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Yet another face of
Lorenz-Mie scattering:

Mono disperse distributions of
spheres produce Lissajous like
patterns

ABSTRACT

The complete scattering matrix S of spheres was measured in a FlowCytometer. The experimental equipment
allows simultaneous detection of two scattering matrix elements for every sphere in the distribution. Two
parameter scatterplots with x- and y- coordinates determined by the$§ and §1 - Sjj values are measured.
Samples of spheres with very narrow size distributions were analyzed with a FlowCytometer and produced
unexpected two parameter scatterplots. Instead of compact distributions we observed Lissajous-like loops.
Simulation of the scatterplots, using Lorenz-Mie theory, shows that these loops are not due to experimental
errors, but due to true Lorenz-Mie scattering. We show that the loops originate from the sensitivity of the
scattered field on the radius of the spheres. This work demonstrates that the interpretation of rare events and

hidden features in FlowCytometry needs reconsideration.
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1] INTRODUCTION

The problem of scattering of electromagnetic plane waves by an isotropic, homogeneous
sphere of arbitrary size and refractive index was solved in 1890 by Lbighteen years
later Mie, independent of Lorenz, arrived at the same, exact, analytical sélAioaxcellent
historical account of these important results can be found in the proceedings of the Ludvig V.
Lorenz session of the Optical Particle Sizing conference 39%@ mathematical richness of
the formula is amazing and inspired many researchers to probe in still more detail the
(differential) cross sections as a function of the radius or the refractive index of the sphere, or
as a function of the wavelength of the incident light. The advent of modern computers and the
development of efficient algorithms to calculate the complex functions appearing in the Lorenz-
Mie scattering formula stimulated these efforts even more.

The Lorenz-Mie scattering formula posses some remarkable properties, most of which
were demonstrated in scattering experiments. Well-known examples are the interference and
ripple structure of the extinction cross sectfdh,4 glare point£:9- S or rainbows and
glories&-9- 6,7 Despite the fact that the Lorenz-Mie solution is known for over a century, active
research to the wealth of physically intriguing phenomena contained in Lorenz-Mie scattering
continues. For instance, the internal electric field in the sphere receives more and more
attention-9- 8

Lorenz-Mie scattering comes in many disguises. Thurn and Kiefer measured Raman
spectra from optically levitated glass- and liquid spheres and observed a ripple structure
superimposed on the bulk Raman spectPulthe ripples proved to be due to structural
resonances of the internal electric field, as could be demonstrated with the Lorenz-Mie theory.
These structural resonance features could also be detected in stimulated Raman scattering from
individual liquid dropletsiQ Tzeng et al. observed laser emission from small droplets at Lorenz-
Mie resonance wavelengthsThese three effects are all due to the enhancement of the internal
field intensity at a structural resonance.

This paper reports on yet another face of Lorenz-Mie scattering, which is based on the

extreme sensitivity of the scattered field on the radius of the sphere. We measure the total



scattering matrix of spheres with a narrow size distributioin £ 1 %, with r the radius of the
sphere) in a dedicated FlowCytometer (FCM). This experimental equipment allows us to
measureS; 1+Sij andS11-Sjj (if = 12, 33, 34 Siis the 44 scattering matrix) simultaneously
for every single sphere in the distribution. FlowCytometry data is usually analyzed by
generating a N-dimensional histogram (N being the number of observables per particle, here N
= 2) from the experimental data and trying to identify different dataclusters in the histogram
with different particles in the samp}@.At first sight a distribution of homogeneous spheres
with a very narrow Gaussian size distribution is expected to produce a single, narrow,
Gaussian-like 2-dimensional histogram. However, it turned out that the measured histograms
are all but Gaussian.

Here we will explain that this effect it an experimental error, but due to true Lorenz-
Mie scattering. We calculate the 2-dimensional histograms and obtain agreement between theory
and experiment. In section 2 the theoretical and experimental background is shortly addressed,
the results are presented in section 3 and discussed in section 4. Emphasis will be on the
agreement between theory and experiment, but the consequences of this work for routine FCM

experiments are also shortly pointed out. In section 5 conclusions are drawn.

2] MATERIALS AND METHODS

2.1 FlowCytometry

FlowCytometry2 is an important technique in the biological sciences to identify and
separate various populations of e.g. white bloodcells. Hydrodynamic focussing forces the cells
to flow through a focussed laser beam one by one. Usually the cells are stained with fluorescent
probes and the fluorescence of a cell in the laser beam is measured. Furthermore, the forward -
and sideward scattered light is used as an important additional parameter for the analysis. In this
way we can measure several fluorescence and elastic light scattering (ELS) signals for each cell

in the sample.



