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Abstract. Workstations make up a very large fraction of 
the total available computing capacity in many 
organisations. In order to use this capacity optimally, 
dynamic allocation of computing resources is needed. 
The Esprit project Dynamite addresses this load 
balancing problem through the migration of tasks in a 
dynamically linked parallel program. An important goal 
of the project is to accomplish this in a manner that is 
transparent both to the application programmer and to 
the user. Our approach adds the migration of 
dynamically linked tasks, of tasks with open files and 
with direct PVM connections to earlier versions of 
DPVM. The system is now provided with monitoring 
and scheduling software. As a test bed, the Pam-Crash 
software from ESI is used. 

1 Introduction 

Workstations have become ubiquitous in many 
organisations. By their nature, they are often used 
intensively during normal working hours, and are 
often largely idle otherwise. They represent a huge 
reservoir of computing capacity that can be used 
much more efficiently. 

Thus, we currently witness a shift of emphasis in 
high-performance computing from expensive, 
special-purpose monolithic systems to the use of 
clusters of workstations or PCs. 

When using time-shared workstation clusters as 
HPC compute servers, however, one has to cope 
with the dynamical behaviour of the compute 
nodes, the network load and the application tasks. 
These can lead to local load imbalances, which 
hamper the application's execution speed and the 
overall system performance. 

The application itself can also exhibit dynamic 
behaviour due to changes in the load per task (e.g. 
contact problems in car crash simulations). This 
leads to serious load imbalances, which are difficult 
to resolve, even on dedicated parallel platforms that 
offer a constant performance per node. When the 

node performance changes dynamically, as in 
workstation clusters, the situation becomes even 
more difficult. 

Also, running a HPC task on a workstation may 
jeopardise its primary purpose of providing 
computing capacity to a particular employee. 

Solving these problems requires that work 
somehow be migrated from one node to another. 
This can be done internally to the parallel 
application, but such an approach requires a major 
adaptation of each individual program. Various 
solutions have been developed to improve the load 
distribution for workstations. These range from 
systems that schedule parallel or sequential jobs on 
free workstations, such as LSF [1], via systems that 
can also migrate sequential jobs, such as Codine [2] 
and Condor [3, 4], to systems that also aim to 
migrate tasks in parallel jobs. MPVM/MIST [5, 6] 
does this for PVM based jobs, Hector [7] for MPI. 

In the ESPRIT project 23499 “DYNAMITE” , 
we develop a dynamic execution environment that 
handles the load balancing of parallel applications 
in a dynamically changing cluster environment by 
migrating individual tasks in a manner that is 
robust, efficient and transparent to the user and the 
application programmer. The DYNAMITE 
software is based on PVM 3.3.11 and is called 
Dynamic PVM [8] or DPVM for short. DPVM is 
totally transparent to the user's application: existing 
PVM codes need only be linked to the DPVM 
library. The DYNAMITE system is intended for 
environments requiring a relatively infrequent 
redistribution of workload for large applications 
that can run for several days. We strive for a 
response time of at most a few minutes and a 
minimal overhead, but give an absolute priority to 
reliability and stability. 
In constructing such an environment, the following 
problems need to be addressed: 
- migration of dynamically linked tasks, 



- migration of communication endpoints, 
- load monitoring, 
- task (re-)allocation, 
- job preparation 
In this paper, we describe the ongoing work in the 
DYNAMITE project. The first two issues will be 
addressed in the next section. Subsequently we will 
address load monitoring, task allocation and job 
preparation in separate sections, before coming to 
our conclusions. 

2 M igration 

Migration of tasks requires that the state of the task 
is captured, after which a new task is started on the 
target machine, initialised with the captured state. 
Correct migration is difficult because the 
interactions of the task with its environment need to 
be taken into account. A completely transparent 
migration, which cannot be detected by the task or 
its communication partners, is almost impossible to 
realise, but is not usually necessary either. We 
strive to migrate dynamically linked tasks with open 
files, communicating with other tasks solely 
through PVM. 

For the migration of tasks with open files, we 
impose the additional requirement that these files 
can be accessed using the same path on both the 
source and target machine. 

We have implemented the migration mechanism 
making use of a full checkpoint of the task. Though 
it requires additional communication and I/O 
compared to a mechanism based on a direct transfer 
of the task image from source to target machine, we 
have decided to use this approach for reasons of 
robustness and clarity of implementation. 

