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Abstract

New developments in Computer Science, both hardware and software, offer researchers, such
as physicists, unprecedented possibilities to solve their computational intensive problems.
However, full exploitation of e.g. new massively parallel computers, parallel languages or runtime
environments requires an approach that combines elements of computer science, numerical
mathematics and, in our case, physics. We call this β-computer science.

Here we present an example of a computational intensive physical application, the coupled
dipole formulation of elastic light scattering from arbitrary shaped particles. The computational
kernel of this method is a large set of linear equations. We solve this set by means of a Conjugate
Gradient (CG) method, implemented on a coarse grain distributed memory computer (a Transputer
network).

This paper describes the parallelization of a CG method. Two important choices are
discussed; what is the best possible decomposition and which processor network topology is most
suited. We introduce a general method to answer these questions and investigate its usefulness by
applying this method to our application. It is concluded that implementation of the CG method,
with a row-block decomposition of the coefficient matrix, on a ring of Transputers is the most
efficient choice.

Finally the actual implementation is described, and preliminary experimental timing results
are compared with the theoretical time complexity analysis.

I Introduction and background

Traditionally users of the most powerful computing systems are found among researchers
in the natural sciences and in specific engineering applications. Still, access to high-end vector
computers has been restricted to selected and very specialized groups of researchers. The
development of efficient applications, fully utilizing the unique properties of the vector
architecture, was a very laborious process.1 The introduction of good vectorizing compilers
relieved this problem, but nevertheless, writing vectorizable code is still considered a
specialized skill.

I This work is supported by a matched funding from SION, FOM and Stichting Biofysica (project NWO
810410004).



Computer Science is a fast moving field, and nowadays the revolutionary paradigm of
distributed computing has generally been accepted as the candidate to meet the computational
power required for recent and future applications.2 Furthermore, parallel computing brings
supercomputer power to a much broader group of users, due to the relative small investments
compared to vectorsupercomputers ("distributed computers: the workman's supercomputer").
However, developing efficient code, totally exploiting the possibilities of the parallel hard- and
software,  is generally believed to be hard. Automatic parallelization tools for distributed
memory computers are still in their infancy and formal approaches to parallelize an application
hardly exist .

We believe that parallel scientific computing requires a new approach, where knowledge
from computer science, numerical mathematics and from the applications field, such as physics,
is combined. We propose to refer to this interdisciplinary research, which fills the gap between
the formal description of an application and an abstract model of a (parallel) machine in a
systematic and  structured way, as β-computer science. Here we present some elements of β-
computer science in conjunction with an example of parallelizing a specific application.

In previous years we developed both theory and experimental equipment to study the
Elastic Light Scattering (ELS) from biological particles.3,4,5,6,7,8 This research has moved to
the computational field. We are developing methods to simulate the ELS from arbitrary shaped
micron sized particles, by means of the Coupled Dipole method.9 The main task is to solve a
very large matrix equationII :

Ax = b , [1]

where A is a symmetric 3Nx3N complex matrix (with N ~ 105), b a known vector and x the
unknown vector. Large linear systems, such as Eq. [1], are solved by means of iterative
techniques.10 We apply a very powerful iterative technique, the Conjugate Gradient (CG)
method.11

In this paper we concentrate on a formal description of the parallelization of the CG
method. First, in section II, we introduce a general framework to parallelize a scientific
calculation, which is applied to the CG-method (section III). Section IV describes the
implementation of the parallel CG method on a Transputer network. The last section draws
conclusions and gives directions for future research.

II A method to parallelize a problem for SPMDIII  computers

Parallelizing an algorithm and implementing it on a parallel computer is non-trivial and
requires careful analysis. A general applicable methodology to parallelize scientific calculations
would be very helpful. Here we introduce a generic scheme which captures several steps in
going from the definition of a problem to an implementation on a parallel computer.

Parallelism is realized by decomposition of the problem.2 This can be an algorithmic/task
decomposition or a geometric/data decomposition. In the first case the problem is divided into a
number of tasks that can be executed in parallel, in the second case the data is divided in groups
(grains) and the work on these grains is performed in parallel. The parallel parts of the problem
are assigned to processing elements. In most cases the parallel parts must exchange
information. This implies that the processing elements must be connected in some way.
Parallelizing a problem boils down to answering two questions: what is the best decomposition
for the problem and which processor interconnection  scheme is best suited.