Figure 1: Schematic drawing of the optical
system of the FlowCytometer. The laser beam is
focussed by lengl on a cell, flowing through
the cuvet. The incident beam is polarized by
means of the polarizé?. The intensity of the
forward scattered light is measured by detector
dl, the sideward scattered light is focussed by
lens |12 on detectorsd2 andd3, bs is a
beamsplitter. The side scattering signals are
passed through two different analyzéx$ and

A2.
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Figure 2: An example of a two parameter
scatterplot for a large number of polystyrene
spheres with a mean diameter of 1.96,
measured with a FlowCytometer. The
wavelength was 0.6328n. Every dot represents

a single sphere, the value of the x-coordinate is
the intensity of the forward scattered light, the
value of the y-coordinate is the intensity of the
sideward scattered light. The intensities are in

arbitrary units.

Sloot et al. argue that in many research- and clinical applications staining of cells is

undesirablel3 As a consequence a complete characterization of the sample must be obtained

solely on the basis of ELS measurements. We expect that this is only possible by measuring

suitable combinations of scattering matrix elements in the three principal FCM directions

(forward-, sideward-, and backward scattered lighffhe depolarization experiments of de

Grooth et ak4 to distinguish between neutrophilic- and eosinophilic granulocytes are a good

illustration of this point.

We developed optics to measure the total scattering matrix in a FlowCytometer and

showed that quantitative determination of the scattering matrix elements of particles in flow is

possiblel3:15The measuring principle was straightforward: a polarizer P was situated in the



incident beam and an analyzer A just before a detector in one of the principal directions. The
matrix elements are obtained by measuring scattered intensities for various P-A combinations.
We have extended the optics to allow simultaneous measurement of two P-A combinations in
the side scattering direction, see figure 1.

A laser beamX = 0.6328um) is focussed by the circular lens 11 on the cells flowing
through the cuvet, and polarized by the polarizer P. The beam waist radius in the focal point is
12.5um. After P the incident beam is either linearly of circularly polarized. The forward
scattered light is detected by a silicon detector d1. Lens 12, a microscope objectiveA20
0.4), collects the scattered light for 72.58 < 107.5°, withe the usual scattering angle. The
sideward scattered light is divided in two beams by beamsplitter bs. The beams are directed
onto different analyzers (Al and A2) and the intensity after the analyzers is measured by the
photomultipliers d2 and d3. The measuring principle is the same as described by Sldét et al.,
however here it is possible to measure a P-Al and P-A2 combination for every single cell. This
allows a direct measurement of single elements of the scattering matrix. Details of this
equipment, and its application to measure the scattering matrix of white bloodcells will be

published elsewhere.

2.2 Data handling

Our equipment measures three parameters for each cell: the forward scattered light and
two P-A intensities in the sideward direction. The analog signals are digitized by 12 bit A/D
converters and stored in memory of the controlling computer. In every run 4096 particles are
measured, the results are stored on harddisk for off-line analysis.

The data are plotted in two parameter scatterplots in which each cell is represented by a
dot in a x-y plot. The x- and y- coordinates are determined by one of the three measured
parameters. Figure 2 gives an example of a scatterplot for polystyrene spheres with a mean
diameter of 1.98m. The forward scattering is drawn along the x-axis and one side scattering
signal is drawn along the y-axis. The spheres appear as a cloud of points in the scatterplot.

The shape of the data cloud in the scatterplots and the physical interpretation are the main



items of this paper.
2.3 Polystyrene spheres

The experiments were performed with polystyrene microspheres from Duke Scfentific.
The diameters of the spheres are 2®85um, and 7.040.05um.

In addition to the diameter of the sphere, Lorenz-Mie calculations require the relative
refractive index of the sphere. The refractive index of distiled water, in which the spheres are

suspended, and polystyrene can be calculated‘from
n n
Nwater= No %\ 2+ %\4 , (1]

with A in micrometers, andg= 1.3236, p = 3.3%103, and n = -3.4510 for water, and
no = 1.5711, p = 4.8%103, and n = 6.78104 for polystyrene. In our case= 0.6328um,

which gives ater= 1.3318 and gbiystyrene= 1.5874. In the calculations we will use
Nrelative = Mpolystyrene/ Nwater= 1.192,
and diameters as reported above.
2.4 Simulation of the scatterplots
To simulate the two parameter scatterplots the intensities measured by the sideward
detectors must be calculated. For spheres, using the P-A combinations as described by Sloot et

al., the intensity of the scattered light after analyzer A1 and&2 is

Ia =1oC (S11 % Sj), ij = 12, 33, or 34, [2]

