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We present an adaptation of the lattice BGK method for fast convergence of simulations
of laminar time-dependent flows. The technique is an extension to the recent accelerated
procedures for steady flow computations. Being based on Mach number annealing, the
present technique substantially improves the accuracy and computational efficiency of
the standard lattice BGK method for such unsteady flows.
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1. Introduction

Due to its simple implementation, straightforward parallelism, easy grid genera-

tion, and its proven capability in simulations of multicomponent flows and complex

geometry, the lattice Boltzmann method is now considered a mature computational

fluid dynamics (CFD) flow solver. The method competes with traditional Navier–

Stokes solvers by directly obtaining the pressure without a need to solve the Poisson

equation and obtaining the stress tensor without using simulated velocity gradients.

In a previous article,1 we have demonstrated the suitability and investigated the

accuracy of the standard lattice-Boltzmann method with the simplified Bhatnagar,

Gross and Krook2 (BGK) collision operator in simulations of time-dependent fluid

flows. We have also shown that the use of curved boundary conditions significantly

enhances the accuracy as compared to the bounce-back on the links. However,

the bounce-back rule is still the most popular boundary condition, for its sim-

ple implementation and easy adaptation to complex geometry. Unfortunately, the

bounce-back rule produces large errors of first order behavior. In addition, sim-

ulations of time-dependent flows with the standard LBGK involve another major

source of error: the compressibility errors. These two sources of error can be reduced
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significantly by reducing the Mach number. This, unfortunately, blows up the com-

putational time needed for the simulation to converge.1,3

A current computational interest for all CFD solvers is to optimize simulation

parameters for a desired accuracy with minimum computational cost. Within the

lattice Boltzmann community, many efforts have been reported towards this direc-

tion, mainly via implicit techniques,4,5 local grid refinement6,7 and scaling of the

Reynolds number.8 Most of these techniques are applied to steady flows and/or

affect the uniformity of the Cartesian grid which has direct influence on parallelism

in the computations. For unsteady flows, time evolution cannot be avoided and the

method is computationally expensive, especially when the physical time scale is

very small (which is a characteristic feature of dynamic complex systems). In this

study, we extend these acceleration techniques to unsteady flows. The idea is based

on stepwise reduction of the Mach number after the simulation converges with a

higher Mach number. We call this process Mach number annealing. The paper is

organized as follows. We give a short overview of LBGK, introduce the Mach num-

ber annealing technique, discuss benchmark simulations of unsteady systolic flow

in a 3D tube, and end with concluding remarks.

2. The Lattice Boltzmann BGK Method

Since it was introduced9–11 mainly to overcome the drawbacks of lattice-gas models,

the lattice Boltzmann method has matured considerably over the years towards

being a similar candidate to other computational fluid dynamics (CFD) solvers.

The method is based on a discretized Boltzmann equation with a simplified collision

operator via the single particle relaxation time approximation.2 The LBGK scheme

involves two steps12,13; streaming to the neighboring nodes and colliding with local

node populations. Being represented by the probability fi of a particle moving with

a velocity ei per unit time step δt, these populations are relaxed towards equilibrium

during a collision process. The equilibrium distribution function

f
(eq)
i = wiρ

(

1 +
3

v2
ei · u +

9

2v4
(ei · u)2 − 3

2v2
u · u

)

(1)

is a low-Mach number approximation to the expansion of the Maxwellian distribu-

tion. Here, wi is a weighting factor, v = δx/δt is the lattice speed, and δx and δt are

the lattice spacing and the time step, respectively. Values for the weighting factor

and the discrete velocities depend on the used LBGK model.12 The well-known

lattice BGK equation

fi(x + eiδt, ei, t + δt) − fi(x, ei, t) = −1

τ
[fi(x, ei, t) − f

(0)
i (x, ei, t)] (2)

can be obtained by discretizing the evolution equation of the distribution functions

in the velocity space using a finite set of velocities ei. In this equation, τ is the

dimensionless relaxation time. By Taylor expansion of the LBGK equation up to
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O(δt2) and application of the multiscale Chapman–Enskog technique12 through ex-

pansion of fi about f
(0)
i , the Navier–Stokes equations and the momentum flux ten-

sor up-to second order in the Knudsen number can be obtained. The hydrodynamic

density ρ and the macroscopic velocity u are determined in terms of the particle

distribution functions from ρ =
∑

i
fi =

∑

i
f

(eq)
i and ρu =

∑

i
eifi =

∑

i
eif

(eq)
i .

