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Abstract!: The total computing capacity of
the workstations that are present in many or-
ganisations today is often under-utilised, as
the performance for parallel programs is un-
predictable. These computing resources can be
harnessed more efficiently by using a dynamic
task allocation system. The Esprit project Dy-
namite provides such an automated load bal-
ancing system, through the migration of tasks.
These tasks are part of a parallel program wus-
ing a message passing library such as PVM or
MPI. Currently Dynamite supports the PVM
library only, but it can be extended to sup-
port the MPI library.
age is completely transparent, i.e. neither sys-

The Dynamite pack-

tem (kernel) nor application source code need
to be modified. Dynamite supports migra-
tion of tasks using dynamically linked libraries,
open files and both direct and indirect PVM-
connections.

*Dynamite is a collaborative project, funded by
the European Union as Esprit project 23499. Of
the many people that have contributed, we can
mention only a few: J. Gehring, A. Streit, F. van
der Linden, J. Clinckemaillie, A. H. L. Emmen.
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1 Introduction

With the introduction of more powerful
processors every year, and network connec-
tions becoming both faster and cheaper,
distributed computing on standard PCs
and workstations of an organisation be-
comes more attractive and feasible. Con-
sequently, the interest in special purpose
parallel machines is declining in favour of
the clusters of workstations.

Dynamite [1] provides a dynamic load
balancing system for parallel jobs running
under PVM [2] when run on the aforemen-
tioned clusters of workstations. The load
balancing is realised through the migration
of tasks. For technical reasons which be-
come clear later on, the (processor) archi-
tecture and the operating system version
need to be the same.

Dynamite is currently operational under
Sun0S 5.5.1, SunOS 5.62 and Linux 2.2.x3.
It aims to provide a complete solution for
dynamic load balancing, see Section 6.

Dynamite is an acronym for DYNAMIc
Task migration Environment and is also
known as DPVM [3] (Dynamic-PVM),
since it is based on PVM, version 3.3.11.
Although Dynamite currently supports
PVM-based programs only, the principles

23unOS 5.7 (32 bit) is expected to be supported
soon.

30nly libch libraries are currently supported,
glibc2 is expected to be supported soon.
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Figure 1: Dynamite run-time system. An application is decomposed into several subtasks
first. An initial placement is determined by the scheduler, one that needs not be optimal yet.
When the application is run, the monitor checks the capacity per node. If it is decided that the
load is unbalanced (above a certain threshold), one or more task migrations might be necessary
to establish a new and more optimal load distribution.

of Dynamite should be easily portable to
MPI [4]. The modular design of Dyna-
mite supports this portability as well. For
MPI, task migration has already been stud-
ied in Hector [5]. Various PVM vari-
ants supporting task migration have been
reported, such as tmPVM [6], ChaRM
[7], DAMPVM [8] and MPVM [9]. Sys-
tems that migrate sequential jobs have also
been studied, e.g. Codine [10] and Condor
[11, 12].

The motivation for a continuous optimal
task allocation is three-fold:

e overall performance is determined by
the slowest task,

e dynamic run-time behaviour of both
task (the amount of computational re-
sources needed by a task) and node
(computational resources offered by a
node) may vary in time,

e computational resources used by long-
running programs might be reclaimed
on demand.

The Dynamite architecture (see Figure
1) is built up from three separate parts:

1. The load-monitoring subsystem. The

load-monitor should leave the compu-
tation (almost) undisturbed.

2. The scheduler, which tries to make an
optimal allocation.

3. The task migration software, which al-
lows a process to checkpoint itself and
to be restarted on a different host. Ba-
sically, the checkpoint software makes
the state of a process persistent at
a certain stage. The following items
which make up the state of a process
are preserved:

e direct and indirect PVM connec-
tions,

e handling of shared libraries,

e open files.

In this article we will focus on the latter,
technically most challenging part of this
system.