* Duke Scientific Polystyrene microspheres 1135D. San Antonio Palo Alto CA 94303
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with Ig the intensity of the laser beam, C an apparatus constar$,thaedk4 scattering matrix
of the sphere. The total intensity on the detector is obtained by integrating over the full solid

angle & defined by the field of view of the objective,

Idet: fdQIAd(A): |0C{fdgslldﬁ)i fdQSij dm} = IOC[Slli Sij: ) [3]

with sj an integrated matrix element.

To calculate the scattering matrix of a sphere in a focussed laser beam, the traditional
Lorenz-Mie theory cannot be applied. Here we must rely on the generalized Lorenz-Mie theory
which describes the scattering of a sphere in a GaussiantBddmagy, coefficients appearing
in this theory are calculated using the localized interpretdidfAWe use the same programs
as described in reference 13. The beamwaist radius of the Gaussian beanuin 12
section 2.1). The particles are located in the focal point of the beam.

The procedure to generate a simulated scatterplot is as follows. First we calculate the
scattering matrix5(e) as a function of the scattering angl@esolution d = 0.1°) for a sphere
with relative refractive index 1.192, diameter d, wavelength of the incident light 06328
and the appropriate beamwaist diameter. Then the integrated scattering elgjanets
calculated, as described in reference 13. §jhare calculated for 500 different values of d in

the range
dmean- 404 < d < dmeant 404, [4]

dmeanis the mean diameter in the distribution agdhe standard deviation (assuming a normal
distribution in diameter). This results in arraysspfd;), with discrete values;jas defined
above. For everyjdhes;j(dj) determine coordinates of a dot in the two parameter scatterplot,
and the total scatterplot is generated by drawing dots for every valyeTaf simulate the
relative occurrence of spheres with diametendhe distribution, the radius of the dots in the

scatterplot is weighted with a Gaussian function:



(di-dp)’
) 2

Zod

Fdot= MmaxEX

, [5]

rdot IS the radius of the dot for a sphere with diametearfxis the maximum radius of dots in

the simulated scatterplots.
2.5 Comparison between theory and experiment

The result of the calculations is a s&f1(S12, S33, S34)i, | runs over all the values of d.
The measurements give arrays of detector signals, as in formula 3. We need an independent
scaling for both theory and experiment in order to compare the two. The experimental results
are scaled such that the apparatus constgnasd C are removed and the experimental
scatterplots are entirely described in terms of scattering matrix elements. The scaling factor for

the experimental results is

P p

1 | l 1 i

SC&'%xngz (a1t |A2)=5|0Cz S11, [6]
i=1 i=1

with p the total number of measured spheres, anaghd ho the intensities of the scattered
light after analyzer A1 and A2. Dividing the measurements by this factor results in two

parameters for each measured sphere, independeraraf C:

P i1
(; lell) (S11%Sj)) . [7]

These normalized experimental parameters are used as (x,y) coordinates in the scatterplots.

The term



1& i
a2 S11
2,
is the weighted measy ; of the distribution of spheres. Assuming a normal distribution in

diameter, this term is easily calculated from theory:

o 2
P 1 (d'dmeaa
sll—f oo Bl s ad. 8]
0

20d

This integral is approximated by numerical evaluation fggsd- 404 < d < dmeant 404, using
Simpson's rule. The calculated integrated scattering matrix elements are divided by the value of
this integral. After scaling, both theory and experiment can be compared. In the sequel of this

paper the scatterplots of experimental and theoretical data are always scaled accordingly.

3] RESULTS

This section presents results of measurements and calculations of two parameter
scatterplots of spheres. The normalized experimental and theoretical results are drawn in one
figure. The x-axis always gives tls¢;+s; signal, and the y-axis tr&1-sj signal, with ij as
before. The dots in the theoretical curves are drawn according to equation 5. The small inset in
the figures shows the theoretical curve once more, without scaling of the dot diameters.

