
Yet another face of
Lorenz-Mie scattering:

Mono disperse distributions of
spheres produce Lissajous like

patterns

Alfons G. Hoekstra,* Richard M.P. Doornbos,**

Kirsten E.I. Deurloo,** Herke Jan Noordmans,**

Bart G. de Grooth,** and Peter M.A. Sloot*

* Parallel Scientific Computing Group, department of Computer Systems, Faculty of

Mathematics and Computer Science, University of Amsterdam, Kruislaan 403, 1098 SJ

Amsterdam, the Netherlands, tel. (+31)20-5257463

** Cell Characterization Group, department of TOP, Faculty of Applied Physics, University

of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands

Published in

Applied Optics, vol. 33, pp. 494-500, January 1994



1

Yet another face of
Lorenz-Mie scattering:

Mono disperse distributions of
spheres produce Lissajous like

patterns

ABSTRACT

The complete scattering matrix S of spheres was measured in a FlowCytometer. The experimental equipment

allows simultaneous detection of two scattering matrix elements for every sphere in the distribution. Two

parameter scatterplots with x- and y- coordinates determined by the S11 + Sij  and S11 - Sij  values are measured.

Samples of spheres with very narrow size distributions were analyzed with a FlowCytometer and produced

unexpected two parameter scatterplots. Instead of compact distributions we observed Lissajous-like loops.

Simulation of the scatterplots, using Lorenz-Mie theory, shows that these loops are not due to experimental

errors, but due to true Lorenz-Mie scattering. We show that the loops originate from the sensitivity of the

scattered field on the radius of the spheres. This work demonstrates that the interpretation of rare events and

hidden features in FlowCytometry needs reconsideration.

KEY WORDS
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1 ] INTRODUCTION

The problem of scattering of electromagnetic plane waves by an isotropic, homogeneous

sphere of arbitrary size and refractive index was solved in 1890 by Lorenz.1 Eighteen years

later Mie, independent of Lorenz, arrived at the same, exact, analytical solution.2 An excellent

historical account of these important results can be found in the proceedings of the Ludvig V.

Lorenz session of the Optical Particle Sizing conference 1990.3 The mathematical richness of

the formula is amazing and inspired many researchers to probe in still more detail the

(differential) cross sections as a function of the radius or the refractive index of the sphere, or

as a function of the wavelength of the incident light. The advent of modern computers and the

development of efficient algorithms to calculate the complex functions appearing in the Lorenz-

Mie scattering formula stimulated these efforts even more.

The Lorenz-Mie scattering formula posses some remarkable properties, most of which

were demonstrated in scattering experiments. Well-known examples are the interference and

ripple structure of the extinction cross section,e.g. 4 glare points,e.g. 5 or rainbows and

glories.e.g. 6,7  Despite the fact that the Lorenz-Mie solution is known for over a century, active

research to the wealth of physically intriguing phenomena contained in Lorenz-Mie scattering

continues. For instance, the internal electric field in the sphere receives more and more

attention.e.g. 8

Lorenz-Mie scattering comes in many disguises. Thurn and Kiefer measured Raman

spectra from optically levitated glass- and liquid spheres and observed a ripple structure

superimposed on the bulk Raman spectrum.9 The ripples proved to be due to structural

resonances of the internal electric field, as could be demonstrated with the Lorenz-Mie theory.

These structural resonance features could also be detected in stimulated Raman scattering from

individual liquid droplets.10 Tzeng et al. observed laser emission from small droplets at Lorenz-

Mie resonance wavelengths.11 These three effects are all due to the enhancement of the internal

field intensity at a structural resonance.