The pressure is given by p = ρc2
s and the kinematic viscosity is ν = c2

sδt(τ − (1/2)),

where cs is the speed of sound. This LBGK model works pretty well as long as the

Mach number Ma is low (M2
a � 1) and the density fluctuations are small. How-

ever, modeling unsteady flows involves higher density fluctuations, since the density

and the unsteady pressure are tied up together through the ideal gas equation of

state. The compressibility errors at high Mach numbers are also expected. Although

there exists a number of incompressible versions of LBGK,14 they have not been

formulated and tested in three dimensions and are not yet popular. A number of

generalized lattice Boltzmann equations are recently gaining more attention.15 They

provide more stable and accurate solutions, but at relatively higher computational

cost. In this paper, we have applied the widely used quasi-incompressible D3Q19

model, which has three types of particles on each node; a rest particle, six particles

moving along x, y, and z principal directions with speeds |ei| = 1, and 12 particles

along the diagonals with speeds |ei| =
√

2.

3. Mach Number Annealing

The Mach number is defined as the ratio between the speed U of an object to the

speed of sound cs,

Ma =
U

cs

. (3)

Low-speed fluids (Ma � 1) can be considered as incompressible. As the Mach

number approaches unity, compressibility effects need to be considered. The lattice

BGK scheme involves a low-Mach number expansion of the Maxwell equilibrium

distribution function and therefore, it introduces compressibility errors at relatively

high Mach numbers.

In addition to the kinematic viscosity ν, the diameter D and the velocity U which

define the Reynolds number as Re = UD/ν, a nonsteady flow is characterized by a

characteristic time interval, included in the Womersley parameter α = (D/2)
√

ω/ν

or the Strouhal number, St = Df/U = 2α2/π Re where ω = 2πf = 2π/T is the

angular frequency with f being a typical frequency and T the associated period

of oscillation. An additional constraint comes from the fact that the accuracy of

LBGK reduces with increasing Mach number, especially for unsteady flows. The

flow problem is completely defined by the geometry and these dimensionless num-

bers take certain constant values. Now, in order to simulate at low-Mach number,

we must decrease the velocity U and consequently decrease the viscosity ν to pro-

duce the same Reynolds number. However, since the Womersley and the Strouhal
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numbers are dependent on the viscosity and the velocity, the frequency must also

be reduced. Explained in formulas, the velocity U is given by

U =
Re ν

D
=

Df

St
= Macs (4)

from which

Ma =
Re ν

csD
, (5)

and

Re =
D2f

ν St
. (6)

From these relations, we recognize that the Mach number Ma and the kinematic

viscosity ν are directly proportional to the frequency of oscillation through

Ma =
fD

St cs

, (7)

ν =
fD2

St Re
, (8)

and

ν =
πD2f

2α2
. (9)

Equation (7) implies that the frequency domain has to be reduced in order to have a

low Mach number. This results in a considerable delay in the convergence behavior.

Equation (8) shows that decreasing the frequency unfortunately results in pushing

the simulation towards the instability region of LBGK. Equation (9) tells us that,

for highly dynamic simulations (high α), we need to consider both low frequency

and viscosity. These constraints end up with a computationally expensive slowly

time evolving simulation. This poses a high demand on a prospective acceleration

method.

An annealing process to accelerate the lattice Boltzmann method was first re-

ported by Bernaschi et al.8 It allows fast convergence by combining viscosity an-

nealing with powerful linear iterative solvers for computing the inverse Liouville

operator.

