
The First International Workshop On Parallel
Architectures

and Bioinspired Algorithms
October 25-29 2008

Toronto, Canada

Organized by Sponsored by
Architecture and
Technology of
Computing Systems
Group, Universidad
Complutense de
Madrid

PACT 2008 - The
Seventeenth International
Conference on Parallel
Architectures and
Compilation Techniques

University of
Extremadura

Instituto Interligare de
Innovación en Inteligencia
I4

Universidad
Complutense de
Madrid

INTERLIGARE:
Intelligence & Strategy
Systems Innovation
Company

VOLUME EDITOR
Óscar Garnica
Department of Computer Architecture and Automation
Universidad Complutense de Madrid
C/ Prof. José García Santesmases, s/n.
28040 Madrid (Spain)
ogarnica@dacya.ucm.es

© 2008 Universidad Complutense de Madrid
Responsibility for the accuracy of all statements in each paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the Universidad Complutense
de Madrid. Each paper may be saved and stored, and may be used for scholarly research, but
may not be republished in any form without prior, written permission from the author(s). Other
publications are encouraged to include 300-500 word abstracts or excerpts from any paper
contained in this book, provided credits are given to the author(s) and the workshop.

ISBN: 978-84-691-6512-6
Depósito Legal: M-48665-2008

Home
Cochairs Message
Organizational
Committee
Program Committee
Contents
Acknowledgements

First International Workshop on Parallel Architectures and
Bioinspired Algorithms

Table of Contents | Author Index

Table of Contents

A Review of Bioinspired CAD Tools for HARDWARE Design,
J. Lanchares, J.I. Hidalgo, F. Fernández

Addressing Churn in a Peer-to-Peer Evolutionary Algorithm,
J.L.J. Laredo, P.A. Castillo , A.M. Mora, C. Fernandes, J.J. Merelo

Parallel Multi-Objective Optimization Evolutionary Algorithms in Dynamic Environments,
M. Cámara, J. Ortega, F. de Toro

Particle Swarm Optimization for the Design of Two-Connected Networks with Bounded
Rings,
E.B. Foxwell, B. Ombuki-Berman

Particle Swarm Optimization of Memory Usage in Embedded Systems,
J.L. Risco-Martín, J.I. Hidalgo, O. Garnica, J. Lanchares, D. Atienza

New Methodologies Based on Delta Test for Variable Selection in Regression Problems,
A. Guillen, D. Sovilj, F. Mateo, I. Rojas, A. Lendasse

Parallel Cellular Automata-based Simulation of Laser Dynamics using Dynamic Load
Balancing,
J.L. Guisado, F. Fernández, F. Jiménez, K.A. Iskra, P.M.A. Sloot

Speeding-up Resolution of Deceptive Problems on a Parallel GPU-CPU Architecture,
O. Garnica, J.L. Risco-Martín, J.I. Hidalgo, J. Lanchares

Genetic Programming on GPUs for Image Processing,
S. Harding, W. Banzhaf

Author Index
Atienza, 31

Banzhaf, 65

Cámara, 13

Castillo, 5

Fernandes, 5

Fernández, 1, 49

Foxwell, 21

Garnica, 31, 57

Guillen, 41

Guisado, 49

Harding, 65

Hidalgo, 1, 31, 57

Iskra, 49

Jiménez Morales, 49

Lanchares, 1, 31, 57

Laredo, 5

Lendasse, 41

Mateo, 41

Home
Cochairs Message
Organizational
Committee
Program Committee
Contents
Acknowledgements

First International Workshop on Parallel Architectures and
Bioinspired Algorithms

Merelo, 5

Mora, 5

Ombuki-Berman, 21

Ortega, 13

Risco-Martín, 31, 57

Rojas, 41

Sloot, 49

Sovilj, 41

Toro, 13

Parallel Cellular Automata-based Simulation of Laser Dynamics
using Dynamic Load Balancing

J.L. Guisado, F. Fernández de Vega, F. Jiménez Morales, K.A. Iskra and P.M.A. Sloot