Obviously we need a metric to decide which decomposition and interconnection scheme
must be selected. We choose the total execution time of the parallel program Tpar. The
decomposition and interconnection that minimize Tpar must be selected. The execution time Tpar

II Vectors are written as lower case - and matrices as upper case bold faced characters.
III SPMD stands for Single Program Multiple Data, which implies a SIMD computer without global

synchronization.



depends on two parameters:

Tpar ≡ Tpar(p,N) , [2]

where p is the number of processing elements and N a measure of the problem size.
We identify five steps between a problem definition and the implementation on a parallel

machine, which are schematically shown in figure 1. Every step is independent of the other
steps and can be studied without referring to the others. The first three parts ("problem",
"methods", "algorithms") are also encountered if the application has to be solved on a
sequential computer. The outcome of this part of the analysis can however be different if a
sequential or parallel computer is used. This is an important point to remember if one starts to
port sequential code to parallel machines; there is a chance that the underlying algorithms and
methods are not suited to be parallelized efficiently.

Problem   1

Methods   2

Decompositions   4

Algorithms   3

Topologies   5

FIGURE 1: The five distinct steps that can be identified in the process of parallelizing a problem.

We will now investigate the various stages involved in the analysis in more detail:

1] The problem: We are faced with a scientific problem that needs large amounts of
computing power. The problem is somehow translated into a mathematical formulation (sets of
coupled ODE's or PDE's, sets of linear equations etc.).The formal definition often introduces
constraints on the class of methods and algorithms that can be used to solve the problem.
2] Methods: The formal, mathematical problem can be solved by various methods. For
instance, a large set of linear equations with a sparse coefficient matrix can be solved by several
iteration schemes. Very often the formal definition of the problem reduces the number of
methods. Further reduction of the collection of methods can be achieved by investigating some
of their mathematical properties (such as e.g. stability). Usually this results in a small set of
methods, which must be analyzed further.
3] Algorithms: Most methods can be implemented by several algorithms, that differ in
stability, accuracy and time complexity. Very often a choice on the basis of stability or accuracy
properties can be made. At this point the computation time on 1 processing element (Tseq) can
be calculated and the fastest problem solver can be selected to be implemented on a sequential
computer.

Very often this "best" sequential algorithm is ported to a parallel computer, without
considering other methods/algorithms. This strategy simplifies the total analysis, but can be
very misleading, as a simple example shows. Suppose you must solve a large, sparse set of
linear equations and for some reason you can choose between a Jacobi iteration or a Gauss
Seidel iteration. The Gauss Seidel iteration, which converges much faster than the Jacobi



iteration, is the best choice on a sequential computer. However, in contrast to the Gauss Seidel
iteration, the Jacobi iteration is inherently parallel.12 Therefore, the total computation time of
the Jacobi method, implemented on a parallel computer, can be significantly smaller than the
computation time of the Gauss Seidel iteration.

Up to this point no reference to parallelism had to be made at all. The next step, the
decomposition, brings us in the domain of parallel computing.
4] Decomposition: After the first three steps we have a set of methods, associated algorithms
and expressions for Tseq(N). Now the problem must be decomposed to allow distribution
among several processing elements. Here it is not necessary to make any reference to a parallel
computer. Yet one can derive a formal expression for Tpar(p,N):

Tpar(p,N) = Tseq(N)
p + Tcalc.np(p,N) + Tcomm(p,N)

 . [3]

The decomposition, as was shown above, introduces communication between processing
elements; Tcomm(p,N) is the total communication time of the parallel program. The time
Tcalc.np(p,N) describes the non-parallel calculations. Many algorithms contain calculations that
cannot be performed completely in parallel. For example, a parallel inner product is performed
by decomposing the vectors in equal parts and assigning these parts to the processing elements.
The inner products of the subvectors are calculated in parallel, but the resulting partial inner
products in every processing element must be added to find the inner product. These remaining
calculations cannot be performed completely in parallel. Tcalc.np(p,N) accounts for these non-
parallel calculations. After decomposition a small set of communication primitives and non-
parallel computations can be identified. Therefore Tcomm(p,N) and Tcalc.np(p,N) can be
expressed as follows:

T i(p,N) = ∑
j

ajt j(p,N:topology), i ∈ {calc.pn,comm}
 
, [4]

tj is the time required to perform a specific communication (e.g. sending a vector from one
processor to all other processors) or non-parallel calculations, and aj is the number of times that
specific action j is performed in the algorithm at hand. The tj depend on the processor
interconnection scheme (topology).

We believe that the number of distinct communication and non-parallel calculation
primitives that may be identified after any decomposition is limited. In that case the summation
in Eq. [4] runs over all the times tj. The algorithm and decomposition fix the numbers aj (where
aj = 0 is possible). In the future we will investigate this hypothesis in more detail.