This paper reports on yet another face of Lorenz-Mie scattering, which is based on the

extreme sensitivity of the scattered field on the radius of the sphere. We measure the total
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scattering matrix of spheres with a narrow size distribution (∆r/r ~ 1 %, with r the radius of the

sphere) in a dedicated FlowCytometer (FCM). This experimental equipment allows us to

measure S11+Sij  and S11-Sij (ij = 12, 33, 34, S is the 4×4 scattering matrix) simultaneously

for every single sphere in the distribution. FlowCytometry data is usually analyzed by

generating a N-dimensional histogram (N being the number of observables per particle, here N

= 2) from the experimental data and trying to identify different dataclusters in the histogram

with different particles in the sample.12 At first sight a distribution of homogeneous spheres

with a very narrow Gaussian size distribution is expected to produce a single, narrow,

Gaussian-like 2-dimensional histogram. However, it turned out that the measured histograms

are all but Gaussian.

Here we will explain that this effect is not an experimental error, but due to true Lorenz-

Mie scattering. We calculate the 2-dimensional histograms and obtain agreement between theory

and experiment. In section 2 the theoretical and experimental background is shortly addressed,

the results are presented in section 3 and discussed in section 4. Emphasis will be on the

agreement between theory and experiment, but the consequences of this work for routine FCM

experiments are also shortly pointed out. In section 5 conclusions are drawn.

2 ] MATERIALS AND METHODS

2 . 1 FlowCytometry

FlowCytometry12 is an important technique in the biological sciences to identify and

separate various populations of e.g. white bloodcells. Hydrodynamic focussing forces the cells

to flow through a focussed laser beam one by one. Usually the cells are stained with fluorescent

probes and the fluorescence of a cell in the laser beam is measured. Furthermore, the forward -

and sideward scattered light is used as an important additional parameter for the analysis. In this

way we can measure several fluorescence and elastic light scattering (ELS) signals for each cell

in the sample.
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Figure 1: Schematic drawing of the optical

system of the FlowCytometer. The laser beam is

focussed by lens l1 on a cell, flowing through

the cuvet. The incident beam is polarized by

means of the polarizer P. The intensity of the

forward scattered light is measured by detector

d1, the sideward scattered light is focussed by

lens l 2  on detectors d 2  and d 3 , b s  is a

beamsplitter. The side scattering signals are

passed through two different analyzers A1 and

A2 .
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Figure 2: An example of a two parameter

scatterplot for a large number of polystyrene

spheres with a mean diameter of 1.98 µm ,

measured with a FlowCytometer. The

wavelength was 0.6328 µm. Every dot represents

a single sphere, the value of the x-coordinate is

the intensity of the forward scattered light, the

value of the y-coordinate is the intensity of the

sideward scattered light. The intensities are in

arbitrary units.

Sloot et al. argue that in many research- and clinical applications staining of cells is

undesirable.13 As a consequence a complete characterization of the sample must be obtained

solely on the basis of ELS measurements. We expect that this is only possible by measuring

suitable combinations of scattering matrix elements in the three principal FCM directions

(forward-, sideward-, and backward scattered light).13 The depolarization experiments of de

Grooth et al.14 to distinguish between neutrophilic- and eosinophilic granulocytes are a good

illustration of this point.

We developed optics to measure the total scattering matrix in a FlowCytometer and

showed that quantitative determination of the scattering matrix elements of particles in flow is

possible.13,15 The measuring principle was straightforward: a polarizer P was situated in the
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incident beam and an analyzer A just before a detector in one of the principal directions. The

matrix elements are obtained by measuring scattered intensities for various P-A combinations.

We have extended the optics to allow simultaneous measurement of two P-A combinations in

the side scattering direction, see figure 1.

A laser beam (λ = 0.6328 µm) is focussed by the circular lens l1 on the cells flowing

through the cuvet, and polarized by the polarizer P. The beam waist radius in the focal point is

12.5 µm. After P the incident beam is either linearly of circularly polarized. The forward

scattered light is detected by a silicon detector d1. Lens l2, a microscope objective (20 ×, NA =

0.4), collects the scattered light for 72.5˚ < θ < 107.5˚, with θ the usual scattering angle. The

sideward scattered light is divided in two beams by beamsplitter bs. The beams are directed

onto different analyzers (A1 and A2) and the intensity after the analyzers is measured by the

photomultipliers d2 and d3. The measuring principle is the same as described by Sloot et al.,13

however here it is possible to measure a P-A1 and P-A2 combination for every single cell. This

allows a direct measurement of single elements of the scattering matrix. Details of this

equipment, and its application to measure the scattering matrix of white bloodcells will be

published elsewhere.