Abstract— In order to analyze the feasibility of executing a
parallel bioinspired model of laser dynamics on a heterogeneous
non-dedicated cluster, we evaluate its performance including
artificial load to simulate other tasks or jobs submitted by
other users. As the model is based on a synchronous cellular
automaton (CA), using the SPMD (Single Program, Multiple
Data) paradigm, it is not clear in advance if an appropriate
efficiency can be obtained on this kind of platform. A dynamic
load balancing strategy with two main differences from most
previous implementations of CA based models has been used.
First, it is possible to migrate load to cluster nodes initially
not belonging to the pool. Second, a modular approach is
taken in which the model is executed on top of a dynamic
load balancing tool—the Dynamite system— gaining flexibility.
Very satisfactory results have been obtained, with performance
increases from 60% to 80%.

I. INTRODUCTION

Cellular Automata (CA) are a class of spatially and tem-
porally discrete mathematical systems characterized by local
interaction and synchronous dynamical evolution [1]. They
provide an excellent approach for modeling and simulating
complex systems that has been used over the recent years
in many fields of science and technology [2], [3]. A CA-
based model for simulating laser dynamics was introduced
in [4]. As shown there and in a recent review of the subject
in [5], the model reproduces much of the phenomenology of
laser systems and is an alternative to the standard modeling
approach based on differential equations. This model can
be very useful for situations such as lasers ruled by stiff
differential equations, difficult boundary conditions, very
small devices, etc. A parallel implementation of this model,
necessary to carry out realistic 2D simulations of specific
laser systems or for 3D simulations, was presented in [6]. In
addition, it was found that the parallel implementation offers

J.L. Guisado is with the Departamento de Arquitectura y Tecnologı́a de
Computadores, Universidad de Sevilla, E.T.S. Ingenierı́a Informática, Avda.
Reina Mercedes s/n. 41012 Sevilla, Spain. (e-mail: jlguisado@us.es).

F. Fernández de Vega is with the Centro Universitario de Mérida, Uni-
versidad de Extremadura, Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz),
Spain.

F. Jiménez Morales is with the Departamento de Fı́sica de la Materia
Condensada, Universidad de Sevilla. P.O. Box 1065, 41080 Sevilla, Spain.

K.A. Iskra is with the Argonne National Laboratory, Mathematics and
Computer Science Division, 9700 South Cass Avenue, Argonne, IL 60439,
USA.

P.M.A. Sloot is with the Section Computational Science, Laboratory for
Computing, System Architecture and Programming, Faculty of Science, Uni-
versity of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.

This work has been supported by the NOHNES Project (TIN2007-68083-
C02, Spanish Ministry of Science and Innovation), by the GRIDEX Project
(PRI06A223, Consejerı́a de Infraestructuras y Desarrollo Tecnológico de la
Comunidad Autónoma de Extremadura, Spain) and by the Cátedra CETA-
CIEMAT, Universidad de Extremadura.

a good performance running on small dedicated computer
clusters [7]. In this CA-based model of laser dynamics,
information about the state of the cells included in the
borders of the different partitions of the system must be
exchanged after each time step, as represented in Fig. 1.
This implies that it must be waited until all the computing
nodes have finished for each time step before proceeding,
i.e. the system operates in a lock-step mode. Therefore, the
performance of the parallel implementation is limited by the
slowest running task. A group of overloaded nodes which
execute the computations slower than the majority of the
nodes can degrade the overall performance. As the usual
platform for executing this kind of applications are non-
dedicated (and often heterogeneous) clusters, it raises the
following question: Can this algorithm have a reasonably
good performance when running on such platforms? In order
to answer this question we have studied the efficiency of
the algorithm on these conditions when using a dynamic
load balancing strategy to optimize the use of the computing
resources.