Define Tloss(p,N) by

Tloss(p,N) = p[Tcalc.np(p,N) + Tcomm(p,N)] . [5]

The expressions for the speedup S and efficiency ε of a parallel program2 take the following
form:

S(p,N)=
Tseq(N)

Tpar(p,N)
=

p

1 +
T loss(p,N)

Tseq(N)  
; [6]

ε(p,N) =
S(p,N)

p
=

1

1 +
T loss(p,N)

Tseq(N)  
. [7]

The next step is to find expressions for the topology-dependent tj.



5] Topology: In the previous step knowledge of a parallel machine was not necessary. Now
we must specify the topology of the parallel machine. For every topology an expression for tj
can be derived, depending on three parameters:

t j = t j(p,Ν:τcalc,τstartup,τcomm) ; [8]

τcalc, τstartup and τcomm are hardware dependent parameters and denote the time for one floating
point calculation, the startup time for communication and the time to communicate a word over
a link connecting two processing elements respectively. As was mentioned above, we assume
that it is possible to distinguish a relative small set of communication routines that may be
identified in any parallel scientific calculation. Therefore it is possible to investigate the time
complexity of alternative communication routines, implemented on different topologies,
without reference to the application. This knowledge can then be utilized to find the best
topology, in terms of minimizing Tpar(p,N), for the application under investigation.
Furthermore one can provide an application programmer with libraries containing the most
common communication routines, implemented for different topologies.

Now we have a number of abstract machines (described by the topology, τcalc, τstartup
and τcomm) and expressions for Tpar(p,N) for some decompositions and algorithms
implemented on those machines. At first sight it seems that the number of combinations
becomes too large. Fortunately, it is possible to discard combinations after every step, keeping
the analysis manageable. Actual measurement of the τi's completes the analysis. Now the total
computing time for the remaining combinations can be calculated, in a subspace of the total
(p,N) space.

This scheme to parallelize a scientific calculation is very general and extensive. In many
situations the analysis will not start from scratch at point 1 but (as in our case of the CG
method) will start at point 3 or 4. The advantage of this scheme is a total decoupling of
hardware and topology from decomposition, algorithms and methods.

The next section utilizes the concepts that were introduced here.

III A parallel Conjugate Gradient method

III.1 Introduction

The CG method11 is a very powerful iterative method to solve large, sparse matrix
equations, as equation [1]. Due to the special nature of the matrix A arising from the Coupled
Dipole method (symmetric, non-Hermitian), equation [1] is first transformed to normal form:

AHAx = AHb . [9]

(the subscript H denotes the Hermitian of A) and is subsequently solved by applying the CG
method.

This paper investigates the usefulness of our parallelization methodology. As a test case
we apply this method to the standard CG method for the normalized equation [9]. The iteration
scheme of the standard CG method can be reformulated for the transformed system in such a
way that  it is not necessary to actually perform the matrix matrix product. The reformulated CG
algorithm to the normal equation [9] is given below. In the sequel we will refer to this algorithm
as the CG algorithm.

We start the process of parallelizing the CG method at point 4 of the previously
introduced scheme: the decomposition.

We have investigated three decompositions (the rowblock, the columnblock and the grid
decomposition) and three topologies (the binary tree, the ring and the cylinder topology). The
full analysis for the rowblock decomposition on a ring topology will be presented here. For
other decomposition/topology combinations we just present the results. The complete analysis



will be published elsewhere.13

Reformulated CG algorithm for the normal equation

Initialize: Choose a start vector x0 and put
r0 = (b - Ax0)
p0 = AHr0

Iterate: while |rk| ≥ ε |b|

α k =
(A

H
r k)

H
(A

H
r k)

(Apk)
H
(Apk)

xk+1 = xk + αkpk
rk+1 = rk - αk(Apk)

βk =
(A

H
r k+1)

H
(A

H
r k+1)

(A
H
r k)

H
(A

H
r k)

pk+1 = AHrk+1 + βkpk

stop xk is the solution of Ax = b

The CG algorithm contains three distinct computational tasks per iteration:
1] Two matrix vector products, (AHrk and Apk);
2] Three inner products ([AHrk].[AHrk] , [Apk].[Apk] and rk.rk);
3] Three vector updates (xk+1, rk+1 and pk+1).
The number of floating point operations on one processor is 8N2-2N for the matrix vector
product (complex numbers!), 7N-1 for the inner products (complex multiplications, but
addition of real numbers) and 8N for the vector updates. Therefore

Tseq(N) = (16N2 + 41N - 3) τcalc , [10]

where we ignored the two divisions (αk and βk) and the squareroot operation (norm of rk).
Note that we calculate the time per iteration step, thus neglecting the initialization. We expect the
number of iteration to be large enough to allow for this approximation.