Pilot versions of the checkpointer and migrator 
were implemented for the SUN Solaris operating 
system, and have been tested on OS versions 2.5.1 
and 2.6 on UltraSparc workstations. 

2.1 M igration of dynamically linked code 

As stated, as the first step in the migration of a task, 
a checkpoint dump is made. 

The checkpointing implementation used in 
DYNAMITE differs from existing implementations 
in two ways. Firstly, the checkpointing code is not 
linked into the program itself. Instead, it is present 
in the dynamic loader, a piece of code loaded 
before the actual program is run. The task of the 
dynamic loader is to load the shared libraries 
required by the program. Most Unix systems 
implement shared libraries using a dynamic loader, 
and have an option to specify a different loader for 
each program. This option is used to specify our 
own dynamic loader.  

In DYNAMITE, this dynamic loader will 
perform these tasks as usual, but will also contain 
code to handle checkpointing signals, and to keep 
information on the used shared libraries. This 
means that it can take care of creating the 
checkpoint, and restoring it, using the exact same 
memory mappings for shared libraries. This is 
important, because shared libraries are normally not 
guaranteed to be mapped on the same memory 
address, which would make restarting the 
application impossible.  

The other new aspect in the checkpointing code 
is the propagation of checkpointing signals. This 
means that the dynamic loader will, before creating 
the checkpoint, signal the application to allow it to 
save state that can possibly not be saved within the 
framework of the normal checkpointing procedure. 
Normally, programs need not be aware of this 
signal, so that transparency is maintained, but the 
DPVM library uses it for the migration of files and 
connections. 

The current implementation of the checkpointer 
has the following limitations: 
- The checkpointed task should not be 

multithreaded. This limitation applies to all 
PVM programs anyway. 

- The checkpointed task should not have any 
network connections open, save for those 
serviced by PVM. Migration of open files is 
supported as long as the path name is valid on 
both hosts. 

The checkpointer writes a full checkpoint to a file, 
including any mapped dynamic libraries and the 
complete data segment. An earlier version of 
DPVM used a migration approach in which most of 
the data segment was transferred directly from the 
old to the new task image through a socket. While 
this approach has a speed advantage, it hampers a 
robust implementation. 

It is not necessary for the original task still to be 
active for the restart, as would be the case when 
part of the image would be transferred directly from 
the old to the new task. The checkpoint file is an 
executable in its own right, and can thus be 
restarted in the usual way. 

The job of the migrator, which is part of the 
DPVM library, is to start a new task on the target 
machine, using the checkpointed executable. 

2.2 M igration of communicating tasks 

A main objective of the DPVM migration facility is 
transparency of the migration protocol. With 
respect to the task selected for migration this 
implies transparent suspension and resumption of 
execution: the task has no notion that it is migrated 
to another host, and the communication can be 
delayed without causing failures triggered by 



migration of one of the tasks. The work upon which 
our implementation is based is described in [8] 

The first step in the migration protocol is the 
creation of a new process context at the destination 
host by sending a message to the PVM daemon 
(pvmd) representing that host. Next, the master 
pvmd updates its routing table to reflect the new 
location of the task. Before the task selected for 
migration is suspended, the communication 
between this task and its pvmd has to be flushed. 
Then the task is disconnected from its local pvmd 
and messages arriving for that task are refused by 
the task's original pvmd. The master pvmd will now 
broadcast the new location to all other pvmds, so 
that any subsequent message is directed to the task's 
new location. 

The next phase is the actual migration of the 
task. If a message is currently being sent by the 
task, migration is delayed until the transmission has 
been completed. The task is then checkpointed and 
the newly created process on the destination host is 
requested to restart the checkpoint. 

Finally, after the checkpoint is read, the original 
state of the task (among which data, stack, signal 
mask, and registers) is restored and the task is 
restarted. Any message that arrived at the pvmd 
during the checkpoint/migration phase is then 
delivered to the restarted task. 

2.3 Packet Routing 

In PVM the task identifier, task id for short, is a 
unique identifier that serves as the task's address 
and therefore may be distributed to other PVM 
tasks for communication purposes. For this reason, 
the task id must remain unchanged during the 
lifetime of a task, even when the task is migrated. 