Figure 3 shows thes{1+s12, S11-S12) Scatterplot for the 7.0dm spheres; thes{1+s33,

S11-S33) and 611+S34, S11-S34) Scatterplot for this sample are drawn in figure 4 and 5
respectively. Finally thes{1+s12, S11-S12) scatterplot for the 1.98m spheres is drawn in

figure 6.
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Figure 3: The normalized experimental and theoretglt612, S11-S12) Scatterplot for polystyrene spheres
with a mean diameter of 7.Q4n. The horizontal axes is ths 1+s12 signal in the sideward direction, the
vertical axes is they1-s12 signal in the sideward direction. The inset shows the theoretical curve only, without
scaling of the dot diameter. The arrow represents the starting gomnti{fdan- 404) and the loop direction, as d

grows, of the theoretical curve.
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Figure 4. Same as figure 3, but now for thg £s33, S11-S33) Scatterplot.
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Figure 5: Same as figure 3, but now for thg s34, S11-S34) Sscatterplot.
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Figure 6: The normalized experimental and theoretiglt612, S11-S12) Scatterplot for polystyrene spheres
with a mean diameter of 1.98n. The horizontal axes is ths 1+s12 signal in the sideward direction, the

vertical axes is thep 1-s12 signal in the sideward direction.

4] DISCUSSION

Figures 3, 4, and 5 show the three normalized experimental and theoretical scatterplots
for the 7.04um spheres. All three experimental scatterplots are loops, most obvious for the
(s11+512, S11-S12) and the $11+S34, S11-S34) scatterplot.

The occurrence of loops in the scatterplots depends on the diameter of the spheres. Figure

6 is the §11+S12, S11-S12) Scatterplot for the 1.98m sphere. The experimental scatterplot is a

11



dense distribution of points, in agreement with the theoretical results. The same holds for the
other two scatterplots. (data not shown).

The form and position of the normalized theoretical scatterplots for theun.G@pheres
compare very well with the experimental results. The agreement between theory and experiment
for the 611+S12, S11-S12) Scatterplot is very good. The other two scatterplots only show a
guantitative agreement between the theoretical and experimental results. Nevertheless, this
demonstrates that the observed loops in the experimental plots are due to Lorenz-Mie scattering,
and cannot be attributed to optical misalignments or other experimental errors.

Failure of a quantitative agreement between theory and experiment ferittea4 S11-

S34) scatterplot is probably due to the quality of the circular analyzers which are used to
measure thezs terms. Without going into details here, imperfect circular analyzers will cause a
mixing of theszz andsz4 terms. This effect is still under investigation.

Theory and experiment can be compared on still another aspect. In the theory a normal
distribution of spherical diameters was assumed, and this was simulated by weighting the
radius of the dots in the scatterplot with a Gaussian function (see equation 5). The theoretical
curves nicely show the distribution of the spherical diameter. However, as is obvious from the
scatterplots for the 7.04n sphere, this distribution is in error with the experimental results.
The experimental scatterplots have most points in the lower corner of the loops, whereas the
theoretical results show that most points should show up along a long side of the loops. A
closer look at the theoretical curves shows that this error between theory and experiment can be
explained by assuming that the actual mean diameter of the spheres is somewhat larger than
7.04um, the value provided by the supplier of the spheres. The small inset in figures 3, 4, and
5 shows the theoretical curves, without scaling of the dot radius, and the starting point and loop
direction of the curves. The starting point is for dyesh- 404, and for increasing diameter the
curve loops in the direction of the arrow. Tlheits12, S11-S12) Scatterplot loops in clockwise
direction, whereas the other two curves loop in counter clockwise direction. If the mean
diameter of the sphere is increased, the position of the dots with large diameter in the theoretical
curves shifts in the loop direction. Therefore, if the mean diameter of the sphere is increased to

7.08 um, all three theoretical scatterplots reproduce the meaglisédbution correctly.
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Furthermore, we measured the scatterplots for a slightly larger wavelength of the incident light
(» = 0.647um). In that case one expects that the same experimental loops occur, but with a
small shift of the distribution of the data points in the loop. In all three scatterplots we observed
this shift of the data points. The direction and magnitude of the shift are in agreement with
calculated values (data not shown).

The origin of the loops in the scatterplots can be understood by examining the integrated
matrix elements as a function of the diameter of the sphere. Figure Bplas, s33, and
s34 as a function of the diameter of the sphere, for d as in equation 4ynaggid7.04um.

The matrix elements posses an extreme sensitivity on the diameter of the sphere. | for<6.84

d < 7.24um, s11 goes through three minima and maxima. The amplitude of the oscillations is
approximately 20% of the mean valuespf. The other integrated scattering matrix elements
have the same properties, although the oscillations are not in phase veth diseillations.
However, for spheres with 1.78n < d < 2.18um thes;; elements increase monotonously
with increasing d (data not shown).