From the beginning, Dynamite was re-
quired to be as transparent to the user
as possible. This implies a.o. that the
checkpoint/migration mechanism must be
implemented completely in user-space and
no additional changes to the code of the
program may be required. Indeed, the



user only has to link to the Dynamite dy-
namic loader? (which contains the check-
point/restart mechanism and is a shared
library itself; it is based on the Linux
dynamic loader 1.9.9) and the DPVM li-
brary. From then on, the complete Dyna-
mite functionality is available. It is also
necessary to use Dynamite’s infrastructure
(daemons, group server, console and such)
as functionality has been added and proto-
cols have been adapted.

Users of sequential programs that do not
use PVM can merely link their applications
using the Dynamite dynamic loader, thus
taking advantage of the checkpoint facility.

First we will pay some attention to the
architecture of Dynamite in Sections 2 and
3. Thereafter quantitative results will be
presented, which have been obtained with
Dynamite running on a small Linux cluster.
These data will be compared to standard
PVM runs.

2 Checkpointing mecha-
nism

The checkpointing of a process basically
boils down to writing the address space of
a process to a file and retrieving its con-
tents afterwards (mmapping it to memory).
This includes the shared libraries, which
may be used by the process. In addition,
the contents of (some of the) processor reg-
isters have to be taken care of, such as
the program-counter and the stack pointer.
Moreover, a proper implementation should
also consider communication channels such
as open files and TCP/IP sockets.

The checkpointing functionality was im-
plemented in the dynamic loader, to which
the following changes have been made:

1. it can handle a checkpoint signal
(SIGUSR1), see Section 2.1,

4The dynamic loader can be specified by using
the appropriate compiler option.

2. it can treat a checkpoint file just like
any other executable, see Section 2.2,

3. it wraps certain system and library
calls, see Section 2.3:

e for open files (a.o. open, write,
creat),

e for memory allocation (mmap,
munmap, mremap®),

4. cross-checkpoint data is stored sepa-
rately, see Section 2.4.

2.1 Checkpoint signal

When a checkpoint signal is sent to the
process, control is passed to the checkpoint
handler.

First of all a sigsetjmp call is made in
order to save the current signal status and
the contents of the processor registers (on
Linux this is a setjmp call). The return
value of sigsetjmp (zero if it is called for
the first time) distinguishes between the
checkpoint and restart procedure.

Next the name and location of the check-
point-file is determined. If the applica-
tion has been linked against the DPVM
library, this name is determined by the
dpvm usersave routine in the DPVM li-
brary. The checkpoint file is placed in a
directory which must be accessible from all
the nodes in the cluster (indicated by the
DPVM_CKPTDIR environment variable).

After saving the signal mask and the sta-
tus of the open files, the checkpoint itself
is created in the routine ckpt_create. Ba-
sically, this routine saves the address space
of the process:

e the .txt-segment,
e the .bss-segment,
e the stack used by the process,

e the dynamically allocated pages,

5Linux specific.



e shared libraries used.

In addition, some extra sections are stored
as well, such as the section containing the
checkpoint filename and the section con-
taining the cross-checkpoint data pointer,
see Section 2.4.

2.2 Restoring from the check-
point

When a binary is run, the dynamic loader
is executed first. As soon as the dynamic
loader has finished, control is passed to the
actual program. Of course, this holds also
for the Dynamite dynamic loader. One of
the first things this loader tries to locate
is the special section containing the name
of the checkpoint file. If such a section is
present, it knows that it is restoring from
a checkpoint, and specialised subroutines
take care of a proper handling of the pro-
cess’ segments.

Eventually, signal status and processor
registers are restored, after which the pro-
cess returns from sigset jmp taking the ap-
propriate branch for restored programs.

Finally, the process resumes its execu-
tion at the point where it left off.

2.3 Wrapped system calls

The reason for wrapping certains system-
and library-calls is that the checkpoint-
ing/restart (i.e. migration) facility should
be able to deal with open files. Basically,
these wrapper routines invoke the original
C-library calls, doing some extra adminis-
tration, which allows the open file connec-
tions to be restored properly.

The reason for implementing the syscall-
wrapper mmap is different, however. Of
course, the memory allocated by this sys-
call must be restored too, when restarting
a checkpointed process. This implies that
all the memory allocations done by mmap

have to be monitored as well®. This holds
also for the mapping of the shared libraries
by the process.

