
Bibliographic reference for this paper :

G.D. van Albada; J. Clinckemaillie; A.H.L. Emmen; J. Gehring; O. Heinz; F. van der Linden; B.J. Overeinder;

A. Reinefeld and P.M.A. Sloot:
Dynamite - blasting obstacles to parallel cluster computing,
in M. Boasson; J.A. Kaandorp; J.F.M. Tonino and M.G. Vosselman, editors,
Proceedings of the fifth annual conference of the Advanced School for Computing and Imaging ASCI,
June 15-17, 1999, ASCI, pp. 31-37.
ASCI, Delft, June 1999.

An ear lier (more accessible) version appeared in:

G.D. van Albada; J. Clinckemaillie; A.H.L. Emmen; J. Gehring; O. Heinz; F. van der Linden; B.J. Overeinder;

A. Reinefeld and P.M.A. Sloot:
Dynamite - blasting obstacles to parallel cluster computing,
in P.M.A. Sloot; M. Bubak; A.G. Hoekstra and L.O. Hertzberger, editors,
High-Performance Computing and Networking (HPCN Europe '99), Amsterdam, The Netherlands,
in series Lecture Notes in Computer Science, nr 1593 pp. 300-310.
Springer-Verlag, Berlin, April 1999. ISBN 3-540-65821-1.

Dynamite - blasting obstacles to parallel cluster computing

G.D. van Albada1, J. Clinckemaillie2, A.H.L. Emmen3, J. Gehring4, O. Heinz4,
F. van der Linden1, B.J. Overeinder1, A. Reinefeld5, P.M.A. Sloot1

1 Department of Computer Science, Universiteit van Amsterdam, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

2 Engineering Systems International, 20 Rue Saarinen,
F-94578 Rungis SILIC 270, France

3 Genias Benelux BV, James Stewartstraat 248, 1325 JN Almere, The Netherlands
4 Paderborn Center for Parallel Computing, Fürstenallee 11, 33102 Paderborn, Germany

5 Konrad-Zuse-Zentrum für Informationstechnik, Takustrasse 7, D-14195 Berlin, Germany

Keywords: cluster computing, migration, scheduling

Abstract. Workstations make up a very large fraction of
the total available computing capacity in many
organisations. In order to use this capacity optimally,
dynamic allocation of computing resources is needed.
The Esprit project Dynamite addresses this load
balancing problem through the migration of tasks in a
dynamically linked parallel program. An important goal
of the project is to accomplish this in a manner that is
transparent both to the application programmer and to
the user. Our approach adds the migration of
dynamically linked tasks, of tasks with open files and
with direct PVM connections to earlier versions of
DPVM. The system is now provided with monitoring
and scheduling software. As a test bed, the Pam-Crash
software from ESI is used.

1 Introduction

Workstations have become ubiquitous in many
organisations. By their nature, they are often used
intensively during normal working hours, and are
often largely idle otherwise. They represent a huge
reservoir of computing capacity that can be used
much more efficiently.

Thus, we currently witness a shift of emphasis in
high-performance computing from expensive,
special-purpose monolithic systems to the use of
clusters of workstations or PCs.

When using time-shared workstation clusters as
HPC compute servers, however, one has to cope
with the dynamical behaviour of the compute
nodes, the network load and the application tasks.
These can lead to local load imbalances, which
hamper the application's execution speed and the
overall system performance.

The application itself can also exhibit dynamic
behaviour due to changes in the load per task (e.g.
contact problems in car crash simulations). This
leads to serious load imbalances, which are difficult
to resolve, even on dedicated parallel platforms that
offer a constant performance per node. When the

node performance changes dynamically, as in
workstation clusters, the situation becomes even
more difficult.

Also, running a HPC task on a workstation may
jeopardise its primary purpose of providing
computing capacity to a particular employee.

Solving these problems requires that work
somehow be migrated from one node to another.
This can be done internally to the parallel
application, but such an approach requires a major
adaptation of each individual program. Various
solutions have been developed to improve the load
distribution for workstations. These range from
systems that schedule parallel or sequential jobs on
free workstations, such as LSF [1], via systems that
can also migrate sequential jobs, such as Codine [2]
and Condor [3, 4], to systems that also aim to
migrate tasks in parallel jobs. MPVM/MIST [5, 6]
does this for PVM based jobs, Hector [7] for MPI.