2 . 2 Data handling

Our equipment measures three parameters for each cell: the forward scattered light and

two P-A intensities in the sideward direction. The analog signals are digitized by 12 bit A/D

converters and stored in memory of the controlling computer. In every run 4096 particles are

measured, the results are stored on harddisk for off-line analysis.

The data are plotted in two parameter scatterplots in which each cell is represented by a

dot in a x-y plot. The x- and y- coordinates are determined by one of the three measured

parameters. Figure 2 gives an example of a scatterplot for polystyrene spheres with a mean

diameter of 1.98 µm. The forward scattering is drawn along the x-axis and one side scattering

signal is drawn along the y-axis. The spheres appear as a cloud of points in the scatterplot.

The shape of the data cloud in the scatterplots and the physical interpretation are the main
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items of this paper.

2 . 3 Polystyrene spheres

The experiments were performed with polystyrene microspheres from Duke Scientific.*

The diameters of the spheres are 1.98±0.05 µm, and 7.04±0.05 µm.

In addition to the diameter of the sphere, Lorenz-Mie calculations require the relative

refractive index of the sphere. The refractive index of distiled water, in which the spheres are

suspended, and polystyrene can be calculated from16

nwater= n0 +
n2

λ
2 +

n4

λ
4
 
, [1]

with λ in micrometers, and n0 = 1.3236, n2 = 3.35×10-3, and n4 = -3.45×10-5 for water, and

n0 = 1.5711, n2 = 4.82×10-3, and n4 = 6.78×10-4 for polystyrene. In our case λ = 0.6328 µm,

which gives nwater = 1.3318 and npolystyrene = 1.5874. In the calculations we will use

nrelative = npolystyrene / nwater = 1.192,

and diameters as reported above.

2 . 4 Simulation of the scatterplots

To simulate the two parameter scatterplots the intensities measured by the sideward

detectors must be calculated. For spheres, using the P-A combinations as described by Sloot et

al., the intensity of the scattered light after analyzer A1 and A2 is13

IA = I0 C (S11 ± Sij ), ij = 12, 33, or 34, [2]

*  Duke Scientific Polystyrene microspheres 1135D. San Antonio Palo Alto CA 94303
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with I0 the intensity of the laser beam, C an apparatus constant, and S the 4×4 scattering matrix

of the sphere. The total intensity on the detector is obtained by integrating over the full solid

angle dΩ defined by the field of view of the objective,

I det= I A dω
dΩ

= I 0 C S 11dω
dΩ

± S i j dω
dΩ

≡ I 0 C s 11± s i j
 
, [3]

with sij  an integrated matrix element.

To calculate the scattering matrix of a sphere in a focussed laser beam, the traditional

Lorenz-Mie theory cannot be applied. Here we must rely on the generalized Lorenz-Mie theory

which describes the scattering of a sphere in a Gaussian beam.17 The gn coefficients appearing

in this theory are calculated using the localized interpretation.18,19 We use the same programs

as described in reference 13. The beamwaist radius of the Gaussian beam is 12.5 µm (see

section 2.1). The particles are located in the focal point of the beam.

The procedure to generate a simulated scatterplot is as follows. First we calculate the

scattering matrix S(θ) as a function of the scattering angle θ (resolution dθ = 0.1˚) for a sphere

with relative refractive index 1.192, diameter d, wavelength of the incident light 0.6328 µm,

and the appropriate beamwaist diameter. Then the integrated scattering elements sij  are

calculated, as described in reference 13. The sij  are calculated for 500 different values of d in

the range

dmean - 4σd ≤ d ≤ dmean + 4σd , [4]

dmean is the mean diameter in the distribution and σd the standard deviation (assuming a normal

distribution in diameter). This results in arrays of sij (di), with discrete values di as defined

above. For every di the sij(di) determine coordinates of a dot in the two parameter scatterplot,

and the total scatterplot is generated by drawing dots for every value of di. To simulate the

relative occurrence of spheres with diameter di in the distribution, the radius of the dots in the

scatterplot is weighted with a Gaussian function:
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rdot= rmaxExp -
(di - dm)

2

2σd

2

 

, [5]

rdot is the radius of the dot for a sphere with diameter di, rmax is the maximum radius of dots in

the simulated scatterplots.

