiers is responsible for translating
them back and forth.

The protocol used in ChaRM is far more optimal,
since message flushing is only performed for tasks to
be migrated: other tasks can communicate with each
other without problems. Even messages sent to the
migrating tasks during the migration do not block,
because they are stored in a delaying buffer in the
source task, and are resent when the migrating tasks
resume their execution (at which point all the other
tasks once more receive the signal /message pair with
new task identifiers of the migrated tasks).

The key advantage of CoCheck and ChaRM is
that no modifications to the PVM source code are
needed. However, implementing such a sensitive op-
eration like preserving communication across migra-
tion outside of the code that handles this communica-
tion is very difficult to do right and might be prone to
suboptimal behaviour. For example, the flushing pro-
tocol used is rather suboptimal: all tasks must take
part in it, even if some of them never exchanged any
messages with the migrating task — in Dynamite,
only tasks that have an established direct connection
need to send flush messages. Also, any message send
operations must be completed before a task can be
migrated — Dynamite, in contrast, does not need
to complete such operations. Finally, the correct-
ness of the flushing protocol used by both CoCheck
and ChaRM depends ultimately on the proper order
of messages. While PVM does guarantee that in its
documentation [1], the implementation actually vio-

lates this promise in case of direct communication and
multicasts, as noticed in [8]: if a message is sent via
pvm_mcast, which always uses indirect routing, and is
quickly followed by another, point-to-point pvm_send
call using direct routing, it can happen that the sec-
ond message will arrive at the destination first. That
is because PVM only takes care of proper message or-
der across one communication channel, while in this
case the two messages use two different channels. Fix-
ing this essentially involves implementing message se-
quencing in PVM. A workaround would be to send
two “ready” messages: one via point-to-point commu-
nication and one using multicasts.

The protocol implemented in MPVM is the clos-
est to the one used in Dynamite. In both cases, af-
ter the migration the task has the same task identi-
fier, so translation tables are not needed. The price
paid is the need for routing tables, but these are only
needed in the PVM daemons. Unlike in other solu-
tions, the routing database in MPVM is distributed:
only the daemon on the node that the task was origi-
nally started on has authoritative information about
the current location of the task — other daemons
can cache this information, but cache coherence is
not guaranteed, as a lazy updating algorithm is used.
Therefore, in MPVM the message forwarding and se-
quencing algorithm plays a major role in ensuring the
correct delivery of messages, while with the current
protocol of Dynamite, it is only used in case of race
conditions stemming from network delays. Also, in
MPVM the source node cannot be shut down, even if
no more tasks are running on it. The migration proto-
col in MPVM is designed to be fully asynchronous, i.e.
only the migrating task is notified, the state of other
tasks is supposed not to matter. It is questionable
whether this is really the case. MPVM cannot mi-
grate a task while it is sending a message. As pointed
out in Sections 4.4 and 4.6, pvm_send can block if us-
ing direct communication, hence the migration can
be delayed for an arbitrarily long time. The problem
is not so apparent in CoCheck and ChaRM, because
they force other tasks to read data from the connec-
tion, which guarantees timely reaction. Dynamite
does the same and, in addition, it does not need to
wait until the whole message is sent. The protocol of
flushing direct connections is also different in MPVM:
it relies on out-of-band data and the shutdown system
call. In Dynamite, a higher level protocol has been
implemented, because these low-level socket features
were found to be too limiting. For example, only one
byte at a time can reliably be transferred using out-

of-band data, and the shutdown call not only refuses
to send new data, it also refuses to retransmit the
data packets already sent, should they be lost [20],
which essentially makes the TCP connection unreli-
able. Another interesting feature of MPVM is that
it does not protect critical sections with signal block-
ing / unblocking, but has a global flag that marks
if the process is in critical section. The first thing
that the signal handler does is to check the state of
the flag, and return immediately if in critical section
(the signal is raised again when leaving the critical
section). While this solution is bound to have lower
overhead, it raises some concerns: every system call
in PVM can be interrupted as a result — does PVM
handle all such cases gracefully?

8 Conclusions

The concept of implementing the checkpointer in the
dynamic loader and using it to migrate PVM tasks
has been proven to work in practice. Many thousands
of migrations have been successfully performed for
multimegabyte processes of real-world applications.

Dynamite puts extra overhead on the communi-
cation functions of PVM. Even for frequently com-
municating real-world applications this overhead was
measured to be below 5%, however.

The architecture of Dynamite is modular. It is pos-
sible to use just the dynamic loader of Dynamite and
get checkpoint /restart facilities for sequential jobs
that do not use PVM. Even when using PVM, it is not
required to use the Dynamite monitor/scheduler: the
user can migrate tasks manually from the PVM con-
sole (using the new move command) or from custom
programs (using the new pvm_move function call).
This gives Dynamite extra flexibility, and makes its
components reusable for different projects.

Dynamite aims to provide a complete integrated
solution for dynamic load balancing of parallel jobs
on networks of workstations. A number of challenges
still need to be resolved to accomplish this, among
them:

e support for MPI,

e generic support for the migration of the TCP/IP
sockets,

e support for the latest versions of Solaris and
GNU libe.

Acknowledgments

We acknowledge financial support by the European
Commision through the ESPRIT initiative and by
the Netherlands Organization for Scientific Research
(NWO) through the MPR programme.