In the ESPRIT project 23499 “DYNAMITE” ,
we develop a dynamic execution environment that
handles the load balancing of parallel applications
in a dynamically changing cluster environment by
migrating individual tasks in a manner that is
robust, efficient and transparent to the user and the
application programmer. The DYNAMITE
software is based on PVM 3.3.11 and is called
Dynamic PVM [8] or DPVM for short. DPVM is
totally transparent to the user's application: existing
PVM codes need only be linked to the DPVM
library. The DYNAMITE system is intended for
environments requiring a relatively infrequent
redistribution of workload for large applications
that can run for several days. We strive for a
response time of at most a few minutes and a
minimal overhead, but give an absolute priority to
reliability and stability.
In constructing such an environment, the following
problems need to be addressed:
- migration of dynamically linked tasks,

- migration of communication endpoints,
- load monitoring,
- task (re-)allocation,
- job preparation
In this paper, we describe the ongoing work in the
DYNAMITE project. The first two issues will be
addressed in the next section. Subsequently we will
address load monitoring, task allocation and job
preparation in separate sections, before coming to
our conclusions.

2 M igration

Migration of tasks requires that the state of the task
is captured, after which a new task is started on the
target machine, initialised with the captured state.
Correct migration is difficult because the
interactions of the task with its environment need to
be taken into account. A completely transparent
migration, which cannot be detected by the task or
its communication partners, is almost impossible to
realise, but is not usually necessary either. We
strive to migrate dynamically linked tasks with open
files, communicating with other tasks solely
through PVM.

For the migration of tasks with open files, we
impose the additional requirement that these files
can be accessed using the same path on both the
source and target machine.

We have implemented the migration mechanism
making use of a full checkpoint of the task. Though
it requires additional communication and I/O
compared to a mechanism based on a direct transfer
of the task image from source to target machine, we
have decided to use this approach for reasons of
robustness and clarity of implementation.

Pilot versions of the checkpointer and migrator
were implemented for the SUN Solaris operating
system, and have been tested on OS versions 2.5.1
and 2.6 on UltraSparc workstations.

2.1 M igration of dynamically linked code

As stated, as the first step in the migration of a task,
a checkpoint dump is made.

The checkpointing implementation used in
DYNAMITE differs from existing implementations
in two ways. Firstly, the checkpointing code is not
linked into the program itself. Instead, it is present
in the dynamic loader, a piece of code loaded
before the actual program is run. The task of the
dynamic loader is to load the shared libraries
required by the program. Most Unix systems
implement shared libraries using a dynamic loader,
and have an option to specify a different loader for
each program. This option is used to specify our
own dynamic loader.

In DYNAMITE, this dynamic loader will
perform these tasks as usual, but will also contain
code to handle checkpointing signals, and to keep
information on the used shared libraries. This
means that it can take care of creating the
checkpoint, and restoring it, using the exact same
memory mappings for shared libraries. This is
important, because shared libraries are normally not
guaranteed to be mapped on the same memory
address, which would make restarting the
application impossible.

The other new aspect in the checkpointing code
is the propagation of checkpointing signals. This
means that the dynamic loader will, before creating
the checkpoint, signal the application to allow it to
save state that can possibly not be saved within the
framework of the normal checkpointing procedure.
Normally, programs need not be aware of this
signal, so that transparency is maintained, but the
DPVM library uses it for the migration of files and
connections.

The current implementation of the checkpointer
has the following limitations:
- The checkpointed task should not be

multithreaded. This limitation applies to all
PVM programs anyway.

- The checkpointed task should not have any
network connections open, save for those
serviced by PVM. Migration of open files is
supported as long as the path name is valid on
both hosts.

The checkpointer writes a full checkpoint to a file,
including any mapped dynamic libraries and the
complete data segment. An earlier version of
DPVM used a migration approach in which most of
the data segment was transferred directly from the
old to the new task image through a socket. While
this approach has a speed advantage, it hampers a
robust implementation.

It is not necessary for the original task still to be
active for the restart, as would be the case when
part of the image would be transferred directly from
the old to the new task. The checkpoint file is an
executable in its own right, and can thus be
restarted in the usual way.

The job of the migrator, which is part of the
DPVM library, is to start a new task on the target
machine, using the checkpointed executable.