This has implications for the packet routing of 
messages. The task id contains the host identifier at 
which the task is enrolled and a task sequence 
number. This information is used by the pvmd to 
route packets to their destination, i.e., to the 
appropriate pvmd and task. When a task is migrated 
to another host, this routing information is not 
correct anymore. Therefore, an additional routing 
functionality must be incorporated in the pvmd 
routing software in order to support the migration 
of tasks. An important design constraint is that the 
routing facility must be highly efficient and should 
not impose additional limitations on the scalability. 

To provide transparent and correct message 
routing with migrating tasks, the task ids must be 
made location independent, virtualising the task ids. 
This is accomplished by maintaining additional 
routing information tables in all pvmds. These 
routing tables are consulted for all inter-task 
communication. Upon migration of a task, first the 
routing table of the master pvmd is updated to 

reflect the change in location of the migrated task. 
Next, the master pvmd broadcasts the routing table 
change to all other pvmds, so that each routing table 
reflects the actual location of all migrated tasks in 
the system. 

2.4 Direct Connections 

The basic mode of communication in PVM is 
through the daemon. For reasons of efficiency, 
PVM allows tasks to request a direct connection to 
another task. This complicates the rerouting of the 
communication. The main problem of direct 
communication connections is making sure that all 
communication has been flushed. Simply breaking 
the connections may result in loss of messages and 
is not acceptable. Several approaches are possible. 
Some involve shutting down communication for the 
whole system temporarily, but this may cause 
unnecessary delay. Another approach is to leave an 
agent in place that takes care of the connection as 
long as it has not been confirmed as flushed by the 
other side.  

In the new version of DPVM the direct routing 
problem has been solved, essentially by making a 
transaction out of each PVM communication 
(send/receive of a message). If it fails due to the 
connection being shut down, the transmission will 
have no effect and will be retried after the partner 
task has been migrated, and the connection 
restored, using the address information obtained 
through the PVM daemons. 

A related problem occurs in the implementation 
of task migration in MPI. MPI is a specification 
that is often implemented using direct connections, 
but without daemons, as in MPICH, a popular MPI 
implementation. See [7] for one possible solution 
for the problems that occur when implementing task 
migration for this MPI version 

3 Resource M onitor ing 

Any migration decision has to be based on the 
information that is currently available about the 
cluster. This refers to the state of the hardware as 
well as to the runtime behaviour of the applications. 
The typical approach taken by most cluster 
management systems is to measure the load on each 
available host and of each application process. The 
busiest tasks are then moved to the least loaded 
nodes until a satisfactory state is achieved. This 
strategy has been proven well suited for running 
independent jobs on networks of workstations, but 
it performs less well for parallel applications as it 
completely neglects communication between 
interdependent tasks. This drawback is especially 
apparent in environments with significant 
performance differences between the nodes. In such 



scenarios, it is often the case that larger machines 
(typically SMPs or NUMAs with 4 to 16 
processors) are assigned multiple processes. It is 
then desirable to have frequently communicating 
tasks grouped together on big machines (Figure 
1).In the first case, the sequential load is equally 
balanced but the communication is not. Therefore, 
the monitoring tool must also keep track of the 
communication between the tasks. In order to make 
an optimal migration decision, the following 
information is needed: 
- available capacity on each node (CPU, memory, 

disk space), 
- current load of each node, 
- required capacity for each task, 
- network connectivity and capacity, 
- communication pattern for each task. 
Each of these items can be measured at execution 
time by monitoring software, but we assume that 
node capacity and network properties are 
sufficiently stable that they can best be specified 
beforehand by the system administrator. Therefore, 
we have chosen a textual representation of the static 
resources (see [9] for further details). 

Detailed information about the network topology 
can be obtained from a “Network Resource 
Description”  file that is used for migration 
decisions. Tasks should preferably be migrated to 
nodes in the same subnet. This provides locality for 
the messages and prevents that a large amount of 
data has to be routed from one subnet to the other. 
If it is not possible to fulfil the requirement for 

locality then nodes in adjacent subnets are selected. 
Because of the assumed dynamic behaviour of the 
application and the system load, the other items 
need to be obtained by monitoring software. 
Information about load and capacity must be 
collected from all nodes of the cluster, also those 
where currently no task of the parallel application is 
running. This is accomplished by running a small 
monitor program (monitor slave) on each 
node (Figure 2). 