Sequential CA-based simulations can be used for educa-
tion or for very simple systems, but in order to simulate
real world phenomena (which need 3D or large 2D CA)
parallel implementations running on high performance paral-
lel computers must be used since very long computing time
or memory requirements are needed [8]. As CA normally
operate in a lock-step mode, it is essential that some of
the computing nodes are not overloaded with respect to the
rest and thus dynamic load balancing is an important issue
and has been previously studied in different forms. Several
parallel implementations of CA focus on distributing the
active cells between the nodes for CA in which some of
the cells may become idle for a number of time steps [9],
[10], [11] or on moving cells from heavily loaded nodes
to more unloaded ones [12], [13], [14]. In other cases, the
size of the partitions to be handled by each cluster node is
adjusted, see for instance Refs. [15], [16]. These approaches
can balance the load when some nodes are overloaded. But
they are unable to migrate the jobs to new nodes which
did not originally participate in the computation of the CA.
This possibility would offer more flexibility for a real non-
dedicated parallel computing environment and hence we have
opted for using a dynamic load balancing approach that
allows it in our present work.

Most of the parallel CA approaches directly implement the
dynamic load balancing algorithm on the own CA algorithm.
An example (in addition to most of the previously cited
works) is offered by the P-CAM system [17], a special-

WPABA'08 49 ISBN 978-84-691-6512-6

Fig. 1. In the parallel implementation of a CA, information of the state of the cells included in the borders of each partition of the system has to be
communicated to the neighboring partition to be used in the computation corresponding to the next time step. In this example, the CA has been partitioned
into parallel stripes. Each partition is assigned to a different processing node.

ized framework for parallel complex systems simulations
which directly integrates data decomposition and dynamic
load balancing into the framework functionality. Instead,
we have chosen to execute the CA over a software tool
which transparently implements the dynamic load balancing.
This modular approach is more flexible, as changes can be
introduced in the CA algorithm and in the dynamic load
balancing algorithm without affecting each other. In addition,
the load balancing tool can easily be changed. The tool
that has been used is Dynamite [18], an automated load
balancing system that can migrate individual tasks which are
part of a parallel program running with a message passing
library. Dynamite is based on Dynamic PVM [19], a re-
implementation of the PVM message passing library that
includes the load balancing functionality. It monitors the
utilization of the cluster nodes and migrates tasks when some
of them get under-utilized or over-utilized as defined by
configurable thresholds. The Dynamite system is composed
of three separate parts (see [20] and [21] for a complete
description): the load-monitoring subsystem, the scheduler—
which determines when a migration becomes necessary,
which tasks will be involved and which particular alloca-
tion will be adopted—and the task migration software. We
have chosen Dynamite because of its maturity, flexibility
and availability. However, other recent good dynamic load
balancing systems which could also be used to execute
this kind of simulations are the CAMELotGrid system [22],
which is a specific tool to manage CA computations, and
the general purpose framework designed by Vadhiyar and
Dongarra, implemented and tested in the GrADS system
[23]. An advantage of both systems over Dynamite is their
possibility of integration on a grid computing environment.
However, we decided to use a cluster computing environment
because this is more adequate for the execution of a parallel
CA (a high performance computing application) due to the
low latency of the communications in comparison to a grid
computing environment, which generally would be more
adequate for running multiple executions of a complete CA

for different values of the parameters (a high throughput
computing application).

II. SIMULATION EXPERIMENTS

In the simulations a laser device is modeled by a two-
dimensional, multivariable, partially probabilistic CA corre-
sponding to a transverse section of the active medium in the
laser cavity. The state of the CA cells represent electrons and
laser photons and the set of transition rules defines the time
evolution of the system. After specifying an initial state, the
system is allowed to evolve for a number of iterations. In
each time step, two macroscopic magnitudes (representing
the total number of laser photons and of electrons in a
particular energy state) are measured by counting the number
of CA cells on a specific state. The response of the system
depends on three parameters: the pumping probability (λ),
the lifetime of photons (τc) and the lifetime of excited elec-
trons (τa). A parallel implementation of this CA laser model
for distributed-memory parallel computers using the message
passing paradigm, discussed in [5], has been employed. A
one-dimensional data decomposition is used in which the CA
grid is vertically partitioned in stripes and each sub-domain
is assigned to a different node. Two additional columns of
ghost cells have been included at both sides of each sub-
domain, as shown in Fig. 1, to store the state of neighboring
cells belonging to different sub-domains.