2.2 M igration of communicating tasks

A main objective of the DPVM migration facility is
transparency of the migration protocol. With
respect to the task selected for migration this
implies transparent suspension and resumption of
execution: the task has no notion that it is migrated
to another host, and the communication can be
delayed without causing failures triggered by

migration of one of the tasks. The work upon which
our implementation is based is described in [8]

The first step in the migration protocol is the
creation of a new process context at the destination
host by sending a message to the PVM daemon
(pvmd) representing that host. Next, the master
pvmd updates its routing table to reflect the new
location of the task. Before the task selected for
migration is suspended, the communication
between this task and its pvmd has to be flushed.
Then the task is disconnected from its local pvmd
and messages arriving for that task are refused by
the task's original pvmd. The master pvmd will now
broadcast the new location to all other pvmds, so
that any subsequent message is directed to the task's
new location.

The next phase is the actual migration of the
task. If a message is currently being sent by the
task, migration is delayed until the transmission has
been completed. The task is then checkpointed and
the newly created process on the destination host is
requested to restart the checkpoint.

Finally, after the checkpoint is read, the original
state of the task (among which data, stack, signal
mask, and registers) is restored and the task is
restarted. Any message that arrived at the pvmd
during the checkpoint/migration phase is then
delivered to the restarted task.

2.3 Packet Routing

In PVM the task identifier, task id for short, is a
unique identifier that serves as the task's address
and therefore may be distributed to other PVM
tasks for communication purposes. For this reason,
the task id must remain unchanged during the
lifetime of a task, even when the task is migrated.

This has implications for the packet routing of
messages. The task id contains the host identifier at
which the task is enrolled and a task sequence
number. This information is used by the pvmd to
route packets to their destination, i.e., to the
appropriate pvmd and task. When a task is migrated
to another host, this routing information is not
correct anymore. Therefore, an additional routing
functionality must be incorporated in the pvmd
routing software in order to support the migration
of tasks. An important design constraint is that the
routing facility must be highly efficient and should
not impose additional limitations on the scalability.

To provide transparent and correct message
routing with migrating tasks, the task ids must be
made location independent, virtualising the task ids.
This is accomplished by maintaining additional
routing information tables in all pvmds. These
routing tables are consulted for all inter-task
communication. Upon migration of a task, first the
routing table of the master pvmd is updated to

reflect the change in location of the migrated task.
Next, the master pvmd broadcasts the routing table
change to all other pvmds, so that each routing table
reflects the actual location of all migrated tasks in
the system.

2.4 Direct Connections

The basic mode of communication in PVM is
through the daemon. For reasons of efficiency,
PVM allows tasks to request a direct connection to
another task. This complicates the rerouting of the
communication. The main problem of direct
communication connections is making sure that all
communication has been flushed. Simply breaking
the connections may result in loss of messages and
is not acceptable. Several approaches are possible.
Some involve shutting down communication for the
whole system temporarily, but this may cause
unnecessary delay. Another approach is to leave an
agent in place that takes care of the connection as
long as it has not been confirmed as flushed by the
other side.

In the new version of DPVM the direct routing
problem has been solved, essentially by making a
transaction out of each PVM communication
(send/receive of a message). If it fails due to the
connection being shut down, the transmission will
have no effect and will be retried after the partner
task has been migrated, and the connection
restored, using the address information obtained
through the PVM daemons.

A related problem occurs in the implementation
of task migration in MPI. MPI is a specification
that is often implemented using direct connections,
but without daemons, as in MPICH, a popular MPI
implementation. See [7] for one possible solution
for the problems that occur when implementing task
migration for this MPI version

3 Resource M onitor ing

Any migration decision has to be based on the
information that is currently available about the
cluster. This refers to the state of the hardware as
well as to the runtime behaviour of the applications.
The typical approach taken by most cluster
management systems is to measure the load on each
available host and of each application process. The
busiest tasks are then moved to the least loaded
nodes until a satisfactory state is achieved. This
strategy has been proven well suited for running
independent jobs on networks of workstations, but
it performs less well for parallel applications as it
completely neglects communication between
interdependent tasks. This drawback is especially
apparent in environments with significant
performance differences between the nodes. In such

scenarios, it is often the case that larger machines
(typically SMPs or NUMAs with 4 to 16
processors) are assigned multiple processes. It is
then desirable to have frequently communicating
tasks grouped together on big machines (Figure
1).In the first case, the sequential load is equally
balanced but the communication is not. Therefore,
the monitoring tool must also keep track of the
communication between the tasks. In order to make
an optimal migration decision, the following
information is needed:
- available capacity on each node (CPU, memory,

disk space),
- current load of each node,
- required capacity for each task,
- network connectivity and capacity,
- communication pattern for each task.
Each of these items can be measured at execution
time by monitoring software, but we assume that
node capacity and network properties are
sufficiently stable that they can best be specified
beforehand by the system administrator. Therefore,
we have chosen a textual representation of the static
resources (see [9] for further details).