In the diameter range of figure 7 the integrated scattering functions are almost periodic.
The s11 strongly resembles a sine function. The other (quasi) periodic scattering matrix
elements can be viewed as a Fourier series of sine and cosine functions. Fourier transformation
of the data in figure 7 supports this view. For all four scattering matrix elements the absolute
value of the Fourier transform peaks around the same ground freqgenog around higher
harmonics kg (with k an integer > 1). The amplitude of the third and higher harmonics are
negligible compared to the amplitude of the ground frequency (data not shown).

When constructing the theoretical scatterplot, we actually draw a parametric plot, with the
diameter of the sphere d as the only parameter. The functions on the x - and y-axes of the
scatterplot are approximately combinations of sines and cosines of some ground frequency and
higher harmonics. Therefore the scatterplots can be viewed as Lissajous plots. The oscillations
in the integrated matrix elements, which are not in phase with each other, give rise to the
Lissajous loops in the two parameter scatterplots. Note that in principle it is possible to measure
more complicated scatterplots, with e.g. double loops (a ground frequency oscillation in one

direction and a first harmonic oscillation in the other direction). Actually, in one instance we

13



measured scatterplots with such double loops. We are still working on the interpretation of

these experiments.
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Figure 7: The integrated scattering matrix elements, as a function of the diameter d of the sphere; d is in
micrometer, thesj are in arbitrary units; the solid line 3g1; the dotted line is;2; the dashed line is33; the

dashed-dotted line 4.
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Figure 8: TheS11 element as a function of the scattering argglor d = 1.98um. The grey area denotes the

field of view of the side scattering detectors.
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Figure 9: TheS11 element as a function of the scattering argglor d = 7.04um. The grey area denotes the
field of view of the side scattering detectors.

Figures 8 and 9 sho®;; as a function of the scattering angldor d is 1.98:m and
7.04um respectively. The grey area denotes the field of view of the side scattering detectors. If
the diameter of the sphere is increased, the minima and maxBpgahgradually shift to the
forward directions, and new minima and maxima seem to originateefrorhi80°4 Slightly
increasing the size of the 7.@4/n sphere results in entrance and exit of local minima and
maxima in the field of view of the detectors, and changes in the amplitude of the minima and
maxima, giving rise to the oscillations in the curves of the integrated matrix elements as a
function of the diameter of the sphere (figure 7). The distance between the local minima and
maxima in theS; 1(8) curve for the 1.98m sphere is too large to induce strong oscillations in
the integrated matrix elements after small changes of the diameter of the sphere.

Measurement of polarized light scattering in FCM is by no means a routine procedure yet,
nevertheless our results contain an important warning. It is common practice in FCM to
measure a side scattering signal. Since the incident light is always linearly polarized (most
lasers emit light which is linearly polarized, perpendicular to the scattering plane), the intensity
on the side scattering detectors is always a combinatisfy @nds; 2. Therefore a narrow
monodisperse distribution of spheres can produce bimodal histograms in the side scattering
channels (this can be seen in figure 3 forshet s;12 signal). Especially if spheres are applied

to calibrate the instrument, extra care should be taken, and small spheres should be used to

15



avoid the above mentioned problems. Furthermore, interpretation of rare events and hidden
distributions in scatterplots requires careful analysis in view of the above mentioned effect. We
are currently investigating to which extent the Lissajous loops can be expected in scatterplots

from biological particles.

5] CONCLUSIONS

This report shows yet another face of Lorenz-Mie scattering; unexpected, Lissajous-like
loops in two parameter scatterplots of spheres, as obtained by FlowCytometry. The complete
scattering matrix of spheres, with a very narrow distribution in size, was measured with a
dedicated FlowCytometer. The measured two parameter scatterplots can contain unexpected,
Lissajous-like loops. By simulating these scatterplots, it was shown that the experimental
results are true Lorenz-Mie scattering phenomena, and not due to experimental errors. The
occurrence of loops in the scatterplots is dependent on the diameter of the spheres. It was
shown that oscillations in the integrated matrix elements, as a function of the diameter of the
sphere, form the basis for the Lissajous loops. These oscillations in their turn originate from the
interference structure in the differential scattering cross sections.

A consequence of this behavior is the origin of bimodal histograms in the side scattering
channels, due to monodisperse samples. This will hamper the interpretation of rare events and

hidden distributions in the scatterplots.
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