The master-slave programming model has been used: a
master program divides the CA grid in sub-domains and
sends each to a slave program running on a different node,
which calculates its time evolution. Algorithm descriptions
of the master and slave programs are shown in Algs. 1 and
2, where operations involving communication between nodes
have been indicated with a leading * character.

At the beginning of each iteration the state of the boundary
cells is directly exchanged between slave programs com-
puting neighboring partitions, using two couples of PVM
send and receive routines (pvm send and pvm recv). The
routine pvm recv is blocking, so it waits until the specified

50

Algorithm 1 Pseudo code diagram for the master program
Input data
* Spawn slave programs
Partition the initial data of the automaton
* Send common information and initial data to each slave
for time step = 1 to maximum time step do

* Collect partial results from slaves
Perform intermediate calculations with partial results
Output data to follow execution

end for
* Terminate slave programs
Perform final calculations
Output final results

Algorithm 2 Pseudo code diagram for the slave program
* Receive common information and initial data from master
* Exchange boundary cells state with slaves computing neighboring partitions
for time step = 1 to maximum time step do

for each cell in the array do
Apply transition rules

end for
Calculate populations after this time step
Optional additional calculations on intermediate results
* Send populations and other intermediate results to master

end for

message has arrived. Therefore, this exchange plays the role
of a synchronization point between all the slave programs.
This is illustrated in Fig. 2 which shows a detail of the
tasks executed by each node and the messages transferred
between different nodes versus time, once the computation
has started. This figure also shows that computation periods
are much longer than communication periods, so that the
application achieves a high computation-to-communication
ratio, of the order of 10. More details and precise definitions
of this parallel CA laser model can be found in Refs. [6],
[7], [5].

In order to study the performance of the parallel appli-
cation we have executed the same experiment under con-
trolled conditions on the cluster, including artificial loads to
simulate a normal non-dedicated cluster use. The particular
experiment involved the computation of the time evolution of
the system during 10, 000 time steps for a single value of the
system parameters: λ = 0.0125, τc = 10, τa = 180. External
load was simulated by a sequential C program with a simple
assign instruction involving double precision numbers, inside
a loop statement that iterates for a specified period of time.
A similar procedure was used for example in [23]. The
compilation of this program was carried out without any
optimization to better obtain the desired loading result. In
order to study the effect introduced by different levels of
external load, the execution time was measured when running
the artificial load on a number of cluster nodes ranging
from 0 to 5, using both normal PVM or the modified PVM
version included in the Dynamite load balancing system.

The artificial load was intended to simulate the normal use
of a non-dedicated high performance computing cluster for
different users. Normally, to achieve the best performance
possible, a cluster user would not run more than one process
of her application on any cluster node. For that reason, only
one artificial load process was executed on each cluster node.
The parallel CA application has been executed using 6 slave
nodes plus a master node and a total of 10 nodes were
available on the cluster. Inmediately after starting the CA
application, the artificial load task has been initiated on a
number of nodes, which range from 0 to 5 nodes and are
always nodes to which one of the slave CA applications has
been initially allocated also. The artificial load tasks kept on
running for a time longer than the total execution time of the
CA application.

III. RESULTS AND DISCUSSION

The execution times and the improvement due to load
balancing are presented in Table I. In the first row the
execution time obtained without load balancing, using normal
PVM, is shown. This is the same when running load on
any number of nodes from 1 to 5. The reason is that the
performance of the CA laser model application is limited
by the performance of the slowest running task, because
the system operates in a lock-step mode, as discussed in
section I. In the following rows, it is shown the execution
time when load balancing is employed (using Dynamite
instead of normal PVM) and the artificial load is also run
on a number of nodes ranging from 1 to 5. In addition, the

51

Fig. 2. Gantt chart depicting a detail of the tasks executed by each cluster node and the messages transferred between different nodes versus time, once
the calculation has started. The exchange of neighboring states between nodes processing adjacent partitions at the beginning of each iteration acts as a
synchronization point.