Different from those for steady flows, time-dependent LBGK simulation pa-

rameters are not easy to control within a running simulation since, among others,

new physical and hydrodynamic constraints need to be satisfied. The flow is now

characterized by the Womersley number, the Reynolds number, and the Strouhal

number, as discussed above. These parameters need to be fixed during annealing

since the dynamics of the flow is highly time-dependent. We apply the same idea

for unsteady flows, but anneal the Mach number instead of the Reynolds number

on a strictly fixed spatial grid. We assume that the Mach number is to be annealed

n times and recall n as the annealing factor. In order to do that

n =
Ma

M ′

a

=
U

U ′
=

f

f ′
=

ν

ν′
, (10)
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which implies that all the velocity (in terms of the driving force), the frequency

of oscillation and the viscosity are to be reduced n times. This annealing strategy

can be direct (one level annealing) or multilevel. In the direct annealing strategy,

after the simulation converges with a higher Mach number, the viscosity, the fre-

quency and the driving force are reduced n times in a single step and the simulation

converges to the final solution. The multilevel annealing strategy involves gradual

reduction of these parameters towards n, depending on the stability and tolerance

constraints. In other words, there are different ways to decide when to start the

annealing. Examples of both direct and multilevel annealing methods are discussed

in the next section.

4. Simulations

We consider time-dependent systolic flow in a rigid tube of diameter D = 63 lattice

units as a benchmark for our simulations. The first eight harmonics of a pressure

pulse, measured at the entrance of the human abdominal aorta, are used to apply

an inlet condition for the tube. We have selected this complex time series for the

sake of generality. For the outlets, constant density is applied. The velocity and the

unknown distributions are computed from the density. For the walls, the bounce-

back on the links is used. For all simulations the Womersley number is kept constant

at α = 16 and the average Reynolds number is Re = 270. The simulation starts at

average Ma = 0.5 (T = 360 and ν = 0.068) and waits until the system builds up its

knowledge about the pulsatility and nonlinear behavior and converges after about

40 complete periods. The obtained simulation results are compared with the real

part of the analytical Womersley solution

u(y, t) =

8
∑

m=1

[

− Am

ρωm

e−iωmt

(

1 − J0[y
√

bm]

J0[R
√

bm]

)]

, (11)

where Am is the amplitude of the pressure gradient, R = D/2 is the radius of the

tube, J0 is the zeroth order Bessel function of the first type and bm = −iωm/ν

with ωm = mω1 and ω1 = 2π/T for the mth Fourier harmonics. The average

error at Ma = 0.5 is 15%, originating from both compressibility effects and wall

boundary conditions. Next, we reduce the Mach number to obtain good agreement

with the analytical solution. We have previously studied the effect of reducing

the Mach number on the accuracy for this benchmark.16 Figure 1 shows sample

simulation results for three different time frames after reducing the Mach number

to Ma = 0.1. The new simulation parameters are computed from Eq. (10) after

substituting n = 5 and including the initial simulation parameters. The average

error is reduced to less than 1%. However, since the period increases five times,

the computational time increases with the same factor. The aim of Mach number

annealing is to accelerate convergence to equilibrium by reducing the percentage

tolerance in mass and momentum, computed by comparing similar points for each



December 15, 2003 10:53 WSPC/141-IJMPC 00498

840 A. M. Artoli, A. G. Hoekstra & P. M. A. Sloot

-30 -20 -10 0 10 20 30
y

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
v
e
l
o
c
i
t
y

-30 -20 -10 0 10 20 30
y

-0.04

-0.02

0

0.02

0.04

v
e
l
o
c
i
t
y

-30 -20 -10 0 10 20 30
y

-0.0002

-0.0001

0

0.0001

0.0002

sh
ea

r
st

re
ss

90

100

110

120

-30 -20 -10 0 10 20 30
y

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

ve
lo

ci
ty

-30 -20 -10 0 10 20 30
y

-0.0002

-0.0001

0

0.0001

0.0002

sh
ea

r
st

re
ss

90

100

110

120

-30 -20 -10 0 10 20 30
y

-0.0001

-0.00005

0

0.00005

0.0001

sh
ea

r
st

re
ss

90

100

110

120

(a)

Fig. 1. The obtained (•) (a) velocity profiles and (b) shear stress in lattice units during (c) the
systolic cycle, compared to the analytical Womersley solution (——) for the 3D tube benchmark.
The dots in (c) indicate times at which the profiles are shown. For this simulation α = 16,
Re = 270, and Ma = 0.1.
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Fig. 1 (Continued)
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Fig. 1 (Continued)