III.2 The decomposition

The CG algorithm contains many synchronization points, therefore task decomposition is
not well suited here. The parallelism is introduced by data decomposition. The procedure is as
follows: define a regular, static decomposition of matrix A and examine, on the basis of this
decomposition, how the various vectors should be distributed among the processing elements.
Furthermore, try to do as much calculations as possible in parallel. These demands imply
nonparallel calculations and communication between processing elements, with associated times
tj, to be identified for the CG algorithm. The decomposition must be regular to avoid
loadbalancing problems and static to avoid communication of large pieces of the matrix. The
consequence of this static decomposition will be that vectors must be send through the network.

We first examine the matrix independent calculations of the CG algorithm (the vector
updates and innerproducts). The demand is to do as much calculations as possible in parallel,
therefore the vectors are divided in equal parts and distributed among the processing elements.
We use a simple symbolic notation to visualize the decomposition of the vectors and the matrix,
which is defined in appendix A. The vector update, in BLAS terminology a SAXPY, is
performed as depicted in diagram 1:
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Diagram 1: parallel vector update

The vector update is performed completely in parallel, provided that the scalar "factor" is
known in every processing element. The result of the vector update is also evenly distributed
over the processing elements. The result vector is either used as input of a matrix vector product
(rk+1 and pk+1) or is further processed after the CG algorithm has terminated (xk+1). The
computing time for this parallel vector update (complex numbers !) is

[T par(p,N)]vectorupdate=
8N
p

τcalc=
[T seq(N)] vectorupdate

p  
. [11]

The vector update, implemented in this way, is perfectly parallel (on any topology); Tloss = 0.
The number "factor" (αk or βk) is the result of parallel inner products, which is shown in

diagram 2:

1

2

3
 

* 

1

2

3

 => [1] + [2] + [3] ;  [1] + [2] + [3] -> [ ]

Diagram 2: the parallel innerproduct.

Every processor calculates a partial innerproduct, resulting in a partial sum decomposition of
scalars. These scalars are accumulated in every processor and summed, resulting in an inner
product, known in every processor. The total time for the parallel innerproduct is:

[T par(p,N)] innerproduct= (
7N
p

− 1)τcalc + tsa+ tsa.np=

[12]
[T seq(N)] innerproduct

p
+ [(

1
p

- 1)τcalc+ tsa.np] + tsa
 ,

where tsa is the time for a scalar accumulate, the total communication time to send the partial
inner products resident on each processing element to all other processing elements. The tsa.np
is a computing time introduced by summing the partial inner products after (or during) the
scalar accumulation. It is obvious that tsa and tsa.np are topology dependent. The innerproduct is
an example of a routine that, even in the absence of communication overhead, cannot be
parallelized completely. The evaluation of the partial sum decomposition gives rise to
calculations that cannot be performed in parallel. More general, every routine that introduces
partial sum decompositions cannot be completely parallelized (independent of the type of
parallel computer).

The execution times for the vector updates and the innerproducts are independent of the
decomposition of the matrix. The two matrix vector products are the only matrix dependent
parts of the algorithm. We will now examine the matrix vector product for a rowblock
decomposed matrix.

The rowblock decomposition is achieved by dividing A  in blocks of rows, with every
block containing N/p consecutive rows, and assigning one block to every processing element.
This is drawn schematically in diagram 3.
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Diagram 3: the rowblock decomposition

Note that A is symmetric so that AH is also decomposed in rowblock. This means that
A×vector and AH×vector can be implemented in the same way. The kernel of the parallel matrix
vector product is shown in diagram 4.

1

2

3
 

* 

 

=> 

1

2

3

Diagram 4: the kernel of the parallel matrix vector product.

The argument vector must reside in memory of every processing element. However, this vector
is always the result of a vector update, which is distributed among the processing elements (see
diagram 1). Therefore, before calculating the matrix vector product, every processing element
must gather the argument vector. The result is already decomposed in the correct way for
further calculations (inner products or vector updates). Now we can draw the total diagram for
the parallel matrix vector product (see diagram 5).
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;

1

2

3
 

* 

 

=> 

1

2

3

Diagram 5: the total parallel matrix vector product in the CG algorithm, for a row-block decomposed
matrix.