TABLE I
EXECUTION TIME AND IMPROVEMENT DUE TO LOAD BALANCING WHEN THE APPLICATION IS RUN WITH AND WITHOUT LOAD BALANCING AND

RUNNING ARTIFICIAL EXTERNAL LOAD ON A DIFFERENT NUMBER OF CLUSTER NODES . NORMAL PVM WAS USED FOR CONFIGURATIONS WITHOUT

LOAD BALANCING AND THE DYNAMITE SYSTEM FOR CONFIGURATIONS WITH LOAD BALANCING.

Configuration Execution time (s) Improvement

No load balancing with artificial load 1895.08 -

Load balancing with load on 1 node 384.59 80 %

Load balancing with load on 2 nodes 564.76 70 %

Load balancing with load on 3 nodes 611.12 68 %

Load balancing with load on 4 nodes 1595.75 16 %

Load balancing with load on 5 nodes 1833.82 3 %

No load, with and without load balancing 233.43 -

relative improvement between the execution time with and
without (first row) load balancing is shown in the last column.
The execution time obtained when running the application
without any artificial load, which is the same with and
without load balancing, has been shown as a reference in
the last row.

An execution profile (number of executed time steps from

the application versus time) is presented in Fig. 3. That gives
an idea of the progression in the execution of the application.
For this configuration (parallel application running on 6 slave
nodes plus the master, on a cluster with 10 nodes) a very
good improvement in the performance is obtained when
running external load on up to 3 nodes. When there are
idle nodes, the application takes a good advantage from the

52

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Without external load
Load on 1 node, dynamic load balancing

Load on 2 nodes, dynamic load balancing
Load on 3 nodes, dynamic load balancing
Load on 4 nodes, dynamic load balancing
Load on 5 nodes, dynamic load balancing

Load on any number of nodes, no load balancing

Fig. 3. Execution progress of the CA laser model application for different levels of artificial external load on the system. The system size was 840× 840
cells. The number of cluster nodes used on the execution is 6.

dynamic load balancing, reducing the execution time by a
factor of 3. When running external load on more than 3
nodes, a lower improvement is obtained but the execution
time is still smaller than when no dynamic load balancing
is used. The execution progress initially follows the same
straight line as for no dynamic load balancing (i.e. for
standard PVM), until the load balancing system identifies the
situation and performs the migration of some of the tasks of
the system to balance the load. After that, for external load
on a small number of nodes, the execution progress improves
significantly, following a new straight line close to that one
of the standard PVM. For external load on a higher number
of nodes, in some cases the benefit obtained after migrations
to try to balance the load on the system is very low and in
other cases, after an advantageous migration of tasks, the
dynamic load balancing system incorrectly migrates tasks
again to let the system load unbalanced and obtain a sub-
optimal execution progress. Another interesting result is that
the dynamic load balancing system introduces practically
no overhead on the execution time of the application, as
its execution progress is virtually identical for PVM and
Dynamite when there is no external load applied: the same
line in Fig. 3 (labeled as ”Without external load”) applies to
both cases.

In order to study the effect of the system size on the
performance of the application, simulations have been run for
three different system sizes and the execution progress has
been compared. The results are shown in Fig. 4. Relatively
small CA sizes have been used in order to avoid the use
of swap memory on the cluster nodes, that can happen
for larger system sizes (as shown in [7]) and complicate
the performance analysis. The figure shows that the use

of a load balancing strategy results in a good performance
improvement for all system sizes within the studied ranges.

