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ABSTRACT

The Coupled Dipole method, as originally formulated by
Purcell and Pennypacker, is a very powerful method to
simulate the Elastic Light Scattering from arbitrary
particles. This method, which is a particle simulation
model for Computational Electromagnetics, has one major
drawback: if the size of the particles grows, or if scattering
from an ensemble of randomly oriented particles has to be
simulated, the computational demands of the Coupled
Dipole method soon become too high. In this paper we
present two computational techniques to resolve this
problem. First we have implemented the Coupled Dipole
method on a Massively Parallel Computer. The parallel
efficiency can be very close to one, implying that attained
computational speed scales perfectly with the number of
processors. Secondly we propose to reduce the
computational complexity of the Coupled Dipole method
by including ideas from the so-called fast multipole
methods (hierarchical algorithms) into the Coupled Dipole
models. In this way the calculation time can be decreased
with orders of magnitude.

1 INTRODUCTION

Elastic Light Scattering (ELS) is a powerful non-
destructive particle detection and recognition technique,
with many important applications, both in exact sciences
and industrial or environmental utilizations. Examples are
ELS from human white bloodcells (Sloot 1988; Sloot et
al. 1989), from interstellar and interplanetary dust particles
(Hage and Greenberg 1990), from soot particles in
combustion flames (Charalampopoulos et al. 1992), or
from airborne particles (Colbeck et al. 1989). Our goal is
to develop a simulation model for ELS from small
biological objects, specifically human white bloodcells.

The Coupled Dipole (CD) method (Purcell and
Pennypacker 1973) is a powerful method to simulate
Elastic Light Scattering (ELS) from arbitrary particles,

such as white bloodcells. The CD method can be viewed
as a particle simulation model to solve the Maxwell
equations of Electromagnetics. Contrary to many
Computational Electromagnetics simulations which solve
the equations in the time domain using sophisticated
integrations schemes and which can be viewed as
continuum simulation models, the CD method solves the
Maxwell equations in the frequency domain. In this way
any scattering configuration can be viewed as a set of
radiating particles.

The CD method, like many particle simulations, has a
major limitation. To be useful in practical applications, a
huge computational challenge must be met. Especially if
orientational averages have to be calculated, or if the size
of the particle grows, the CD method soon needs
computing power far beyond the possibilities of desktop
computers or even beyond the possibilities of super
computers. In that respect simulating ELS from arbitrary
particles is an example of a very large scale, complex
simulation of a physical system using particle methods.
In this paper we will describe two important methods
from high performance computing to facilitate
simulations of ELS from particles such as human white
bloodcells.

The first technique is parallel computing, which is an
adaptation of the CD method at the implementation level.
The merits of parallel computing are demonstrated on the
basis of CD simulations of systems containing up to
33.000 dipoles. Such large systems require very powerful
computers. In our case the CD method is implemented on
a 512 node parallel transputer system (a Parsytec GCel).

Although parallelism is an inevitable concept in modern
high performance computing, it will not be powerful
enough to meet the computational demands of CD
simulations of larger, and/or randomly oriented particles.
Therefore we investigate if CD simulations are realistic
for even larger systems by adapting the method at the
algorithmic level. We demonstrate that CD simulations



can be viewed as a many-body simulation, an important
class of simulations in physics and chemistry. Viewed
from that perspective, the time complexity of the CD
method can be decreased with orders of magnitude using
so-called fast multipole methods (hierarchical algorithms)
as the simulation engine. In this way CD simulations
containing more than 100.000 dipoles on supercomputers,
or CD calculations with O(104) dipoles using desktop
computers, comes within reach.

We use the CD method to simulate ELS from human
white bloodcells. We expect significant biological impact
if both computational methods are applied in the
simulations. They will enable realistic simulations of
ELS from white bloodcells, resulting in optimal
definition of scattering experiments, designed to detect
subsets of white bloodcells, or small morphological
changes of cells, indicating possible pathologies (Sloot et
al. 1989). Furthermore, a rigourous interpretation of
scattering experiments of more complex cell samples,
such as bone marrow, becomes possible.