The total elapsed time for this operation is

[T par(p,N)]matrixvector=
8N

2
-2N

p
τcalc+ tvg=

 [13]
[T seq(N)] matrixvector

p
+ tvg

 ,

with tvg the communication time for the vector gather operation.
From Eq. [11, 12, 13] it is obvious that the total execution time per iteration can be

expressed in the form of Eq. [3]. The term Tseq(N)/p is equal for every decomposition and will
be omitted in the rest of the analysis, Tloss(p,N) must be minimized.

Table 1 lists the expressions for Tloss(p,N) for the CG algorithm, as a function of the
decomposition. The values for the coefficients aj (see Eq. [4]) are 2 for the matrix vector
product and 3 for the vector update and the inner product.



Tloss(p,N)

row-block
p{ 3([

1
p

- 1]τcalc+ tsa.np) + 2tvg + 3tsa}

column-block
p{ 2(2N[

1
p

-1]τcalc+ tva.np) + 3([
1
p

- 1]τcalc+ tsa.np) + 2tva+ 3tsa}

grid
p{ 2(2N[

1
p

-
1
p

]τcalc+ tpva.np) + 3([
1
p

- 1]τcalc+ tsa.np) + 2tpvg+ 2tpva+ 3tsa}

Table 1: expressions for Tloss(p,N) for the CG algorithm, as a function of three different matrix decompositions;
the subscript va stand for vector accumulate, pva for partial vector accumulate and pvg for partial vector gather13

Two conclusions can be drawn from Table 1:
1) If communication times can be neglected the rowblock decomposition has the smallest
Tloss. The Tloss is only introduced by evaluating the partial scalar sum decompositions of the
innerproducts. The grid decomposition and the columnblock decomposition also give rise to
vector partial sum decompositions in the parallel matrix vector products. Their evaluation adds
up to Tloss.
2) It can be shown that Tloss of the columnblock decomposition is always bigger than that of
the rowblock decomposition. For every interconnection scheme of the processing elements the
vector accumulate + scatter operation of the columnblock decomposition13 involves messages
that are bigger in size than, or equal to the messages in the vector gather operation of the row-
block decomposition. Therefore

{T comm} column-block ≥ {Tcomm} row-block,
furthermore

{T calc.overhead} column-block  > {T calc.overhead} row-block,
so that

{T loss} column-block > {T loss} row-block.

Therefore, without refering to a parallel computer, we already know that the columnblock
decomposition of A for the CG algorithm is less efficient than the rowblock decomposition.

III.3 The Topology

The communication times and nonparallel times in table 1 can only be specified with
reference to a topology. Although it is not necessary to refer to specific hardware at this point of
the analysis, we will restrict ourselves to the possibilities of the Transputer. Table 2 lists the
topologies that can be realized with Transputers, assuming that every processing element
consists of 1 Transputer and that the network contains at least 1 'dangling' (free) link to connect
the network to a host computer.
The topologies are categorized in four groups; tree's, (hyper)cubes, meshes and cylinders. Two
tree topologies can be build, the binary and ternary tree. The number of hypercubes is also
limited. Only the cube of order 3 is in this group, cubes of lower order are meshes, whereas
cubes of higher order cannot be realized with Transputers. Transputers are usually connected in
mesh and cylinder topologies. Note that the pipeline and ring topology are obtained by setting
p2 = 1. The torus topology (mesh with wrap around in both directions) is not possible because
this topology, assembled from Transputers, contains no dangling links.

We will present the time complexity analysis of the rowblock decomposition on a
(bidirectional) ring. We have also analyzed the rowblock decomposition on a cylinder (a square
mesh with wraparound) and a binary tree. The total time on the cylinder is higher than on the
ring and the binary tree. The time on the last two is comparable. Furthermore we investigated
the grid decomposition on a cylinder. The details of this analysis can be found elsewhere,13 but
the results will be compared with the rowblock decomposition on a ring.



Topology Order Number of
processors (p)

Diameter Comment Example

k-tree d 1
k-1

k
d+1

- 1
k-1

2d 2 ≤ k ≤ 3
d = 0

d = 1

d = 2

binary tree, k = 2

Hypercube d 2d d d ≤ 3

d = 3

Mesh p1xp2 (p1-1) +
(p2-1)

p1: number
of processors
in a row.
p2: number
of processors
in a column.

p
1 = 3

p
2= 4

Cylinder p1xp2 1/2(p1)+
 (p2-1)

Wrap around
in p1
direction

p1 = 3
p

2= 4

Table 2: Overview of topologies that can be realized with Transputers. The black dots are processing elements
(PE). Every PE consists of 1 Transputer. The network must contain at least 1 free link to connect to a host
computer. All links are bidirectional,   is the floor function.