For the purpose of studying the regularity of the scheduling
operation of the dynamic load balancing system, the appli-
cation has been run under the same conditions for a number
of times. In Fig. 5 the execution progress of four different
runs of the same experiment with Dynamite are presented,
showing some cases in which the load balancing system lets
the load unbalanced and the execution time is not optimal.
This also happened in the experiments reported in previous
figures for a 10% - 20% of the executions, but these cases
were not taken into account for the results presented. As
migrations are not performed by the load balancing system
in a very regular and deterministic way, it can be concluded
that the scheduler component of the Dynamite load balancing
system could be improved.

IV. CONCLUSIONS

We have studied the performance of a parallel discrete
model of laser dynamics, based on a cellular automaton,
running on a heterogeneous non-dedicated cluster using
dynamic load balancing. Artificial external load has been
included to simulate the effect of other tasks which can be
running simultaneously on the cluster. We have used a cluster
computing environment for being better suited in general
than a grid computing platform to run a parallel CA due
to its lower latency on the communications. The potential
problem of this kind of application on this environment is
that all the computing nodes must have finished an iteration
before the next one can be initiated. In order to obtain a good
performance on a non-dedicated cluster where jobs from
different users can be started on any computing node at any

53

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Without external load, 600x600
Without external load, 720x720
Without external load, 840x840

With external load and load balancing, 600x600
With external load and load balancing, 720x720
With external load and load balancing, 840x840

With external load and no load balancing, 840x840

Fig. 4. Execution progress of the CA laser model application for different system sizes. The number of cluster nodes used on the execution is 6 and
artificial external load has been run on 3 nodes.

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
te

ps

Time (s)

Fig. 5. Execution progress of 4 different runs of the application with Dynamite carried out under the same conditions. System size: 840 × 840 cells.

time, a dynamic load balancing strategy has been used, with
two main differences with respect to most previous parallel
CA implementations. First, we required that load could be
migrated to new nodes initially not belonging to the pool.
Second, the load balancing functionality has been uncoupled
from the CA algorithm by running it on top of a dynamic load
balancing software tool. Thus changes can be introduced to
the CA algorithm or the dynamic load balancing strategy

without disturbing each other. For this purpose, we have
used Dynamite, an automated load balancing system that can
migrate individual tasks which are part of a parallel program
running with a message passing library—PVM in the current
version. Very satisfactory results have been obtained: the load
balancing strategy is able to improve the performance of
the parallel application in levels from 60% to 80% when
there are some idle nodes on the cluster to which some load

54

can be migrated. In all the studied cases, the execution time
is always shorter than without the use of load balancing.
However, the results indicate that the Dynamite system does
not always choose the best configuration possible to balance
the load, so further improvements can be introduced in the
scheduler component of Dynamite. From the results, it can
be concluded that it is feasible to execute this kind of
algorithm on a heterogeneous non-dedicated cluster if using
an adequate dynamic load balancing strategy. This ensures
that a future 3D version of the laser CA model, which
will necessarily have to be executed on a high performance
parallel system, can have an appropriate efficiency on this
environment.

REFERENCES

[1] A. Ilachinski. Cellular automata. A discrete Universe. World
Scientific, Singapore, 2001.

[2] P. M. A. Sloot and A. G. Hoekstra. Modeling Dynamic Systems with
Cellular Automata, chapter 21, pages 21–1+6. Chapman & Hall/CRC,
2007. ISBN 1-58488-565-3.

[3] Bastien Chopard and Michel Droz. Cellular Automata Modeling of
Physical Systems. Cambridge University Press, Cambridge, 1998.

[4] J. L. Guisado, F. Jiménez-Morales, and J. M. Guerra. Cellular
automaton model for the simulation of laser dynamics. Physical
Review E, 67(6):066708, 2003.

[5] J. L. Guisado, F. Jiménez-Morales, and F. Fernández de Vega. Cellular
automata and cluster computing: An application to the simulation of
laser dynamics. Advances in Complex Systems, 10(Suppl. No. 1):167–
190, 2007.

[6] J. L. Guisado, F. Fernández de Vega, and K. Jiménez-Morales,
F.and Iskra. Parallel implementation of a cellular automaton model for
the simulation of laser dynamics. Lecture Notes in Computer Science,
3993:281–288, 2006.

