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Abstract. The ESPRIT project Cauchy™ provides
an interesting example of the use of HPC in a real-
world medical application. Components of a
software system used to derive the electrical
activity within the brain from the electric and
magnetic field outside the skull have been
parallelised to attain realistically usable processing
times.

Introduction

A variety of neurological disorders is characterised
by specific patterns of electromagnetic activity
within the brain. Successful treatment of these
disorders, such as some forms of epilepsy, requires
that the location of the affected areas is determined
as accurately as possible. One way to realise this,
is to measure the electric and/or magnetic activity
outside the patient’s skull (electro-encephalograms
and magneto-encephalograms, EEG and MEG) and
to reconstruct the source positions by “inverting” a
suitable finite element model of the head.

The program CAUCHY - developed at the RWTH
Aachen - uses a FEM method to represent a
realistically shaped model of the head. CAUCHY,
initially designed to reconstruct sources from EEG
data, was extended to the treatment of MEG
measurements and to the combined treatment of
MEG and EEG data. The processing time required
for the CAUCHY code was found, however, to be
an obstacle to its more widespread use.

The clinical and experimental use of the CAUCHY
code is described elsewhere [1][2][3]. One of the
important findings was that the simultaneous use of
MEG and EEG data leads to a much more reliable
reconstruction of the source distribution than the
use of either independently. In this note, we
describe our experiences in parallelising the
significant sections of the code in the ESPRIT
project nr. 26433 Cauchy™ .

1 Cauchy™ is a collaboration between Parsytec
Computer GmbH, Philips Medizin Systeme, the
Rheinisch-Westfilische =~ Technische = Hochschule
Aachen, and the Universiteit van Amsterdam, funded
through the TTN Thuringia

Parallelising the CAUCHY

program
The CAUCHY program executes in two phases:

1. A pre-processing phase in which the EEG/MEG
response at the measurement points is
computed for a large number of possible source
locations, using a high-resolution Finite
Element Model (FEM) of the brain and the
skull.

2. A model fitting phase, in which the "lead field
matrix" computed in the pre-processing phase is
used to reconstruct the actual source
distribution from the EEG and/or MEG
measurements.

The pre-processing phase is by far the most
expensive part of the computation and can take
almost a full day on an average workstation. The
memory requirements are significant (up to about
200MB), but not unusual. Though various post-
processing options exist, the code that we worked
on only provided a post-processing method based
on simulated annealing.

In order to increase clinical and experimental
usability of source reconstruction, it was decided to
port the CAUCHY code to a parallel computer,
more specifically, a Parsytec CC. The code
concerned consists of some 1350 separate modules
of FORTRAN 77 code, comprising some 470 000
lines. Obviously, it would not be cost-effective to
redesign a significant fraction of this code. In order
to analyse the call-structure and performance of the
code, we made use of profiling tools on the
sequential code. It was found that some 90% of the
execution time of the code was spent in a very
limited number of routines.

The pre-processing phase can be seen as a
collection of calculations of the response at all
MEG/EEG sensors due to each of a thousand or
more sources of EM activity in the brain. Each
calculation essentially generated a single column in
the lead-field matrix by iteratively solving a large
linear problem described by the FEM and the
source parameters. We found that these calculations



could be treated independently, leading to an
embarrassingly parallel code. Implementing this
code meant distributing the entire FEM to all
nodes, plus the storage space required for the lead-
field matrix. For portability, we chose to use MPI
1.0.13 as the communication library. Though MPI
is widely accepted, it has certain drawbacks. One of
these is that it enforces the use of the SPMD
formalism for the program. For FORTRAN, this
implies (barring non-standard tricks) that all nodes
need to assign the maximum amount of memory
needed by any one node.

Figure 1 shows the performance attained for two
realistic test problems with this code.
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Fig. 1 — The execution times for two test cases run on
1,2, 4, 8, 16 and 32 nodes plotted against the inverse
of the number of processor nodes. The first case
concerns a relatively small problem with no post-
processing, the latter, a large problem with significant
post-processing. The plots clearly show the expected
behaviour for embarrassingly parallel codes with a
fixed start-up/post-processing time. The fitted lines
have been derived from the execution times for more
than one node. Some extra overhead for the parallel
code is evident in the second case, as the single node
point lies 4 minutes below the extrapolated line.

The increased performance of the parallelised code
led to the desire to run higher-resolution, and thus
larger models, and we immediately ran into
memory problems. A number of options were
considered; in the end, we chose to completely
separate the pre-processing and post-processing
code. The latter had not been parallelised anyway,
and its memory requirements only were a burden to
the parallel code. And, as more than one post-

processing method had to be supported, this also
led to a cleaner code structure. It also meant that
the lead-field matrix was never needed in its
entirety in the pre-processing code. We chose to
write it to disk, using a direct-access file to
maintain the correct order of the columns.

Presumably, we could have avoided the memory
problems by parallelising each of the iterative FEM
solutions. Had the memory problems been much
more severe, this had been the way to go, but it
would have involved a much larger programming
effort and would thus have been more error prone.
Also, the attainable speed-up would not have been
as good.

Conclusions

After parallelisation, the software package
CAUCHY is now well suited to meet clinical
requirements. It can be run on MPP machines as
well as on clusters of workstations. The resulting,
highly scaleable system can reduce the calculation
time for the localisation of electrical activity from
some days to a few hours or even less. An
additional advantage is the improvement of the
underlying model in terms of resolution.

The price-performance of the Cauchy™ software
together with the parallel system and the EEG
hardware, which mostly is already available at a
neurological department of a hospital, is better than
competing techniques requiring e.g. invasive
operation methods and/or more expensive
diagnostic hardware. The decrease of the patient's
operational risk is an additional and probably the
most important advantage.
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