The row-block decomposition gave rise to a vector gather operation;

1

2

3
  

-> 

 

,and a scalar accumulate; [1] + [2] + [3] -> [ ] ,

with associated overhead calculations. During the vector gather operation, each processor
receives from all other processors in the network a piece of the vector, which is  subsequently
stored. After the gather, every processor has a copy of the total vector in its local memory. On
the bidirectional ring this is achieved as follows (also see Fig. 2):
1) In the first step each processor sends its private part of the vector to the left and the right and,
at the same time, receives from the left and the right processor their private part.
2) In the following steps, the parts received in the previous step, are passed on from left to right
and vice versa, and in parallel, parts from left and right are received.
After p/2 steps, each processor in the ring received the total vector (with   the floor
function).
If we assume that point to point communication of n floating points takes a time

tpoint-to-point= τstartup+ nτcomm , [14]

then tvg(p,N) is

tvg
ring

(p,N) =
p
2

(τstartup+ 2
N
p

τcomm) =
p
2

τstartup+
p
2

2N
p

τcomm , [15]



During every communication step each processor simultaneously sends 2 messages and
receives 2 messages of N/p complex numbers. A total of p/2 steps are performed.

processor (i-1) processor (i) processor (i+1)

step 1 <-[i-1]-> <-[i]-> <-[i+1]->
. . . .
step k <-{[i+k-2] mod p} <-{[i+k-1] mod p} <-{[i+k] mod p}

{[i-k] mod p}-> {[i-k+1] mod p}-> {[i-k+2] mod p}->

FIGURE 2: The vector gather operation on the bidirectional ring. Each processor simultaneously sends to
and receives from both neighboring processors a part of the vector. The -> symbol gives the
communication direction, the number between the brackets is the processor number where the package
originally came from.

The time for the scalar accumulate is easily derived from the previous analysis. Instead of
a complex vector of N/p elements, a real number is sent, the communication pattern is the same
as the vector gather. After each communication step, the newly received partial inner products
are added to the partial inner product of the receiving processor. In total p real numbers are
added. This leads to the following expressions for tsa and tsa.np:

tsa
ring

=
p
2

(τstartup+ τcomm)
 
, [16]

tsa.np
ring

= (p - 1)τcalc . [17]

The expressions for Tloss in Table 1 can now be further specified, using the expressions
for the communication and overhead times derived in the previous paragraphs. Equation [18]
gives Tloss for the row-block decomposition implemented on a ring topology:

(T loss) ring
row-block

p
= 3{p +

1
p

- 2}τcalc+ {5
p
2

} τstartup+
 [18]

{
p
2

(
4N
p

+ 3)}τcomm
 .

The complete expression for Tloss for the grid decomposition on a cylinder is given below:13

(T loss)cylinder
grid

p
= {3(2 p +

1
p

- 3) + 4N(1 -
1
p

)
2
} τcalc+ {5

p
2

+ 7 p - 7}τstartup+



{4N(
1
p

p
2

+
2
p

-
2
p

) + 3(
p
2

+ p -1)}τcomm
 
, [19]

The rowblock-ring combination and the grid-cylinder combination can be compared for
limiting cases. In our application an interesting limiting value is large N. A close look at Eqs.
[18, 19] learns that for large N Tloss for the rowblock-ring combination is smaller than for the
grid-cylinder combination. In the next section experimental values for τcalc, τstartup and τcomm
are presented and Eqs.[18, 19] are studied in detail.

III.4 The hardware parameters

The model parameters τcalc, τstartup and τcomm depend on the hardware, on runtime
environment and on compilers. Direct derivation of these parameters from hardware
specifications alone gives too optimistic (small) values. Therefore reliable numerical values of
the model parameters can only be obtained by actual measurements on the parallel computer.

In our department we have access to a Sun hosted Meiko Computing Surface14

containing 64 T800 Transputers with 4 Mb local memory per processor. The parallel CG
method will be implemented in Occam2, under OPS (Occam2 Programming System). The
presented values for τi are only applicable to parallel programs written in Occam2, running
under the OPS on a Meiko Computing Surface. We have measured the following values15

 τcalc = 2.7 µs;
 τstartup = 13.3 µs;
 τcomm = 7.2 µs.
Now we can calculate Tloss as a function of p and N. Figure 3 gives Tloss as a function of

N, for p equals 16 and 64, both for the rowblock-ring and the grid-cylinder combination. For
very small N the grid-cylinder has a smaller Tloss. However, if N grows the Tloss of the
rowblock-ring combination is always smaller than for the grid-cylinder combination. This was
already concluded in the previous section. For realistic problems the rowblock decomposition
implemented on a ring topology is the best choice for the CG algorithm.
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Figure 3: Tloss for the rowblock ring (full line) and the grid-cylinder (dashed line) for 16 and 64 processors, as a
function of N. Tloss is in microseconds.