Detailed information about the network topology
can be obtained from a “Network Resource
Description” file that is used for migration
decisions. Tasks should preferably be migrated to
nodes in the same subnet. This provides locality for
the messages and prevents that a large amount of
data has to be routed from one subnet to the other.
If it is not possible to fulfil the requirement for

locality then nodes in adjacent subnets are selected.
Because of the assumed dynamic behaviour of the
application and the system load, the other items
need to be obtained by monitoring software.
Information about load and capacity must be
collected from all nodes of the cluster, also those
where currently no task of the parallel application is
running. This is accomplished by running a small
monitor program (monitor slave) on each
node (Figure 2).

The statistics obtained by the monitor slaves are
sent to the monitor master process that is not only
responsible for maintaining the whole cluster
statistics but also has to make migration decisions.
The information on communication patterns is
obtained directly from the DPVM environment.
Therefore, DPVM has been enhanced by a message
monitoring thread. This thread keeps track of each
message sent and received. These communication
statistics are also sent to the monitor master process
that is depicted in detail in Figure 3.
The monitor master process consists of five threads
that operate concurrently. The message dispatcher
thread identifies each message received and
appends it to the appropriate queue. There exist
three different queues:
- a node capacity queue to store the information

from the monitor slaves (CPU, memory, I/O,
…),

- a DPVM capacity queue to store the information
about CPU and memory utilisation of the DPVM
processes and

Capacity monitoring Capacity and message monitoring Node

Monitor master

Monitor slave

DPVM process

Monitor communication

Fig. 2. : Capacity and Message Monitoring

Allocation not considering
communication

Allocation considering
communication

process machine
weak communication

strong communication

Fig. 1. : Grouped Tasks

- a communication queue to store the information
about the communication activity between the
DPVM processes.

The queues act as an intermediate store because the
statistics threads are only active every j seconds,
where j can be adapted to the application
monitored. Long running applications do not need a
short monitoring interval and, therefore, the
statistics need not be updated regularly. Each
statistic thread maintains a ring-buffer (not shown)
where the last l entries are stored. Each entry in the
ring-buffer corresponds to a snapshot of the
monitored data at a certain point in time. It is
obvious that it is not practicable to store all values
since monitoring has begun. Therefore, we have
chosen to implement a moving average scheme that
keeps track of the last l entries.
This scheme has the advantage that we can apply a
recursive formula that depends only on the newest
and oldest value of the ring-buffer. This speeds-up
calculation of the moving averages and decreases
the monitoring overhead. To allow further
processing, e. g. to visualise the data sets, the
statistical data is also written to disk (not shown).

4 M igration Decider

The migration decider is the main part of the
scheduler thread that is executed periodically by the
monitor master process. Based on the monitored
data, the migration decider has to judge about
where and when to migrate a task from an
overloaded node. Additionally the task to be moved
causes some constraints on the migration decision.
Therefore, the master load monitor has to supply
some normalised values about the attributes CPU,
memory, and disk swap space of each node and
additionally the available network capacity.

The increasing interest in distributed computing
has lead to intensive scientific research in load
balancing schemes for distributed memory systems
[2, 5, 10, 11, 12, 13, 14, 15]. Because not every
load-balancing scheme is applicable to every

application, the migration decider has been
designed in a flexible manner to support a broad
range of applications.

CPU capacity on the one hand, and memory and
disk swap space on the other, are inherently
different in their scheduling requirements. Where,
up to a certain point, more CPU capacity is always
better, swap space and memory either are enough,
or insufficient (you do not want to use virtual
memory).

For the first prototype we have implemented a
straightforward solution with a greedy-like
algorithm and constraints lists.