The statistics obtained by the monitor slaves are 
sent to the monitor master process that is not only 
responsible for maintaining the whole cluster 
statistics but also has to make migration decisions. 
The information on communication patterns is 
obtained directly from the DPVM environment. 
Therefore, DPVM has been enhanced by a message 
monitoring thread. This thread keeps track of each 
message sent and received. These communication 
statistics are also sent to the monitor master process 
that is depicted in detail in Figure 3. 
The monitor master process consists of five threads 
that operate concurrently. The message dispatcher 
thread identifies each message received and 
appends it to the appropriate queue. There exist 
three different queues: 
- a node capacity queue to store the information 

from the monitor slaves (CPU, memory, I/O, 
…), 

- a DPVM capacity queue to store the information 
about CPU and memory utilisation of the DPVM 
processes and 

Capacity monitoring Capacity and message monitoring Node

Monitor master

Monitor slave

DPVM process

Monitor communication
 

Fig. 2. : Capacity and Message Monitoring 
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process machine
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Fig. 1. : Grouped Tasks 



- a communication queue to store the information 
about the communication activity between the 
DPVM processes. 

The queues act as an intermediate store because the 
statistics threads are only active every j seconds, 
where j can be adapted to the application 
monitored. Long running applications do not need a 
short monitoring interval and, therefore, the 
statistics need not be updated regularly. Each 
statistic thread maintains a ring-buffer (not shown) 
where the last l entries are stored. Each entry in the 
ring-buffer corresponds to a snapshot of the 
monitored data at a certain point in time. It is 
obvious that it is not practicable to store all values 
since monitoring has begun. Therefore, we have 
chosen to implement a moving average scheme that 
keeps track of the last l entries. 
This scheme has the advantage that we can apply a 
recursive formula that depends only on the newest 
and oldest value of the ring-buffer. This speeds-up 
calculation of the moving averages and decreases 
the monitoring overhead. To allow further 
processing, e. g. to visualise the data sets, the 
statistical data is also written to disk (not shown). 

4 M igration Decider  

The migration decider is the main part of the 
scheduler thread that is executed periodically by the 
monitor master process. Based on the monitored 
data, the migration decider has to judge about 
where and when to migrate a task from an 
overloaded node. Additionally the task to be moved 
causes some constraints on the migration decision. 
Therefore, the master load monitor has to supply 
some normalised values about the attributes CPU, 
memory, and disk swap space of each node and 
additionally the available network capacity. 

The increasing interest in distributed computing 
has lead to intensive scientific research in load 
balancing schemes for distributed memory systems 
[2, 5, 10, 11, 12, 13, 14, 15]. Because not every 
load-balancing scheme is applicable to every 

application, the migration decider has been 
designed in a flexible manner to support a broad 
range of applications. 

CPU capacity on the one hand, and memory and 
disk swap space on the other, are inherently 
different in their scheduling requirements. Where, 
up to a certain point, more CPU capacity is always 
better, swap space and memory either are enough, 
or insufficient (you do not want to use virtual 
memory). 

For the first prototype we have implemented a 
straightforward solution with a greedy-like 
algorithm and constraints lists. 

We call ci,j the available capacity of the 
attribute i (currently only CPU capacity) of the 
node j. In conjunction with priority coefficients ki 
for each attribute we are able to calculate the local 
available capacity Cj of the node j which is given 
by (1) 

C j = ki
i

� × ci , j
 (1) 

Using the priority coefficients ki we can adapt the 
load-balancing scheme to the needs of different 
applications. Applications with a high demand in 
CPU and memory capacity like Pam-Crash will use 
a high value for these priority coefficients. All Cj 
will then be sorted. Sorting Cj in ascending order 
provides us a data-set which comprises the capacity 
room C. Sorting Cj in descending order provides 
the data-set for the load room L. Each of these data 
sets are managed as priority queues (heaps) as 
indicated by Figure 4. 
 