Figure 4 gives the values of N where Tloss for the grid-cylinder combination equals Tloss for
the rowblock-ring combination. Even for a large number of processors the rowblock-ring
combination is to be preferred.

This concludes the analysis. We implemented the CG algorithm, with a row-block
decomposition of the matrix, on a bidirectional ring of Transputers. Figure 5 gives the
theoretical efficiency for this implementation in a small part of the (p,N) domain. The efficiency
of the implementation will be close to 1 if N grows. This is to be expected, since Tseq/p is an
O(N2) function, whereas Tloss/p is of O(N). From figure 5 it is obvious that for relative small
values of N this almost perfect efficiency can be obtained.
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Figure 5: A contourplot of the theoretical efficiency of the CG algorithm, with a row block
decomposed matrix, implemented on a ring of Transputers (Meiko computing surface, Occam2,
under the OPS).

IV Implementation on a Transputer network

IV.1 Introduction

We have implemented the CG algorithm, with rowblock decomposition of A, on a
bidirectional ring of Transputers. The implementation language was Occam2. This section
describes some implementation issues and presents preliminary measurements of Tpar(p,N).
These performance measurements are compared with the theoretical expression for Tpar,
derived in the previous section.

IV.2 The Implementation

From the analysis in the previous section it is clear that a strict distinction between



calculation routines and communication routines plus associated nonparallel calculations can be
obtained. Therefore we defined two parallel processes on each Transputer in the ring: a
calculator process and a router process (see Fig. 6).
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Figure 6 Main processes and streams in a Transputer, mem is the local memory of the Transputer.

The calculator process takes care off the calculations (such as vector updates or the matrix
vector products) and issues commands to the router process to start a particular communication
routine (such as the vector gather). The router process receives data from and sends data to the
neighboring Transputers and stores the received data into local memory. After termination of
the communication routine, the router sends a ready signal to the calculator, which proceeds
with the next step of the iteration.
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Figure 7. Diagram of the iteration  part of the parallel CG algorithm.

This organization of the parallel program facilitates a clear and structured program
development. Furthermore, in this way the powerful property of the Transputer to operate the
CPU, FPU and link interfaces in parallel16 can be programmed very easy and efficiently.



The calculator and router process consist of several procedure calls. Figure 7
schematically draws the implementation of the iteration of the CG method. Note that the
implementation of the CG algorithm, compared to the formulation in the previous section, is in
a slightly different form. As soon as the residual vector rk is calculated, the convergence test is
performed.

The implementation of the parallel CGmethod was tested by comparing it with an
implementation on a sequential computer (SUN Sparc station). First the implementation was
tested on 1 Transputer, thus verifying the correctness of the calculation process. This was
followed by test runs on more Transputers to verify the setup and communication routines.

IV.3 Performance measurements

Here we present preliminary results of the measurement of Tpar(p,N), the time per
iteration as a function of p and N, and comparison of the results with theory. Figure 8 gives the
results for N equals 24, 219 and 495, and 1 ≤ p ≤ 64. The relative difference between theory
and experiment is approximately 4%.
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Figure 8: Measurements and calculations of Tpar, the time per iteration, as a function of p, the number of
processors. The line is theory, the dots are the measurements.

V Discussion and conclusions

We have theoretically investigated, and experimentally verified the time complexity of
parallel implementations of a CG method. This research is part of a larger project, where the
ELS properties of micron sized particles are investigated by means of large (parallel) computer
simulations.

First we introduced a concept to come from a problem definition to an implementation on
a distributed memory computer. This method consists of five self contained steps. Every step
can be viewed as a mapping. The mapping of algorithms on decompositions and the mapping
of decompositions on topologies are two new steps if one moves from sequential to parallel
computing. We hypothesized that for scientific calculations the number of these two mappings
is finite and relative small. If these mappings can be identified it is possible to formally
investigate their time complexity, without referring to the underlaying algorithms, methods and



applications.
We introduced a formal expression for the total execution time of a parallel program (Eqs.

[3, 4] ). This expression is very useful to analyze the previously mentioned mappings. The
parameter Tloss(p,N) (Eq. [5]) directly identifies the parts of the program that reduce the
efficiency of the parallel program.