We call ci,j the available capacity of the
attribute i (currently only CPU capacity) of the
node j. In conjunction with priority coefficients ki
for each attribute we are able to calculate the local
available capacity Cj of the node j which is given
by (1)

C j = ki
i

� × ci , j
 (1)

Using the priority coefficients ki we can adapt the
load-balancing scheme to the needs of different
applications. Applications with a high demand in
CPU and memory capacity like Pam-Crash will use
a high value for these priority coefficients. All Cj
will then be sorted. Sorting Cj in ascending order
provides us a data-set which comprises the capacity
room C. Sorting Cj in descending order provides
the data-set for the load room L. Each of these data
sets are managed as priority queues (heaps) as
indicated by Figure 4.

The migration decider only looks at the first
element of each heap. The first element of the
capacity room C represents the node with the
highest available capacity. Whereas the first
element of the load room L represents the most
heavily burdened node. A migration will be
triggered, if the following conditions are met:
L1 > T and C1 > 1 – T with i, j in {1, …, n} and
n = number of nodes, where T denotes an
application specific threshold level for the task

DPVM
process

Monitor
slave

DPVM
process

Monitor
slave

DPVM
process

Monitor
slave

DPVM
process

Monitor
slave

DPVM
process

Monitor
slave

Message
dispatcher

thread

DPVM capacity
queue

Communication queue

Node capacity
queue

Message
dispatcher

thread

Capacity
room

Load
room

Migration
decision

N cluster nodes Master monitor process on node M

Moving

averages

DPVM capacity
statistic thread

Node capacity
statistic thread

Communication
statistic thread

Fig. 3. : Architecture of the Monitor Master Process

migration. By using heaps for the data management,
the migration decider task is able to retrieve the
essential information with minimum effort O(1).
Additionally, updating elements in the data room
can be done with O(n * log n). Although there exist
other schemes with faster access to the data
elements (e. g. linked lists) if only a few number of
tasks have to be considered but by using heaps we
are not limited to support only a small number of
tasks.

As illustrated in Figure 5, the algorithm of the
decider is straightforward. The function
CheckFor Mi gr at i on will be called periodically
to check if the load index of the most loaded node
is higher than a user defined threshold level and
furthermore if a node exists which has enough
remaining capacity (migration mapping). When the
decision for migration is taken, the tasks are moved
from the 'overloaded' node to the node with the best
capacity left. Thereafter both data rooms are
reordered by setting the load and capacity indices
of the corresponding nodes to default values and by
re-sorting the data heaps. By using a recursive
algorithm, the whole migration is done in one
global step. As a result, the application uses the
whole workstation cluster efficiently and expensive
compute time is not wasted migrating single tasks
one at a time.

5 Job preparation

As is the case for every parallel application, an
application using the DYNAMITE environment
must be split into separate tasks. These tasks must
be started on the nodes of the assigned cluster.
Usually, in FEM applications, such as Pam-Crash
[16], and many others, this is accomplished by
partitioning the problem data over the available
nodes in proportion to the capacity of a node. This
will result in a tight fit, which is fine if there are no
variations in load or capacity. For DYNAMITE we
are considering two other approaches:

Sparse decomposition. When the aim is to allow
any one node from a pool of (equal) workstations to
be temporarily used for other purposes, the task
should be split into fewer subtasks than the number
of available nodes. In this way, flexibility is gained
at a cost in performance.

Redundant decomposition. When the aim is to
allow for the redistribution of work in an
application that produces a dynamically changing
load, it may be preferable to split the data so that
every workstation gets more than one partition. In
this way load can easily be shifted, albeit at a cost
in communication efficiency.

Beside this additional choice in the partitioning,

Sort max.
capacity

Capacity room: C

Sort max. load

Load room: L

Update periodically

Retrieve & evaluate data

Migrate? YesNo

do work

sleep ? t

access: O(1)

Data room Decider

Fig. 4. : Architecture of the Migration Decider

 CheckFor Mi gr at i on () {
 / * Wi l l be t r i gger ed at l east ever y t seconds * /
 i f (Get MaxLoadFr omLi st Of LoadedNodes() <= Thr eshol d) r et ur n;
 i f (Get Best Capaci t y() > (1. 0 - Thr eshol d)) {
 / * t her e exi st s a node whi ch i s l ess bur dened;
 do t he mi gr at i on st uf f * /
 DoMi gr at i onSt uf f () ;
 Updat eLoadRoom() ; / * ef f or t : O(n * l og n) * /
 Updat eCapaci t yRoom() ; / * ef f or t : O(n * l og n) * /
 CheckFor Mi gr at i on() ; / * do t he r ecur si on * /
 }
 }

Fig. 5. : Pseudo-Code of the Recursive Algorithm for the Decider Module

running a task under DYNAMITE also requires the
monitoring tasks to be started together with the
DPVM system. Though this need not require any
additional effort on the side of the user, we will
provide a simple GUI to assist the user in starting
his DYNAMITE empowered application.