2.4 Cross-checkpoint storage

A data structure is defined as a container
for those objects which need to be pre-
served across a checkpoint/restart, such as
the mapping of the shared libraries used
by the process or the status of the open
files. This data structure is also part of the
checkpoint file.

3 The DPVM library

PVM tasks communicate with each other.
During the migration process, care must be
taken to ensure that the communication is
retained and that no messages are lost.

3.1 PVM migration overview

The network of PVM daemons plays a cen-
tral role in initiating and co-ordinating the
migration of tasks. On reception of the
move command, control is passed to the
pvmmove function, which steps through
the following stages successively:

1. PvmMoveCreateContext
2. PvmMoveRouteBroadcast
3. PvmMoveCheckpoint

4. PvmMoveRestart

The PvmMoveCreateContext stage is ex-
ecuted on the destination node, i.e. the
node where the task is to be migrated to. A
new PVM task context is created, so that
the PVM daemon can accept any messages

6 Although under Solaris these mmap-calls are
merely invoked by the locale/nls-related libraries,
it is used frequently by the standard Linux C-
library. Therefore it was and is important that
these memory regions are taken care of properly.



addressed to the migrating task and tem-
porarily store them.

In the PvmMoveRouteBroadcast stage,
all PVM daemons but the source and des-
tination one are notified that a migration is
about to take place. The daemons update
their routing information, so that messages
sent via the daemons to the migrating task
are sent to the destination node.

The PvmMoveCheckpoint stage is exe-
cuted on the source node, i.e. the node
the task runs on before the migration takes
place. First, routing information is up-
dated, so that any messages sent to the
migrating task via the PVM daemon are
forwarded to the destination node instead
of being delivered locally. Finally, the
task finds out that it is to be migrated.
A SIGUSR1 signal is sent to the task by
the PVM daemon, along with the end-
of-connection TC_EOC message. Control is
passed to the checkpoint signal handler in
the Dynamite dynamic loader. However,
before the actual checkpointing takes place,
the signal handler invokes the DPVM func-
tion dpvm usersave, which reads all the
available data from all connections, closes
the task connections and sends the fi-
nal TM_MIG migration message to the local
PVM daemon. Subsequently, the check-
point handler creates the checkpoint file
and terminates the process.

In the final PvmMoveRestart stage, ex-
ecuted on the destination node, the task
is restarted at the new location using the
spawn_task function. In the process of
restarting the task from the checkpoint
file, the dynamic loader invokes the DPVM
function dpvm userrestore, which recon-
nects the restored task to the PVM daemon
on the destination node. Control is passed
back to the application code, and the PVM
daemon can finally deliver all messages ad-
dressed to the migrating task which it had
to store during the migration.

3.2 Direct connections

By default, PVM tasks use indirect con-
nections to communicate with each other.
In this mode, messages between tasks are
routed through two PVM daemons, local
to the source and destination tasks. As
a consequence, PVM application tasks do
not have any remote network connections
open, their only communication channel is
with the daemon.

To improve efficiency, an alternative di-
rect communication mode is available on
application request. In this mode, tasks
that wish to communicate with each other
can establish a direct TCP/IP network
connection between themselves.

Special care must be taken when migrat-
ing a task that has direct connections with
other tasks, or messages that are being pro-
cessed or are cached in the kernel buffers
will be lost during the migration.

In stages PvmMoveCreateContext to
PvmMoveCheckpoint, along with updating
the routing information, DPVM notifies all
PVM tasks that a migration is about to
take place. This is done by sending spe-
cial TC_MOVED control messages to all tasks.
Because it is important that the tasks re-
ply in a timely manner, PVM daemons
also send a SIGURG signal along with the
TC_MOVED messages. It is the responsibility
of the asynchronously invoked signal han-
dler function dpvm oobhandler to get the
message.

In PvmMoveCheckpoint stage, in the
dpvm usersave function, the migrating
task sends the TC_EOC message via all open
direct connections. The peer tasks read
all data from the connection until they re-
ceive TC_EQOC, at which point they send the
TC_EOC message back. The migrating task
reads all data on its side of the connection,
and closes the connection upon reception of
TC_EOC. The peer tasks receive EOF at this
point, and can close the connection on the
other side.