2 COMPUTATIONAL STRUCTURE

The CD method divides a particle into N small
subvolumes, whose size must be small enough to ensure
that it can be viewed as an ideal dipole. Typical choices
are λ/20 < d < λ/10, with d the size of a subvolume, and
λ the wavelength of the incident light. From now on we
refer to the subvolumes as dipoles. First the electric field
on dipole i, E(ri) (1 ≤ i ≤ N), due to the external field
E0(r) and the field radiated by all other dipoles is
calculated. This can be formulated as a matrix equation
Ax = b, with
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The matrix A is the n×n interaction matrix (n = 3N), Fij
is a functional describing the field, radiated by dipole j on
dipole i, and γ is the isotropic polarizability of the
dipoles. After solving the matrix equation, the scattered
electric field Es is calculated by summing the fields,
radiated by the dipoles, at the observation point robs. The

dipoles are placed on a cubic grid with grid spacing d. The
diameter of the spherical dipoles is equal to the grid
spacing d.

Figure 1 gives an estimate of the number of dipoles
needed to describe a compact particle, as a function of the
size parameter α, with d equal to λ/20, λ/10, and λ/5.
Even for modest size parameters the number of dipoles is
O(104) or larger.

Calculation of the electric field on the dipoles, that is, to
solve the system of linear equations Ax  = b  is the
computationally most demanding part of the CD method.
Generally speaking linear systems are solved by means of
direct or iterative methods (Golub and van Loan 1989). In
the past both approaches were applied to solve the coupled
dipole equations. For instance, Singham et al. used a
direct method (LU factorization) (Singham and Salzman
1986), Singham and Bohren described a reformulation of
the CD method, which from a numerical point of view is
a Jacobi iteration to solve the matrix equation Singham
and Bohren 1987), and Draine applied a Conjugate
Gradient iteration (Draine 1988).
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Figure 1: Estimation of the number of dipoles needed to
model a compact particle.

Direct methods require O(n3) floating-point operations to
find a solution, whereas iterative method require O(n2)
floating-point operations, provided that the number of
iterations is much smaller than n. We want to simulate
Elastic Light Scattering of particles with α > 20, i.e. N =
O(105). This vast number of dipoles forces us to use
iterative methods. Suppose that the implementation can
run at a sustained speed 1.0 Gflop/s, and n = 3.0 105. In
that case a direct method roughly needs O(10) months to
find a solution. An iterative method needs O(100) seconds
per iteration. If the number of iterations can be kept small
enough, execution times can be acceptable.



The Jacobi iteration is not very well suited for a large
number of dipoles; for a relative small number of dipoles
(N= ~500), the Jacobi iteration becomes non-convergent
(Singham and Bohren 1988). A very efficient iterative
method is the Conjugate Gradient method (Golub and van
Loan 1989). Draine (Draine 1988) showed that the
Conjugate Gradient method is very well suited for solving
the coupled dipole equations. The number of iterations
needed to find the solution is much smaller than the
dimension of the matrix. For instance, for a typical small
particle with 2320 dipoles (n = 6960) the Conjugate
Gradient method only needs 17 iterations to converge. We
apply a Conjugate Gradient method, the so-called CGNR
method (Ashby et al. 1990), to find the electric field on
the dipoles.

3 PARALLEL COMPUTING

3 . 1 Parallel calculation of the dipole
fields

The dipole fields are calculated in parallel by assigning
N/p dipoles to each processor (with p the number of
processors of the parallel computer), and each processor
calculates the fields on these dipoles, using our parallel
implementation of the CGNR method (Hoekstra et al.
1992a). The CGNR method was implemented on a ring of
transputers, with a rowblock decomposition of the matrix.
Rowblock decomposition means dividing A in blocks of
rows, with every block containing n/p consecutive rows.

The CGNR method contains two matrix vector products,
three vector updates and three inner products per iteration.
Figure 2 schematically shows how these operations are
performed in parallel.

The total computation time is O(n2/p)τcalc , the
communication time is O(n)τcomm. (Hoekstra et al.
1992a). The parameters τcalc and τcomm are the times to
perform one floating-point operation on a processor and to
send one byte from a processor to a neighbouring
processor. Thus, the efficiency of the parallel CGNR is
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with T1 the execution time on 1 processor and Tp the
execution time on p processors. Here we neglected many
details of the communications and computations, for this
see reference (Hoekstra et al. 1992a). Still, equation 1
contains the most important conclusion. If n/p is large,

the efficiency of the parallel CGNR method can be very
close to one. This means that the execution time of the
parallel CGNR is almost inversely proportional to the
number of processors available in the parallel computer.
Performance measurements of the actual implementation
support this conclusion (Hoekstra et al. 1992a; Hoekstra
and Sloot 1992b).
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2.c: the parallel matrix vector for a rowblock decomposed
matrix.

