
Commission of the European Communities

ESPRIT III

PROJECT NB 6756

CAMAS

COMPUTER AIDED MIGRATION OF
APPLICATIONS SYSTEM

CAMAS-TR-2.2.4.5

Memory requirements of F2SAD

Date: March 1995 — Review 5.0

ACE - Univ. of Amsterdam - ESI SA - ESI GmbH - FEGS - PARSYTEC -
Univ. of Southampton

Authors: Berry A.W. van Halderen
Jan de Ronde
P.M.A. Sloot

March, 1995

University of Amsterdam,

Faculty of Mathematics and Computer Science

Parallel Scientific Computing and Simulation group

Netherlands

Chapter 1

Introduction

Within this document we will study and discuss the memory requirements of the F2SAD

tool. This also affects Parasol II due to their common internal data storage, data structures
and some common algorithms. The requirements of the tool have been raised as an issue
and excessive memory usage would have to be reduced. In studying this problem we have
taken the following strategy:

1. We can look at which kind of source code uses which amount of memory and try to
draw conclusions from this information;

2. We can investigate which parts of the F2SAD tools are responsible for the memory
usage and how much memory each stage uses;

3. Finally we can also look which data types are being used and how much memory is
consumed by each type during the run time of the program.

In one or a combination of these manners we can gain insight into the memory requirements,
limits and most important the implications for the usage of the tool. We will naturally seek
the combination of all these methods, but because of the limited number of large programs
we have, we cannot compare the amount of memory used as suggested in point 1.

2

Chapter 2

Memory management
by F2SAD

Before looking at the actual memory consumption by F2SAD, let us first review the way
in which F2SAD manages its memory and for which type(s) of data the memory is used.
Since F2SAD is a program which reads and processes an unbounded amount of data and
performs interactive operations on it, it needs to build its data structures dynamically. These
datastructures consist of a lot of structures connected to each other, rather than one more
growing structures. Since the number of different types of structures is very limited we can
look at the most common structures.

F2SAD processes an input program by translating it to an intermediate representation which
is stored as a number of graphs and then performing transformations on these mainly tree
shaped data structures. The amount of information per node in the graph is very limited, in
the order between two fields (16 bytes) to eight fields (64 bytes) but the size of the graph is
huge, reaching a million nodes in case of PAM-Crash.

As ascertained there are only a few types of nodes in the graph. We have a value node, an
expression node, a statement node etcetera. These nodes and their sizes are summarized in
table 2.1. To give an indication which types of nodes exist and why F2SAD uses them we
give an example of a small Fortran fragment:

SUBROUTINE MINIMIZE(A)
IF(A .LT. 4.0) THEN

A = 4.0
END IF
END

This program roughly translates in first instance to:

3

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

value node

 type = Float

 contents = "4.0"

statement node;

 type = Assignment

 expression =

 destination =

 type = operation

 expression1 =

 expression2 =

 name = "MINIMIZE"

 arguments = { "A" }

declaration node

 type = SUBROUTINE

 body =

 operand = ".LT."

statement node;

 type = IF-statement

 condition =

 then-branch =

 type = Variable

 name = "A"

 type = Constant

 value =

value node

 type = Float

 contents = "4.0"

 type = Variable

 name = "A"

expression node

expression node

expression node
expression node

 type = Constant

 value =

expression node

When we ignore about half of the other fields in the structures, we see that the structure of
the same type can have different contents. The contents has a sub-type which selects which
of the fields within that type are appropriate. But fields of the same type have the same
background semantic. When studying the amount of memory used we will look at these
types, which —as we will see— form the bulk of the memory used.

There are other elements which are also allocated in memory but are not taken on in this
report. Other memory consuming modules include the following:

- Read buffers (to speed up file I/O).

- A graph of the basic blocks for eliminating GOTO’s, but these are per subroutine
only temporarily used.

- The C-library allocates through malloc() several structures on the behalf of the
applications for all kinds of things.

- The graphical front end Tk/Tcl is also a heavy user of memory.
�

- Temporary data which is used only within one software module is still stored used
malloc()

As we will see later, more than 80% of the memory used is spent on the smaller structures
which we will study, and less than 20% is spent on the actual executable, variables and
other allocated memory.

We have seen that F2SAD uses its memory in a special way. There are some other data
structures, but the main part of the memory is spend on small structures of fixed size.
Furthermore there are just a few types and there are a lot of them allocated (For PAM-Crash
in the order of a million).