December 15, 2003 10:53 WSPC/141-IJMPC 00498

Accelerated Lattice BGK Method for Unsteady Simulations 843

-2e-09

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

1.5e-09

2e-09

50000 60000 70000 80000 90000 100000 110000

M
 T

ol
er

an
ce

 %

Time-step

No annealing

(a)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

50000 60000 70000 80000 90000 100000 110000

P 
To

le
ra

nc
e 

%

Time-step

No annealing

(b)

-2e-09

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

1.5e-09

2e-09

50000 60000 70000 80000 90000 100000 110000

M
 T

ol
er

an
ce

 %

Time-step

4 levels annealing

(c)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

50000 60000 70000 80000 90000 100000 110000

P 
To

le
ra

nc
e 

%

Time-step

4 levels annealing

(d)

-2e-09

-1.5e-09

-1e-09

-5e-10

0

5e-10

1e-09

1.5e-09

2e-09

50000 60000 70000 80000 90000 100000 110000

M
as

s 
To

le
ra

nc
e 

%

Time-step

One level annealing

(e)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

50000 60000 70000 80000 90000 100000 110000

P 
To

le
ra

nc
e 

%

Time-step

One level (Direct) annealing

(f)

Fig. 2. Comparison in mass (left) and momentum (right) tolerance as a function of number
of time-steps, between nonannealed (upper row), four levels annealed (middle row) and directly
annealed (bottom) simulations. The Mach number is reduced five times in the annealed simulations
(from 0.5 to 0.1).

two successive periods. The mass tolerance is defined as

M tolerance% =
M(t) − M(t − T )

M(t − T )
∗ 100 (12)

and the momentum tolerance is defined accordingly.

In typical simulations, we accept convergence below 0.1% for the momentum.

We have performed three simulation sets for the systolic tube flow benchmark:

One without annealing with the lowest desired Mach number, having T = 1800

and ν = 0.01353. The pressure gradient is scaled to obtain a Mach number of 0.1.
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Figures 2(a) and 2(b) show the relaxation of tolerance in mass and momentum from

which we see that it takes quite a long time to damp out the initial oscillations in

tolerance (more than 72 000 time-steps). The second set of simulations is conducted

using four levels of annealing by reducing the Mach number after each 60 periods

of the basic simulation. In detail, the Mach number is reduced to 0.4, 0.3, 0.2

and finally 0.1 directly after 60, 120, 180 and 240 complete periods of the basic

simulation, respectively. The results are shown in Figs. 2(c) and 2(d), from which

we notice that the mass and more strongly the momentum converge much faster

with the annealing process. The momentum tolerance is usually several orders of

magnitudes higher than that for the mass, and hence, has more influence on the

accuracy of the flow fields.

The third set shows a one-step annealing in which the simulation parameters

are directly tuned to the final Mach number (Ma = 0.1) after convergence of the

basic simulation in which T = 360 and Ma = 0.5. The direct annealing strategy

significantly accelerates the relaxation towards equilibrium (see Figs. 2(e) and 2(f)),

since it significantly reduces compressibility errors earlier than the multilevel an-

nealing process. For the nonannealed case, it takes a long time for the momentum

to relax with a tolerance similar to the directly annealed simulations. In terms of

numbers, the direct annealing strategy is at least three times faster for a five times

annealed Mach number. The gain in computational time is higher if the ratio be-

tween the two Mach numbers is larger, since the order in the tolerance seems to

depend only on the tolerance of the initial simulations rather than the annealing

factor.

The short-living spikes in Fig. 2 may be attributed to two reasons. First, since

the systolic cycle is composed of many harmonic terms, values of point mass and

momentum do not simultaneously converge. Compressibility errors at high velocities

are also large. This explains why the spikes disappear with direct annealing, since

the Mach number is significantly reduced.

5. Conclusions

In this paper we have presented a numerical technique to accelerate laminar time-

dependent LBGK simulations through annealing of the Mach number during sim-

ulations, either directly or in a multilevel strategy. In both cases, the simulation is

performed on a fixed grid and the viscosity, the Mach number, and the frequency

are annealed by the same annealing factor. Considerable gain in computational time

compared to that for the nonannealed standard LBGK simulations is observed. We

have shown that direct annealing of the Mach number is faster than the multi-

level one. Since it works on the same grid, the Mach number annealing technique

does not affect the parallelism of the uniform LBE Cartesian grid. Our current

research concentrates on the optimization of different annealing strategies of the

Mach number for best acceleration.
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