Figure 2: A schematic drawing of the parallel
implementation (here with 3 processors) of the numerical
operations. The decomposition of the vector and matrix is
symbolized by the dashed lines; a single arrow (->) means a
communication, and the implication mark (=>) means a
(parallel) calculation.

3 . 2 Parallel calculation of the scattered
fields

The scattered electric field is calculated in parallel by
calculating the radiated electric fields from the dipoles in
parallel, and summing them afterwards. This strategy
matches the data decomposition used in the parallel
CGNR implementation. After convergence of the CGNR
every processor has the electric field on its local dipoles in
memory. All processors calculate the scattered fields due
to their local dipoles in all observation points (e.g. the
scattered field as a function of the scattering angle θ).
Finally the results of all processors are accumulated and
summed in the root processor, which writes the results to
disk for further analysis.

Both the calculation time and the communication time of
the parallel calculation of the scattered fields are negligible
compared to the calculation - and communication time of



the parallel CGNR. Therefore, the efficiency of the
parallel CD method will be as good as the efficiency of
the parallel CGNR. However, the parallel calculation of
the scattered fields also has a very good parallel efficiency
on its own right, as a straightforward analysis reveals (data
not shown).

3 . 3 Results

The parallel CD method was implemented on a Parsytec
GCel-3/512, a 512 node distributed memory computer,
which was recently installed in Amsterdam. The nodes are
Inmos T805 transputers. The implementation was carried
out in the language C, under Parsytec's parallel
programming environment Parix.

Figure 3 show the measured parallel efficiency of the
CGNR for some small systems. As the number of dipoles
increases the efficiency stays very close to 1 for a larger
number of processors. It can be shown that for N =
O(104) or more, the efficiency is almost 1 for the
maximum number of processors (p = 512). Most
computing time is spent in the CGNR method, therefore
these conclusions also hold for the complete parallel
implementation of the Coupled Dipole method. This is
also supported by actual measurements (data not shown).
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Figure 3: The measured parallel efficiency of the CGNR
method as a function of the number of processors; the
straight line is for 8 dipoles, the short dashed line for 136
dipoles, the long dashed line for 552 dipoles and the point
dashed line for 2176 dipoles

Figure 4 shows the result of a CD simulation of
scattering by sphere, together with the analytical Mie
result. The number of dipoles was 33552, the diameter of
the dipoles was λ/10, resulting in a size parameter α  =
12.6; the refractive index was 1.05. This calculation
required 11 hours on 512 processors. The parallel speedup
was estimated to be larger than 500, the computational
speed was 250 Mflop/s. As soon as new updates of the C
compilers are available, this number is expected to be

increased with a factor 2 (due to much better code
optimizers).
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Figure 4: Coupled Dipole simulation (dots) of scattering by
a sphere, and Mie calculations (line). The S11 element of
the scattering matrix S, as a function of the scattering
angle is shown. The size parameter of the sphere is α  =
12.6, the refractive index is m = 1.05. The number of
dipoles in the CD simulation was 33552, the size of the
dipoles was λ/10.

The results of the CD simulations are in good agreement
with the exact Mie results, except in the backscattering.
This is probably due to the relative large size of the
dipoles. The execution times are long, even on massively
parallel computers. Note that we simulated a particle in
only one orientation. If randomization is required, the
execution times are no longer realistic. Furthermore, if the
number of dipoles gets even larger, to O(105) or O(106),
the execution time of the CD method for a particle in just
one orientation already becomes too high.

4 HIERARCHICAL MANY-BODY
METHODS

In its present form the CD method is very promising, but
computationally too demanding to calculate ELS from
particles with α > 10, especially if orientational averages
have to be calculated. The execution time of CD
simulations, using iterative solvers, scales as N2. This is
due to the matrix vector products in the CGNR method.
From a physical point of view this matrix vector product
is a calculation of the electric field on the dipoles, due to
radiation from all other dipoles. In this sense the CD
method can be viewed as a many-body simulation, which
requires to calculate all pairwise interactions between the
interacting particles (the dipoles).

Many-body methods possess an algorithmic complexity of
O(N2/2) if all pairwise interactions are calculated (the
direct algorithm). For many realistic simulations the
number of interacting particles has to be very large. The
O(N2/2) complexity of the direct algorithm is a severe



restriction for these large scale many-body simulations.
Even on the most powerful (massively parallel)
supercomputers the execution times of realistic many-
body simulations will soon rise above acceptable (or
affordable) values.