[7] J. L. Guisado, F. Fernández de Vega, and K. Iskra. Performance
analysis of a parallel discrete model for the simulation of laser
dynamics. In 2006 International Conference on Parallel Processing,
Workshops, pages 93–99. IEEE Computer Society, 2006.

[8] D. Talia. Cellular processing tools for high-performance simulation.
IEEE Computer, 33(9):44–52, 2000.

[9] P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J. Overeinder.
Distributed simulation with cellular automata: architecture and appli-
cations. Lecture Notes in Computer Science, 1725:203–248, 1999.

[10] M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and
D. Talia. A parallel cellular automata environment on multicomputers
for computational science. Parallel Computing, 21(5):803–823, 1995.

[11] D. D’Ambrosio and W. Spataro. Parallel evolutionary modelling of
geological processes. Parallel Computing, 33(3):186–212, April 2007.

[12] M. Mazzariol, B. Gennart, and R. Hersch. Dynamic load balancing
of parallel cellular automata. In Proc. SPIE Conference on Parallel
and Distributed Methods for Image Processing IV, volume 4118, page
2129, San Diego, July 2000. SPIE.

[13] G. A. Kohring. Dynamic load balancing for parallelized particle
simulations on MIMD computers. Parallel Computing, 21:683–693,
1995.

[14] A. Cortés, M. Planas, J. L. Millán, A. Ripoll, M. A. Senar, and
E. Luque. Applying load balancing in data parallel applications using
DASUD. Lecture Notes in Computer Science, 2840:237–241, 2003.
Euro PVM/MPI 2003.

[15] J. C. Fabero, I. Martin, A. Bautista, and S. Molina. Dynamic
load balancing in a heterogeneous environment under PVM. In 4th
Euromicro Workshop on Parallel and Distributed Processing (PDP
’96), pages 414–419. IEEE Computer Society, 1996.

[16] J. R. Weimar. Cellular automata for reaction-diffusion systems.
Parallel Computing, 23(11):1699–1715, 1997.

[17] A. Schoneveld and J.F. de Ronde. P-CAM: a framework for parallel
complex systems simulations. Future Generation Computer Systems,
16(2):217–234, 1999.

[18] G. Dick van Albada, J. Clinckmaillie, A. H. L. Emmen, Jörn Gehring,
O. Heinz, Frank van der Linden, Benno J. Overeinder, Alexander
Reinefeld, and Peter M. A. Sloot. Dynamite - blasting obstacles
to parallel cluster computing. Lecture Notes In Computer Science,
1593:300–310, 1999. HPCN Europe ’99: Proceedings of the 7th
International Conference on High-Performance Computing and Net-
working.

[19] B. J. Overeinder, P. M. A. Sloot, R. N. Heederik, and L. O. Hertzberger.
A dynamic load balancing system for parallel cluster computing.
Future Generation Computer Systems, 12(1):101–105, 1996.

[20] Kamil Iskra, Zeger W. Hendrikse, G. Dick van Albada, Benno J.
Overeinder, Peter M. A. Sloot, and Jörn Gehring. Experiments with
migration of message-passing tasks. Lecture Notes in Computer
Science, 1971:203–213, 2000. GRID ’00: Proceedings of the First
IEEE/ACM International Workshop on Grid Computing.

[21] Kamil Iskra, Zeger W. Hendrikse, G. Dick van Albada, Benno J.
Overeinder, and Peter M. A. Sloot. Dynamic migration of PVM
tasks. In ASCI 2000, Proceedings of the sixth annual conference of the
Advanced School for Computing and Imaging, pages 206–212, June
2000.

[22] G. Folino and G. Spezzano. An autonomic tool for building self-
organizing grid-enabled applications. Future Generation Computer
Systems, 23(5):671–679, 2007.

[23] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing.
Concurrency Computation Practice and Experience, 17(2-4):235–257,
2005.

55

56