Any messages that were only partially



sent by the migrating task are fully re-
sent after the task is restarted. Any mes-
sages that were partially sent by the peers
of the migrating task are fully resent via
PVM daemons, i.e. indirectly. The direct
connection is reestablished as soon as the
migrating task restarts and there are new
messages to be sent.

4 Limitations

The Dynamite system has a number of lim-
itations, most of which are the limitations
of the checkpointing mechanism itself. The
checkpointer is designed to preserve the
memory image of the process and its open
files, but nothing more than that. For ex-
ample, processes that use any of the follow-
ing features will not be migrated properly:

® pipes,

sockets,

System V IPC, like shared memory,
e kernel supported threads,

e mmapping/opening of special files, like
/dev/..., /proc/..., etc.

Some of these, like sockets, might even-
tually be supported, but supporting shared
memory, e.g., is practically unsolvable.

Another limitation, specific to the
DPVM subsystem, is an inability to mi-
grate the master PVM task if it is started
from the terminal window. Such a task
checkpoints correctly, but in order to
restart properly, it would have to be
restarted manually from a terminal win-
dow, whereas it is started by the PVM dae-
mon on the destination host, without stan-
dard input and with redirected standard
output/error streams. Because of these
limitations, the restarted process hangs.

5 Performance measure-
ments

In order to prove that Dynamite delivers
what it promises, a number of tests have
been conducted.

Some stability testing has been done.
Under Solaris, Dynamite was able to make
over 2500 successful migrations of large
processes (over 20 MB of memory image
size) of a commercial PVM application
Pam-Crash [16] using direct connections,
after which the application finished nor-
mally. Similar results have been obtained
under Linux.

A series of performance measurements
was made on the selected nodes of the DAS
cluster [13], which run Linux kernel 2.0 and
2.2 on PentiumPro 200 MHz CPUs. The
scientific application Grail [14, 15], a FEM
simulation program, has been used as the
test application.

‘ Parallel Decomposition ‘
environment sparse | redund.
1| PVM 1854 2360
2 | DPVM 1880 2468
3 | DPVM + sched. 1914 2520
4 | DPVM + load 3286 2947
5 | DPVM + sched. + load 2564 3085

Table 1: Execution time of the Grail appli-
cation, in seconds.

Table 1 presents the results of these
tests, obtained using the internal timing
routines of Grail. Each test has been per-
formed a number of times and an average of
the wall clock execution times of the master
process (in seconds) has been taken. The
tests can be grouped into two categories,
depending on the decomposition used:

e sparse — the parallel application con-
sisted of 3 tasks (1 master and 2
slaves) running on 4 nodes,

e redundant — the parallel application
consisted of 9 tasks (1 master and 8
slaves) running on 3 nodes.



To obtain the best performance, it would
be typical to use the number of nodes equal
to the number of processes of the parallel
application. Neither of the above decom-
positions does that. In case of the sparse
decomposition, one node is left idle (PVM
chooses to put the group server there, but
this one uses only a minimal fraction of
CPU time). Such a decomposition would
be wasteful for the standard PVM. In the
redundant case, each node runs 3 tasks of
the application (one of the nodes also runs
the group server). Although the number of
nodes used when running the two decom-
positions is different, comparing the tim-
ings makes sense, because for the sparse
decomposition only 3 nodes at a time are
used, just like for the redundant one.

In the first set of tests presented in Ta-
ble 1, standard PVM 3.3.11 has been used
as the parallel environment. Not surpris-
ingly, the sparse decomposition wins over
the redundant one, since it has lower com-
munication overhead.
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Figure 2: Execution progress of Grail for
sparse decomposition.

In the second row, PVM has been re-
placed by DPVM. A slight deterioration
in performance (1.5-4.5%) can be observed.
This is mostly the result of the fact that mi-
gration is not allowed while executing some
parts of the DPVM code. These critical
sections must be protected, and the over-

head stems from the locking used. More-
over, all messages exchanged by the appli-
cation processes have an additional, short
(8 byte) DPVM fragment header.