The conclusion is that the algorithmic complexity of the
direct method must be reduced. Some interaction
potentials (e.g. Lennard-Jones) allow the use of cut-off
techniques, which can reduce the complexity to O(N).
However, for long range interaction potentials, such as the
dipolar interaction potential, cut-off techniques cannot be
applied. A very important class of "clever" many-body
algorithms, which reduce the complexity to O(N LogN) or
even to O(N), are the so-called hierarchical tree methods
(Greengard 1988; Salmon 1991). In these methods the
interaction is not calculated for each particle pair directly,
but the particles are grouped together in a hierarchical
way, and the interaction between single particles and this
hierarchy of particle groups is calculated.

Appel (Appel 1985) introduced the first hierarchical tree
method, which relies on using a monopole (center-of-
mass) approximation for computing forces over large
distances, and on sophisticated data structures to keep track
of which particles are sufficiently clustered to make the
approximation valid. This method achieves dramatic
speedups compared to the direct algorithm, but is less
efficient when the distribution of particles is relatively
uniform and the required precision is high. Barnes and Hut
applied this method in simulations of interacting galaxies
(Barnes and Hut 1986). The next step, which was set by
Greengard (Greengard 1988), is the use of multipole
expansions to compute interaction potentials or forces.
This approach is known as the Fast Multipole Method
(FMM), and requires an amount of work proportional to N
to evaluate all pairwise interactions to any degree of
accuracy. Up till now FMM algorithms are developed for
scalar 1/r potentials in two and three dimensions
(Greengard 1988; Schmidt and Lee 1991). Salmon
presents an overview of hierarchical tree methods (Salmon
1991).

We have developed a FMM algorithm for the vector
potential of radiating dipoles (in three dimensions). This
FMM algorithm replaces the matrix vector products in the
iterative solver of the CD simulation. Now the interaction
between the dipoles is not calculated for each dipole pair
directly, but the dipoles are grouped together in a
hierarchical way, and the interaction between single
dipoles and this hierarchy of dipolar groups is calculated.
In this way the complexity of the complete CD
simulation is reduced to O(N). It should be noted that N
has to be large to reach a cross over in execution time

between the direct algorithm and the FMM algorithm. The
FMM algorithm is build along the same lines as
Greengard's FMM algorithm for scalar 1/r potentials in
three dimensions (Greengard 1988). The algorithm
consists of three steps (we ommit the mathematical and
algorithmic details here, they will be published
elsewhere):

1] form multipole expansions for the vector potentials
of the hierarchy of dipolar groups (upward pass);

2] compute the interactions between all dipoles at the
coarsest possible level in the hierarchy; for a given
group of dipoles in the hierarchy this is
accomplished by including interactions between
groups which are well separated from each other,
and whose interactions are not accounted for at a
higher stage in the hierarchy (downward pass);

3] using the resulting vector potential on each dipole,
calculate the electric field.

Hierarchical tree methods have proven to be very efficient
and accurate, and well suited to be used in realistic many-
body simulations. However, efficient implementation on
High Performance Computing platforms, specifically
massively parallel distributed memory computing
systems, if far from obvious. Salmon has successfully
implemented the Barnes-Hut method on the Caltech
hypercubes (Salmon 1991). The FMM is implemented on
shared memory multicomputers (Greengard and Gropp
1990), and on the connection machine CM-2 (Zhao and
Lennart Johnsson 1991). Furthermore, Leathrum and
Board report on FMM implementations on a number of
platforms, such as the Intel Touchstone, transputers,
Encore Multimax, and distributed workstations running
PVM and Linda (Leathrum et al. 1992). We will
implement the CD method, using the FMM algorithm to
calculate the dipolar interactions, on the parallel GC-el
distributed memory computer.

5 CONCLUSIONS

The CD method allows, in principle, simulation of ELS
of arbitrary particles. In practice however the calculation
times to solve the CD equations soon become unrealistic.
We have introduced two computational techniques, parallel
computing and hierarchical methods, to meet the
computational challenge imposed by the CD method.

The first technique opens the way to perform CD
calculations on modern massively parallel computing
platforms, but also on networks of workstations. The
second technique reduces the complexity of the CD
method with orders of magnitude. Now very large CD



simulations can be performed on high end systems, and
light scattering form smaller arbitrary particles can be
simulated on workstations or personal computers.

In the future these advanced innovations will allow routine
ELS calculations from arbitrary shaped particles, and serve
more detailed optical particle characterizations.
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