The migration decider only looks at the first 
element of each heap. The first element of the 
capacity room C represents the node with the 
highest available capacity. Whereas the first 
element of the load room L represents the most 
heavily burdened node. A migration will be 
triggered, if the following conditions are met: 
L1 > T and C1 > 1 – T with i, j in {1, …, n} and 
n = number of nodes, where T denotes an 
application specific threshold level for the task 
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migration. By using heaps for the data management, 
the migration decider task is able to retrieve the 
essential information with minimum effort O(1). 
Additionally, updating elements in the data room 
can be done with O(n *  log n). Although there exist 
other schemes with faster access to the data 
elements (e. g. linked lists) if only a few number of 
tasks have to be considered but by using heaps we 
are not limited to support only a small number of 
tasks. 

As illustrated in Figure 5, the algorithm of the 
decider is straightforward. The function 
CheckFor Mi gr at i on will be called periodically 
to check if the load index of the most loaded node 
is higher than a user defined threshold level and 
furthermore if a node exists which has enough 
remaining capacity (migration mapping). When the 
decision for migration is taken, the tasks are moved 
from the 'overloaded' node to the node with the best 
capacity left. Thereafter both data rooms are 
reordered by setting the load and capacity indices 
of the corresponding nodes to default values and by 
re-sorting the data heaps. By using a recursive 
algorithm, the whole migration is done in one 
global step. As a result, the application uses the 
whole workstation cluster efficiently and expensive 
compute time is not wasted migrating single tasks 
one at a time. 

5 Job preparation 

As is the case for every parallel application, an 
application using the DYNAMITE environment 
must be split into separate tasks. These tasks must 
be started on the nodes of the assigned cluster. 
Usually, in FEM applications, such as Pam-Crash 
[16], and many others, this is accomplished by 
partitioning the problem data over the available 
nodes in proportion to the capacity of a node. This 
will result in a tight fit, which is fine if there are no 
variations in load or capacity. For DYNAMITE we 
are considering two other approaches: 

Sparse decomposition. When the aim is to allow 
any one node from a pool of (equal) workstations to 
be temporarily used for other purposes, the task 
should be split into fewer subtasks than the number 
of available nodes. In this way, flexibility is gained 
at a cost in performance. 

Redundant decomposition. When the aim is to 
allow for the redistribution of work in an 
application that produces a dynamically changing 
load, it may be preferable to split the data so that 
every workstation gets more than one partition. In 
this way load can easily be shifted, albeit at a cost 
in communication efficiency. 

Beside this additional choice in the partitioning, 
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Sort max. load

Load room: L

Update periodically

Retrieve & evaluate data

Migrate? YesNo

do work

sleep ? t

access: O(1)

Data room Decider

 
Fig. 4. : Architecture of the Migration Decider 

 CheckFor Mi gr at i on ( )  {  
  / *  Wi l l  be t r i gger ed at  l east  ever y t  seconds * /  
  i f  ( Get MaxLoadFr omLi st Of LoadedNodes( )  <= Thr eshol d)  r et ur n;  
  i f  ( Get Best Capaci t y( )  > ( 1. 0 -  Thr eshol d) )  {  
   / *  t her e exi st s a node whi ch i s l ess bur dened;  
    do t he mi gr at i on st uf f  * /  
   DoMi gr at i onSt uf f ( ) ;  
   Updat eLoadRoom( ) ;   / *  ef f or t :  O( n *  l og n)  * /  
   Updat eCapaci t yRoom( ) ;  / *  ef f or t :  O( n *  l og n)  * /  
   CheckFor Mi gr at i on( ) ;  / *  do t he r ecur si on * /  
  }  
 }  

Fig. 5. : Pseudo-Code of the Recursive Algorithm for the Decider Module 



running a task under DYNAMITE also requires the 
monitoring tasks to be started together with the 
DPVM system. Though this need not require any 
additional effort on the side of the user, we will 
provide a simple GUI to assist the user in starting 
his DYNAMITE empowered application. 

6 Conclusions 

DYNAMITE will provide the application developer 
with a robust tool that makes it possible to respond 
flexibly to dynamic changes in the available system 
capacity and application workload. The 
DYNAMITE system will migrate (dynamically 
linked) tasks from a parallel program when 
necessary. The overhead involved will be very 
small compared to the possible cost of a load 
imbalance. The system structure is modular so that 
it can easily be adapted to specific application 
requirements. In the development phase this 
modularity will be used for experimentation with 
various migration policies. 
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