6 Conclusions

DYNAMITE will provide the application developer
with a robust tool that makes it possible to respond
flexibly to dynamic changes in the available system
capacity and application workload. The
DYNAMITE system will migrate (dynamically
linked) tasks from a parallel program when
necessary. The overhead involved will be very
small compared to the possible cost of a load
imbalance. The system structure is modular so that
it can easily be adapted to specific application
requirements. In the development phase this
modularity will be used for experimentation with
various migration policies.

References

[1] S. Zhou, X. Zheng, J. Wang and P. Delisle,
Utopia: A load sharing facility for large
heterogeneous distributed computer systems,
Software – Practice and Experience, v. 23, n. 12,
pp. 1305–1336, 1993

[2] http://www.genias.de/products/codine
[3] J. Pruyne and M. Livny, Managing Checkpoints

for Parallel Programs - Poc. IPPS Second
Workshop on Job Scheduling Strategies for
Parallel Processing, 1996

[4] M. Litzkow, T. Tannenbaum, J. Basney, and M.
Livny, Checkpoint and Migration of Unix
Processes in the Condor Distributed Processing
System - Technical Report 1346, University of
Wisconsin, WI, USA, 1997

[5] J. Casas, D.L. Clark, R. Konoru, S.W. Otto,
R.M. Prouty and J. Walpole, MPVM: A migration
transparent version of PVM, Usenix Computer
Systems, v. 8, n. 2, Spring, pp. 171–216, 1995

[6] J. Casas, D. Clark, P. Galbiati, R. Konuru, S.Otto,
R. Prouty and J. Walpole, MIST: PVM with
Transparant Migration and Checkpointing, Third
Annual PVM Users’ Group Meeting, Pittsburgh,
PA, 1995

[7] J. Robinson, S.H. Russ, B. Flachs, B. Heckel, A
Task Migration Implementation of the Message-
Passing Interface. Proceedings of the 5th IEEE
international symposium on high performance
distributed computing, pp. 61-68, 1996

[8] B.J. Overeinder, P.M.A. Sloot, R.N. Heederik,
L.O. Hertzberger, A dynamic load balancing
system for parallel cluster computing, Future
Generation Computer Systems 12, pp. 101-115,
1996

[9] Matthias Brune, Jörn Gehring and Alexander
Reinefeld, Heterogeneous Message Passing and a
Link to Resource Management, Journal on

Supercomputing, Vol. 11, Kluwer, Boston, pp.
355–369, 1997,
http://www.uni-paderborn.de/pc2/services/public/
 1997/97012.ps.Z

[10] F. Bonomi and A. Kumar, Adaptive optimal load
balancing in a nonhomogeneous multiserver
system with a central job scheduler, IEEE Trans.
on Computers, v. 39, n. 10, pp. 1232–1250, 1990

[11] J. Casas, R. Konoru, S.W. Otto, R. Prouty and
J. Walpole, Adaptive load migration systems for
PVM, Proceeedings of Supercomputing '94,
Washington DC, pp. 390–399, 1994

[12] M. Hamdi and C.K. Lee, Dynamic load balancing
of data parallel applications on a distributed
network, Proceedings of 1995 International
Conference on Supercomputing, Barcelona,
pp.170–179, 1995

[13] R. von Hanxleden and L.R. Scott, Load balancing
on message passing architectures, Journal of
Parallel and Distributed Computing, v. 13,
pp. 312–324, 1991

[14] R. Diekmann, B. Monien and R. Preis, Load
Balancing Strategies for Distributed Memory
Machines, Parallel and Distributed Processing for
Computational Mechanics: Systems and Tools,
B.H.V. Topping (ed.), Saxe-Coburg, 1998

[15] T. Decker, M. Fischer, R. Lüling and S. Tschöke,
A Distributed Load Balancing Algorithm for
Heterogeneous Parallel Computing Systems,
Proceedings of the 1998 International Conference
on Parallel and Distributed Processing Techniques
and Applications (PDPTA'98), H. R. Arabnia
(ed.), CSREA Press, Volume II, pp. 933–940,
1998

[16] http://www.esi.fr/products/crash/index.html