2 . 5 Comparison between theory and experiment

The result of the calculations is a set (s11, s12, s33, s34)i, i runs over all the values of d.

The measurements give arrays of detector signals, as in formula 3. We need an independent

scaling for both theory and experiment in order to compare the two. The experimental results

are scaled such that the apparatus constants I0 and C are removed and the experimental

scatterplots are entirely described in terms of scattering matrix elements. The scaling factor for

the experimental results is

scaleexp= 1
2p

p

∑
i = 1

(I A1
i

+ I A2
i

) = 1
p

I 0C
p

∑
i = 1

s 11
i

 

, [6]

with p the total number of measured spheres, and IA1 and IA2 the intensities of the scattered

light after analyzer A1 and A2. Dividing the measurements by this factor results in two

parameters for each measured sphere, independent of I0 and C:

(1
p

p

∑
i = 1

s 11
i )

-1
(s 11± s i j)

 

. [7]

These normalized experimental parameters are used as (x,y) coordinates in the scatterplots.

The term
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1
p

p

∑
i = 1

s 11
i

is the weighted mean s11 of the distribution of spheres. Assuming a normal distribution in

diameter, this term is easily calculated from theory:

s 11= 1

σd 2π
0

∞

Exp[-
(d - dmean)

2

2σd

2
] s 11(d) δd

 

. [8]

This integral is approximated by numerical evaluation for dmean - 4σd ≤ d ≤ dmean + 4σd, using

Simpson's rule. The calculated integrated scattering matrix elements are divided by the value of

this integral. After scaling, both theory and experiment can be compared. In the sequel of this

paper the scatterplots of experimental and theoretical data are always scaled accordingly.

3 ] RESULTS

This section presents results of measurements and calculations of two parameter

scatterplots of spheres. The normalized experimental and theoretical results are drawn in one

figure. The x-axis always gives the s11+sij  signal, and the y-axis the s11-sij  signal, with ij as

before. The dots in the theoretical curves are drawn according to equation 5. The small inset in

the figures shows the theoretical curve once more, without scaling of the dot diameters.

Figure 3 shows the (s11+s12, s11-s12) scatterplot for the 7.04 µm spheres; the (s11+s33,

s11-s33) and (s11+s34, s11-s34) scatterplot for this sample are drawn in figure 4 and 5

respectively. Finally the (s11+s12, s11-s12) scatterplot for the 1.98 µm spheres is drawn in

figure 6.
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Figure 3: The normalized experimental and theoretical (s11+s12, s11-s12) scatterplot for polystyrene spheres

with a mean diameter of 7.04 µm. The horizontal axes is the s11+s12 signal in the sideward direction, the

vertical axes is the s11-s12 signal in the sideward direction. The inset shows the theoretical curve only, without

scaling of the dot diameter. The arrow represents the starting point (di = dmean - 4σd) and the loop direction, as di

grows, of the theoretical curve.
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Figure 4: Same as figure 3, but now for the (s11+s33, s11-s33) scatterplot.
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Figure 5: Same as figure 3, but now for the (s11+s34, s11-s34) scatterplot.
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Figure 6: The normalized experimental and theoretical (s11+s12, s11-s12) scatterplot for polystyrene spheres

with a mean diameter of 1.98 µm. The horizontal axes is the s11+s12 signal in the sideward direction, the

vertical axes is the s11-s12 signal in the sideward direction.