As a test case we parallelized the standard CG method for the normal equation with the
introduced approach. First we investigated three decompositions of the matrix A; the rowblock,
columnblock and grid decomposition. The first two decompositions explicitly used the
symmetry property of A, whereas the results of the grid decomposition are applicable to any
non Hermitian matrix. Without knowledge of the parallel computer it is possible to show that
the rowblock decomposition is always more efficient than the columnblock decomposition.
This shows the strength of the applied parallelization scheme. It is possible to compare different
parallelizations at a very high level, completely decoupled from any reference to a particular
(abstract) machine.

We proceeded with the rowblock - and grid decomposition where the mapping of the
rowblock decomposition on a ring and the grid decomposition on a cylinder was investigated.
In the absence of communication time or for large N, the rowblock-ring combination is most
efficient, for any value of the hardware parameters τcalc, τstartup and τcomm. We measured the
hardware parameters and investigated the Tloss for both combinations in more detail. If N
grows, the rowblock-ring is always better. However, it is important to realize that if N becomes
large, the term Tloss(p,N) can be neglected compared to Tseq(N)/p, both for rowblock-ring and
for grid-cylinder. For very large problems, both combinations will have a comparable
efficiency. We have implemented the row-block ring combination because of a number of
pragmatic reasons:
- it contains less different communication routines, thus simplifying the implementation;
- a ring can be implemented with a lower τcomm on the Meiko computing surface than a grid,
due to the physical wiring of the Transputers inside the Meiko computing surface;15

- a ring topology allows one to grab any number of Transputers p, whereas the cylinder
topology requires p to be equal to k2 (k = 2,3,4...). Especially in multi-user ("multi-domain")
environments, like the Meiko,  this is a severe constraint if p is large.

The CG algorithm, with rowblock decomposition of the matrix, was implemented on a
ring of Transputers, in Occam2 with the Occam2 Programming System. We presented
preliminary measurements that were compared with the theory. The agreement was within
approximately 4%.

The standard CG method, applied to the normal equation is computational more intensive
and less accurate than dedicated CG methods for complex, symmetric matrices (such as e.g.
COCG17). Therefore, in the future we will analyze and implement such a dedicated method. All
these algorithms consist only of matrix vector products, vector updates and inner products.18

This means that we already have identified the tj(p,N:topology) for three decompositions of A
and that we have expressions for those tj on a ring and cylinder topology. Therefore the time
complexity analysis will be very straightforward. Furthermore, we have implemented the
communication routines appearing in the rowblock decomposition on a ring topology.
Therefore, implementing a new algorithm with rowblock decomposition on a ring can be
realized very fast, simply by adapting the calculator process (see Fig. 6).

We introduced a methodology to analyze applications that have to be parallelized for local
memory multiprocessors. The usefulness and strength of this formal approach was
demonstrated by utilizing it for an application emerging from ELS research. In the future we
will elaborate the concept of a finite set of communication routines introduced by decomposition
of the problem, and apply it to a variety of applications.
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Appendix A] Symbolic notation to visualize the data decomposition

A matrix and vector are denoted by a set of two brackets:

matrix:

  

,and  vector:

  

.

The decomposition is symbolized by dashed lines in the matrix and vector symbols, as in

1

2

3
  

and

 

1

2

3
  

.

The matrix and vectors are divided in equal parts and distributed among the processing
elements. The decomposition is drawn for three processing elements, but is extended to p
processing elements in a straightforward way. The decomposition of the matrix is static, it
remains the same during the computation. The decomposition of the vectors can take three
distinct forms, depending on the calculation that was or has to be performed:



1] The vector is known in every processing element:

 

;

a special case is a scalar known in every processing element, which is depicted by [ ] ;

2] Parts of the vector are distributed among

 

processing elements:

1

2

3
 

;

3] Every processing element contains a vector, which summed together give the original vector.
This "decomposition" is referred to as partial sum decomposition. This partial sum
decomposition usually is the result of a parallel matrix vector product;

the partial sum decomposition: 1 + 2 + 3

 

.

A special case is a partial sum decomposition of scalars, which is the result of parallel
innerproducts. This will be depicted by [1] + [2] + [3]. Furthermore a mix of [2] and [3] is
possible. The '-> ' denotes a communication, e.g.

1

2

3
 

->

 
represents a vector gather operation, that is every processing element sends its part of the vector
to all other processing elements. The '=>' denotes a calculation, e.g.

1
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3
 

+ 

1

2

3
 

=>

 

1

2

3

is a parallel vector addition.