Next to this, we have the problem that they are allocated and deallocated constantly. This
can cause fragmentation of memory (i.e. loss of usable memory), but maybe even more

�

The memory used by Tk/Tcl is not incorporated in these statistics because we have used the text oriented
version to generate the information

4

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

important; the performance is severely degraded. This can be resolved by allocating the
structures in larger numbers and keeping a “pool” of free structures for future allocation
calls, consecutive calls can then be satisfied quickly. This does however require a memory
management layer.

This layer between the actual memory allocation (malloc) and the toolset can also be
used to implement some other functionality. Much of the data is shared between multiple
graphs. This means that one data structure can be referenced by multiple other data
structures. Therefore, when an algorithm decides that one of its sub-data structures is no
longer needed, it cannot free the associated memory because it might be shared by other
data structures. What this all boils down to is that F2SAD does not always know if it can free
memory and needs to do a “clean up” after some period, to collect all structures which are
no longer referenced to. This garbage collecting technique is quite often used in reduction
machines, as is F2SAD.

2.1 The rationale for a more dedicated memory management

2.1.1 The overhead of malloc()

Every system for memory management imposes some additional overhead in the memory
used by the application. This inevitable additional memory-use can become a problem for
applications which use a lot of memory allocated in very small elements. F2SAD is such an
application. The table 2.1 shows the elements (structures) used by the program and how
much memory is consumed by them.

structure name structure number of memory
size (bytes) struct. used used (KB)

value 32 1088 34
filepos 24 3641 86
expr 32 6963 218
exprlist 16 1245 20
stmt 32 3258 102
stmtlist 16 3537 56
decl 40 333 14
namesp 24 489 12

Table 2.1: Most common datastructures used by the F2SAD program, the size per
element, the number of elements used after processing the MD1 application (from
the Genesis benchmarks) and the amount of memory used for those elements
including the overhead imposed by memory management.

The overhead is inevitable, but the algorithms used by F2SAD do not always know when
they can free memory. Therefore the mechanism of garbage collecting is used at certain
points within the application. Garbage collection is a memory management mechanism
which also requires some additional memory overhead per element allocated. With some
effort, some of the additional overhead can be reduced.

The overhead employed by the garbage collection module is 16 bytes per element allocated,
of this 8 bytes could be saved if the garbage collection module is combined with the lower
memory management module. This also makes sense from the performance viewpoint; the
special needs of an application which allocates (and deallocates) a lot of small elements can
then be taken into account, and a pool of free elements can be reserved.

It is however unfortunate that it is not portable not to use malloc, and that most other system
functions also require malloc. Also it is not possible to use two memory management

5

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

element size total size used
in bytes by malloc in bytes

4 16.191
8 16.187

16 24.183
24 32.179
34 48.216
40 48.210

Table 2.2: Average for the amount of memory used per element size.

modules in the same program. Therefore the memory management used in F2SAD is built
upon malloc() calls. This would mean that we are back at our starting position if wasn’t
it for the

Table 2.2 shows how much bytes are actually used for each element which is allocated.
It clearly hints at the suggestion that malloc allocates in blocks of 8 bytes (so a request
is rounded up to an amount divisible by eight) and at an overhead of 8 bytes per element
allocated. Furthermore there is some overhead (somewhere between one and two bytes per
element) for other memory administration. This overhead is produced by the way in which
malloc() takes chunks of memory from the core (system) memory, see figure 2.1, and the
need for the malloc library to sort out the available memory in chunk sizes, this in order
to achieve a better performance if a request for allocation of a certain amount of memory
is done. This is where the special memory management wins in performance, because the
administration for the size of elements can be simplified.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 20000 40000 60000 80000 100000 120000 140000

malloc() overhead

34 bytes
24 bytes
16 bytes
8 bytes
4 bytes

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0 1000 2000 3000 4000 5000 6000 7000 8000

malloc() overhead

34 bytes
24 bytes
16 bytes

8 bytes
4 bytes

Figure 2.1: The amount of memory really used for the allocation of � elements
(for several element sizes). The enlarged segment shown in the second figure
shows that the malloc library takes memory in chunks from the core, rather than
allocating per element. The figures in table 2.2 are derived from the slope of this
figure.

This additional layer in the memory allocation does however also poses some risks:

- A standard library like malloc() is often highly optimized. Although it is true that
it will perform less perfect when there is such a huge amount of structures allocated,
it’s performance is hard to beat.