4 ] DISCUSSION

Figures 3, 4, and 5 show the three normalized experimental and theoretical scatterplots

for the 7.04 µm spheres. All three experimental scatterplots are loops, most obvious for the

(s11+s12, s11-s12) and the (s11+s34, s11-s34) scatterplot.

The occurrence of loops in the scatterplots depends on the diameter of the spheres. Figure

6 is the (s11+s12, s11-s12) scatterplot for the 1.98 µm sphere. The experimental scatterplot is a
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dense distribution of points, in agreement with the theoretical results. The same holds for the

other two scatterplots. (data not shown).

The form and position of the normalized theoretical scatterplots for the 7.04 µm spheres

compare very well with the experimental results. The agreement between theory and experiment

for the (s11+s12, s11-s12) scatterplot is very good. The other two scatterplots only show a

quantitative agreement between the theoretical and experimental results. Nevertheless, this

demonstrates that the observed loops in the experimental plots are due to Lorenz-Mie scattering,

and cannot be attributed to optical misalignments or other experimental errors.

Failure of a quantitative agreement  between theory and experiment for the (s11+s34, s11-

s34) scatterplot is probably due to the quality of the circular analyzers which are used to

measure the s34 terms. Without going into details here, imperfect circular analyzers will cause a

mixing of the s33 and s34 terms. This effect is still under investigation.

Theory and experiment can be compared on still another aspect. In the theory a normal

distribution of spherical diameters was assumed, and this was simulated by weighting the

radius of the dots in the scatterplot with a Gaussian function (see equation 5). The theoretical

curves nicely show the distribution of the spherical diameter. However, as is obvious from the

scatterplots for the 7.04 µm sphere, this distribution is in error with the experimental results.

The experimental scatterplots have most points in the lower corner of the loops, whereas the

theoretical results show that most points should show up along a long side of the loops. A

closer look at the theoretical curves shows that this error between theory and experiment can be

explained by assuming that the actual mean diameter of the spheres is somewhat larger than

7.04 µm, the value provided by the supplier of the spheres. The small inset in figures 3, 4, and

5 shows the theoretical curves, without scaling of the dot radius, and the starting point and loop

direction of the curves. The starting point is for d = dmean - 4σd, and for increasing diameter the

curve loops in the direction of the arrow. The (s11+s12, s11-s12) scatterplot loops in clockwise

direction, whereas the other two curves loop in counter clockwise direction. If the mean

diameter of the sphere is increased, the position of the dots with large diameter in the theoretical

curves shifts in the loop direction. Therefore, if the mean diameter of the sphere is increased to

7.08 µm, all three theoretical scatterplots reproduce the measured distribution correctly.
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Furthermore, we measured the scatterplots for a slightly larger wavelength of the incident light

(λ = 0.647 µm). In that case one expects that the same experimental loops occur, but with a

small shift of the distribution of the data points in the loop. In all three scatterplots we observed

this shift of the data points. The direction and magnitude of the shift are in agreement with

calculated values (data not shown).

The origin of the loops in the scatterplots can be understood by examining the integrated

matrix elements as a function of the diameter of the sphere. Figure 7 plots s11, s12, s33, and

s34 as a function of the diameter of the sphere, for d as in equation 4, and dmean is 7.04 µm.

The matrix elements posses an extreme sensitivity on the diameter of the sphere. For 6.84 µm <

d < 7.24 µm, s11 goes through three minima and maxima. The amplitude of the oscillations is

approximately 20% of the mean value of s11. The other integrated scattering matrix elements

have the same properties, although the oscillations are not in phase with the s11 oscillations.

However, for spheres with 1.78 µm < d < 2.18 µm the sij  elements increase monotonously

with increasing d (data not shown).

In the diameter range of figure 7 the integrated scattering functions are almost periodic.

The s11 strongly resembles a sine function. The other (quasi) periodic scattering matrix

elements can be viewed as a Fourier series of sine and cosine functions. Fourier transformation

of the data in figure 7 supports this view. For all four scattering matrix elements the absolute

value of the Fourier transform peaks around the same ground frequency ν0, and around higher

harmonics kν0 (with k an integer > 1). The amplitude of the third and higher harmonics are

negligible compared to the amplitude of the ground frequency (data not shown).