In the test presented in the third row,
the complete Dynamite environment has
been started: in addition to using DPVM,
the monitoring and scheduling subsystem
is running. Because in this case the ini-
tial mapping of the application processes
onto the nodes is optimal, and no external
load is applied, no migrations are actually
performed. Therefore, all of the observed
slowdown (approx. 2%) can be interpreted
as the monitoring overhead.

In the fourth set of tests an artificial,
external load has been applied. This has
been achieved by running a single, CPU-
intensive process for 600 seconds on each
node in turn, in a cycle. Since the moni-
toring and scheduling subsystem was not
running, no migrations could take place.
A considerable slowdown can be observed,
although it is far larger for the sparse
decomposition (75%) than for the redun-
dant one (19%), actually making the latter
faster. This is a result of the UNIX process
scheduling policies: for sparse decomposi-
tion, the external load can lengthen the ap-
plication runtime by a factor of 2, while for
the redundant decomposition by no more
than 33%, since there are already 3 CPU-
intensive processes running on each node,
so the kernel is unlikely to grant more than
25% of CPU time for the external load pro-
cess. This shows that sparse decomposi-
tion, although faster in a situation close to
ideal, performs rather badly when the con-
ditions deteriorate. The redundant decom-
position is far less sensitive in this regard.

The final, fifth set of tests is the combi-
nation of the two previous tests: the com-
plete Dynamite environment is running,
and the external load is applied. Dyna-
mite clearly shows its value in case of the
sparse decomposition, where, by migrat-
ing the application tasks away from the



overloaded nodes, it manages to reduce the
slowdown from 75% to 34%. The following
factors contribute to the remaining slow-
down:

e it takes some time for the monitor to
notice that the load on the node has
increased and to make the migration
decision,

e the cost of the migration itself,

e the master task, which is started di-
rectly from the shell, cannot be mi-
grated; when the external load proce-
dure was modified to skip the node
with the master task, the slowdown
decreased by a further 10%.

Turning to the redundant decomposition, it
can be observed that the Dynamite sched-
uler actually made the matters worse, in-
creasing the slowdown from 19% to 25%.
This result, although unwelcome, can eas-
ily be explained. The situation was already
rather bad even without the external load:
not only were all the nodes overloaded,
they were also overloaded by the same fac-
tor (3). Therefore, the migrator had vir-
tually no space for improvement, and its
desperate attempts to migrate the tasks ac-
tually exacerbated the situation, due to the
lack of nodes with significantly lower load.
It can be argued that the migrator should
have refrained from making any migrations
in this case, though.

Figure 2 presents the execution progress
of Grail for sparse decomposition. For
the standard PVM with no load applied
this is a straight, steep line. The other
two lines denote DPVM with load applied,
with and without the monitoring subsys-
tem running. Initially, they both progress
much slower than PVM : because the load
is initially applied to the node with the
master task, no migrations take place. Af-
ter approximately 600 seconds the load
moves on to another node. Subsequently,
in the case with the monitoring subsystem

running, the migrator moves the applica-
tion task out of the overloaded node, and
the progress improves significantly, com-
ing close to the one of the standard PVM.
In the case with no monitoring subsys-
tem running, there is no observable change
at this point. However, it does improve
between 1800 and 2400 seconds from the
start: that is when the idle node is over-
loaded. After 2400 seconds from the start,
the node with the master task is overloaded
again, so the performance deteriorates in
both DPVM cases.

6 Conclusions and future
prospects

Concluding, the concept of load balanc-
ing by task migration has been shown to
work. Moreover, we have succeeded in im-
plementing such a system completely in
user space. Since the system is stable now,
further study on the scheduler can be car-
ried out.

It has also been demonstrated that Dy-
namite takes care of an optimal utilisation
of system resources for long-running jobs
(a couple of hours and more).

Dynamite aims to provide a complete in-
tegrated solution for dynamic load balanc-
ing. In order to accomplish this, the fol-
lowing challenges are still to be solved:

e support for MPI,

e generic support for the migration of
the TCP/IP sockets,

e support for Linux GNU libc 2 library,

Meanwhile, Dynamite will be used as a
research tool, in order to do experiments on
dynamic task scheduling, which is an area
of active research.
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