- A garbage collector needs to be activated regularly during the run time of the program.
The garbage collector walks twice through the entire memory of the program, which
is a severe attack on the CPU time.

- The delay of the deallocation of memory elements does mean that at a certain point
in time much more memory is still allocated than actually used.

6

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

This last point is especially relevant to F2SAD.

2.2 How much memory is used

2.2.1 Per program phase

The F2SAD program passes a number of phases in which either data is read or transformed.
Table 2.3 shows the amount of memory used on PAM Crash per phase of the program;

when Core size own memory allocated number of
management but not used structures

Before any serious action 959 193 122 0
After loading the first file 1639 850 393 4
After loading 26 files 8487 6385 509 43
After loading 51 files 14887 11398 748 85
After loading 76 files 21015 16004 876 142
After loading 101 files 23495 17692 2488 175
After building the formula 45599 37394 16524 1906
After setting the machine 45727 37522 14852 1906
After after loading lpi file 45903 37650 16094 1906
After retrieving a data point 45903 37650 15190 1906

Table 2.3: The memory used on PAM-Crash as seen per program phase Immediately after
each program phase a garbage collection phase is performed.

We see a steady increase of the memory allocated during the loading of the Fortran programs.
The amount of memory temporarily “wasted” due to the fact that the garbage collector only
reclaims those structures after loading 25 files. This frequency can of course be increased,
but this has little use since the unused memory portion is relatively small.

After loading the fortran files, the SAD formula is built. After that phase we see a huge
increase both in the amount of memory used, as well as in the memory allocated but not
used. After that phase no significant increase in the memory consumption can be detected.

So it is clear that we should look at the phase in which the SAD formula is built. We should
now look at which types are allocated, especially during the phase where the SAD time
complexity formula is built.

2.2.2 Per data structure

Below is a breakdown of the memory used by F2SAD for PAM-Crash per type of memory
element. The number of used elements (not bytes) and the number of actually allocated
elements. The last column specifies the size (in bytes) of an element.

Before building the SAD time complexity formula:

7

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

used # allocated size
namesp : 8022 8184 24
decl : 5004 5456 48
stmtlist : 28447 28644 16
stmt : 28941 30690 32
exprlist : 4659 8184 16
expr : 65116 65472 32
value : 17651 18704 56
filepos : 133411 201872 24

After building the SAD time complexity formula:

used # allocated size
namesp : 12057 13640 24
decl : 8735 9548 48
stmtlist : 116892 294624 16
stmt : 127126 239382 32
exprlist : 14437 16368 16
expr : 138247 308946 32
value : 21819 35070 56
filepos : 57268 201872 24

We clearly see that the number of nodes of type stmt (statement), stmtlist (list of statements)
and expr (expression) have increased dramatically. At this point it would be wise to take a
step back and look at the internal operation of the F2SAD tool.

After the tool has read the entire program source, each subroutine is stored separately in a so
called namespace. When the SAD formula is being built, all subroutines are interconnected
by replacing a call to a function or subroutine by the function or subroutine itself. Because
we want to leave the namespace intact we need to copy every node. This does mean that
some subroutines are copied multiple times.

After this, F2SAD tries to evaluate all expressions in the entire program tree. Because of
an inefficient algorithm which is used to be able to perform partial evaluations (e.g. using
commutative and associative properties of operators), memory is being used for copying
subexpressions. A more efficient algorithm and implementation is not realistic within the
CAMAS scope unfortunately not readily available.

Without this algorithm the tool wouldn’t be able to track down the usage of variables and
thus would not find any solutions to the question “how many times is this loop executed?”
This is vital information, but without it or with a better algorithm we would save up to half
of the memory used (difference between the allocated and used number of elements).

2.3 Conclusions

The memory consumption of the F2SAD tool is reasonably well controlled in the present
status. For an interactive analyzer which works interprocedural it does however need to
compromise its memory behaviour and will spend memory instead of additional CPU time.
It is clear that these tools cannot be used to full satisfaction on low-end workstations.
Workstations of the middle range with preferably 30+ MB of memory will however satisfy
the needs of the F2SAD tool.

It is however true that the amount of memory used by F2SAD increases linearly with the

8

CHAPTER 2. MEMORY MANAGEMENT BY F2SAD

amount of program code put into it. For the full functionality of F2SAD the entire parse
tree of the program code read needs to be duplicated. If a subroutine is called by multiple
routines it needs to be duplicated this number of times.
We did however see that there is at least one algorithm which could be improved, though
this is too much work within this project (see section 2.2.2).

9