When constructing the theoretical scatterplot, we actually draw a parametric plot, with  the

diameter of the sphere d as the only parameter. The functions on the x - and y-axes of the

scatterplot are approximately combinations of sines and cosines of some ground frequency and

higher harmonics. Therefore the scatterplots can be viewed as Lissajous plots. The oscillations

in the integrated matrix elements, which are not in phase with each other, give rise to the

Lissajous loops in the two parameter scatterplots. Note that in principle it is possible to measure

more complicated scatterplots, with e.g. double loops (a ground frequency oscillation in one

direction and a first harmonic oscillation in the other direction). Actually, in one instance we
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measured scatterplots with such double loops. We are still working on the interpretation of

these experiments.
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Figure 7: The integrated scattering matrix elements, as a function of the diameter d of the sphere; d is in

micrometer, the sij  are in arbitrary units; the solid line is s11; the dotted line is s12; the dashed line is s33; the

dashed-dotted line is s34.
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Figure 8: The S11 element as a function of the scattering angle θ, for d = 1.98 µm. The grey area denotes the

field of view of the side scattering detectors.
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Figure 9: The S11 element as a function of the scattering angle θ, for d = 7.04 µm. The grey area denotes the

field of view of the side scattering detectors.

Figures 8 and 9 show S11 as a function of the scattering angle θ, for d is 1.98 µm and

7.04 µm respectively. The grey area denotes the field of view of the side scattering detectors. If

the diameter of the sphere is increased, the minima and maxima in S11(θ) gradually shift to the

forward directions, and new minima and maxima seem to originate from θ = 180˚.4 Slightly

increasing the size of the 7.04 µm sphere results in entrance and exit of local minima and

maxima in the field of view of the detectors, and changes in the amplitude of the minima and

maxima, giving rise to the oscillations in the curves of the integrated matrix elements as a

function of the diameter of the sphere (figure 7). The distance between the local minima and

maxima in the S11(θ) curve for the 1.98 µm sphere is too large to induce strong oscillations in

the integrated matrix elements after small changes of the diameter of the sphere.

Measurement of polarized light scattering in FCM is by no means a routine procedure yet,

nevertheless our results contain an important warning. It is common practice in FCM to

measure a side scattering signal. Since the incident light is always linearly polarized (most

lasers emit light which is linearly polarized, perpendicular to the scattering plane), the intensity

on the side scattering detectors is always a combination of s11 and s12. Therefore a narrow

monodisperse distribution of spheres can produce bimodal histograms in the side scattering

channels (this can be seen in figure 3 for the s11 + s12 signal). Especially if spheres are applied

to calibrate the instrument, extra care should be taken, and small spheres should be used to
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avoid the above mentioned problems. Furthermore, interpretation of rare events and hidden

distributions in scatterplots requires careful analysis in view of the above mentioned effect. We

are currently investigating to which extent the Lissajous loops can be expected in scatterplots

from biological particles.

5 ] CONCLUSIONS

This report shows yet another face of Lorenz-Mie scattering; unexpected, Lissajous-like

loops in two parameter scatterplots of spheres, as obtained by FlowCytometry. The complete

scattering matrix of spheres, with a very narrow distribution in size, was measured with a

dedicated FlowCytometer. The measured two parameter scatterplots can contain unexpected,

Lissajous-like loops. By simulating these scatterplots, it was shown that the experimental

results are true Lorenz-Mie scattering phenomena, and not due to experimental errors. The

occurrence of loops in the scatterplots is dependent on the diameter of the spheres. It was

shown that  oscillations in the integrated matrix elements, as a function of the diameter of the

sphere, form the basis for the Lissajous loops. These oscillations in their turn originate from the

interference structure in the differential scattering cross sections.

A consequence of this behavior is the origin of bimodal histograms in the side scattering

channels, due to monodisperse samples. This will hamper the interpretation of rare events and

hidden distributions in the scatterplots.
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