References

[1] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Mancheck, and V. Sunderam, PVM: Parallel
Virtual Machine. A Users’ Guide and Tutorial
for Networked Parallel Computing, MIT Press,
Cambridge, Massachusetts, 1994.
http://www.epm.ornl.gov/pvm/

[2] MPI: A Message-Passing Interface Standard,
Version 1.1, Technical Report, University of
Tennessee, Knoxville, TN, June 1995.
http://www-unix.mcs.anl.gov/mpi/

[3] W.D. Gropp, and E. Lusk, User’s Guide for
mpich, a Portable Implementation of MPI, Tech-
nical Report, ANL-96/6, Argonne National Lab-
oratory, 1996.

[4] L. Dikken, F. van der Linden, J.J.J. Vesseur,
and P.M.A. Sloot, DynamicPVM: Dynamic Load
Balancing on Parallel Systems In Proceedings of
High Performance Computing and Networking,
in series Lecture Notes in Computer Science, v.
797, n. II, Networking and Tools, pp. 273-277,
Springer-Verlag, 1994.

[5] J.J.J. Vesseur, R.N. Heederik, B.J. Overeinder,
and P.M.A. Sloot, Ezxperiments in Dynamic Load
Balancing for Parallel Cluster Computing, In
Proceedings of the Workshop on Parallel Pro-
gramming and Computation (ZEUS’95) and the
4th Nordic Transputer Conference (NTUG’95),
in series Transputer and Occam Engineering Se-
ries, Parallel Programming and Applications,
pp. 189-194, IOS Press, 1995.

[6] B.J. Overeinder, P.M.A. Sloot, R.N. Heederik,
and L.O. Hertzberger, A Dynamic Load Balanc-
ing System for Parallel Cluster Computing, Fu-
ture Generation Computer Systems, v. 12, n. 1,
pp. 101-115, 1996.

[7] G.D. van Albada, J. Clinckemaillie, A.H.L. Em-
men, J. Gehring, O. Heinz, F. van der Lin-
den, B.J. Overeinder, A. Reinefeld, and P.M.A.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Sloot, Dynamite — blasting obstacles to parallel
cluster computing, In Proceedings of HPCN Eu-
rope '99, Amsterdam, The Netherlands, Lecture
Notes in Computer Science, n. 1593, pp. 300-
310, Springer-Verlag, 1999.

J. Casas, D.L. Clark, R. Konuru, S.W. Otto,
R.M. Prouty, and J. Walpole, MPVM: A Migra-
tion Transparent Version of PVM, Usenix Com-
puting Systems, v. 8, n. 2, pp. 171-216, 1995.

G. Stellner, and J. Pruyne, Resource Manage-
ment and Checkpointing for PVM, In Proceed-
ings of the 2nd European Users’ Group Meeting,
pp. 131-136, 1995.

C.P. Tan, W.F. Wong, and C.K. Yuen, tmPVM
— Task Migratable PVM, In Proceedings of the
2nd Merged Symposium IPPS/SPDP, pp. 196—
202.5, 1999.

P. Dan, W. Dongsheng, Z. Youhui, and S. Meim-
ing, Quasi-asynchronous Migration: A Novel Mi-
gration Protocol for PVM Tasks, Operating Sys-
tems Review, v. 33, n. 2, ACM, pp. 5-14, 1999.

P. Czarnul, and H. Krawczyk, Dynamic Assign-
ment with Process Migration in Distributed En-
vironments, In Proceedings of the 6th European
PVM/MPI Users’ Group Meeting, Barcelona,
Spain, September 1999, in series Lecture Notes
in Computer Science, n. 1697, pp. 509-516,
Springer-Verlag, 1999.

G. Stellner, CoCheck: Checkpointing and Pro-
cess Migration for MPI, In Proceedings of the In-
ternational Parallel Processing Symposium, pp.
526-531, Honolulu, HI, 1996.

J. Robinson, S.H. Russ, B. Flachs, and B.
Heckel, A task migration implementation of the
Message Passing Interface, In Proceedings of
the 5th IEEE International Symposium on High
Performance Distributed Computing, pp. 61-68,
1996.

http://www.genias.de/products/codine/

J. Pruyne, and M. Livny, Managing checkpoints
for parallel programs, In Proceedings of IPPS
Second Workshop on Job Scheduling Strategies
for Parallel Processing, 1996.

[17]

[18]

[19]

[20]

J.S. Plank, M. Beck, G. Kingsley, and K. Li,
Libckpt: Transparent Checkpointing under Uniz,
Proceedings of the Usenix Winter 1995 Techni-
cal Conference, New Orleans, LA, pp. 213223,
1995.

M. Litzkow, T. Tannenbaum, J. Basney, and
M. Livny, Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing
System, University of Wisconsin—-Madison Com-
puter Sciences Technical Report #1346, 1997.

A. Barak, O. La’adan, and A. Shiloh, Scalable
Cluster Computing with MOSIX for LINUX,
In Proceedings of Linux Expo 99, pp. 95-100,
Raleigh, N.C., 1999.

S. Loosemore, R.M. Stallman, R. McGrath, A.
Oram, and U. Drepper, The GNU C Library Ref-
erence Manual, Free Software Foundation, Inc,
Boston, MA, USA, 1999.

